1
|
Bartoszewska E, Misiąg P, Czapla M, Rakoczy K, Tomecka P, Filipski M, Wawrzyniak-Dzierżek E, Choromańska A. The Role of microRNAs in Lung Cancer: Mechanisms, Diagnostics and Therapeutic Potential. Int J Mol Sci 2025; 26:3736. [PMID: 40332376 PMCID: PMC12027727 DOI: 10.3390/ijms26083736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that do not have coding functions but play essential roles in various biological processes. In lung cancer, miRNAs affect the processes of tumor initiation, progression, metastasis, and resistance to treatment by regulating gene expression. Tumor-suppressive miRNAs inhibit oncogenic pathways, while oncogenic miRNAs, known as oncomiRs, promote malignant transformation and tumor growth. These dual roles position miRNAs as critical players in lung cancer biology. Studies in recent years have shown the significant potential of miRNAs as both prognostic and diagnostic biomarkers. Circulating miRNAs in plasma or sputum demonstrate specificity and sensitivity in detecting early-stage lung cancer. Liquid biopsy-based miRNA panels distinguish malignant from benign lesions, and specific miRNA expression patterns correlate with disease progression, response to treatment, and overall survival. Therapeutically, miRNAs hold promise for targeted interventions. Strategies such as miRNA replacement therapy using mimics for tumor-suppressive miRNAs and inhibition of oncomiRs with antagomiRs or miRNA sponges have shown preclinical success. Key miRNAs, including the let-7 family, miR-34a, and miR-21, are under investigation for their therapeutic potential. It should be emphasized that delivery difficulties, side effects, and limited stability of therapeutic miRNA molecules remain obstacles to their clinical use. This article examines the roles of miRNAs in lung cancer by indicating their mechanisms of action, diagnostic significance, and therapeutic potential. By addressing current limitations, miRNA-based approaches could revolutionize lung cancer management, offering precise, personalized, and minimally invasive solutions for diagnosis and treatment.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Piotr Misiąg
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Melania Czapla
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Elżbieta Wawrzyniak-Dzierżek
- Department and Clinic of Bone Marrow Transplantation, Oncology and Pediatric Hematology, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Su R, Qiu Y, Jin Z, Cui Y, Kong X, Peng F, Zhao Y, Ma W. Electroactive RuPt NPs programmed dual-channel electrochemical sensor for methyl mercaptan monitoring. Talanta 2025; 283:127137. [PMID: 39515050 DOI: 10.1016/j.talanta.2024.127137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The accurate and sensitive detection of methyl mercaptan (CH3SH) was of great significance for food corruption monitoring. Electroactive labels engineered electrochemical sensors possessed tailorable electrochemical responses, and showed potential prospects for CH3SH monitoring. In comparison to a single electrochemical signal, electroactive nanocomposites with multiple electrochemical responses not only provided multi-channel sensing signals for accurate detection, but also increased the peak intensity for sensitive detection. Herein, RuPt NPs were designed and explored to possess two independent and non-interfering electrochemical oxidation peaks at 0.75 V and -0.73 V. The formation of metal-SH covalent bonds between electroactive sites of RuPt NPs and CH3SH induced the changes of two electrochemical oxidation peaks. By utilizing the sum intensity of two electrochemical peaks as detection signal, a dual-channel electrochemical sensor was established for CH3SH detection in the range of 1 μM-1 mM, and had a low limit of detection (LOD) of 300 nM. This work gave a new insight into promoting more electroactive nanocomposites with multiple signals for accurate and sensitive electrochemical detection applications.
Collapse
Affiliation(s)
- Rui Su
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuruo Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhao Jin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqing Cui
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiangqian Kong
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fang Peng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuan Zhao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wei Ma
- School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Sadique Hussain M, Gupta G, Ghaboura N, Moglad E, Hassan Almalki W, Alzarea SI, Kazmi I, Ali H, MacLoughlin R, Loebenberg R, Davies NM, Kumar Singh S, Dua K. Exosomal ncRNAs in liquid biopsies for lung cancer. Clin Chim Acta 2025; 565:119983. [PMID: 39368685 DOI: 10.1016/j.cca.2024.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs) have become essential contributors to advancing and treating lung cancers (LCs). The development of liquid biopsies that utilize exosomal ncRNAs (exo-ncRNAs) offers an encouraging method for diagnosing, predicting, and treating LC. This thorough overview examines the dual function of exo-ncRNAs as both indicators for early diagnosis and avenues for LC treatment. Exosomes are tiny vesicles secreted by various cells, including cancerous cells, enabling connection between cells by delivering ncRNAs. These ncRNAs, which encompass circular RNAs, long ncRNAs, and microRNAs, participate in the modulation of gene expression and cellular functions. In LC, certain exo-ncRNAs are linked to tumour advancement, spread, and treatment resistance, positioning them as promising non-invasive indicators in liquid biopsies. Additionally, targeting these ncRNAs offers potential for innovative treatment approaches, whether by suppressing harmful ncRNAs or reinstating the activity of tumour-suppressing ones. This review emphasizes recent developments in the extraction and analysis of exo-ncRNAs, their practical applications in LC treatment, and the challenges and prospects for translating these discoveries into clinical usage. Through this detailed examination of the current state of the art, we aim to highlight the significant potential of exo-ncRNAs for LC diagnostics and treatments.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haider Ali
- Division of Translational Health Research, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Limited, H91HE94, Galway, Ireland
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Neal M Davies
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123, Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
4
|
Xu X, Zhang P, Tao S. Modular probe-based colorimetric miRNA detection via polymerase/endonuclease assisted chain displacement. Biotechniques 2024; 76:371-379. [PMID: 39041678 DOI: 10.1080/07366205.2024.2368394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Methods for sequence-specific microRNA (miRNA) analysis are crucial for miRNA research and guiding nursing strategies. We have devised a colorimetric technique for detecting miRNA using a dumbbell probe-based polymerase/endonuclease assisted chain displacement, along with silver ions (Ag+) aptamer assisted color reaction. The suggested approach enables precise measurement of miRNA-21 within the concentration range of 100 fM-5 nM, with a low detection limit of 45.32 fM. Additionally, it exhibits exceptional capability in distinguishing variations at the level of individual nucleotides. Furthermore, the detection technique may be utilized to precisely measure the amount of miRNA-21 in serum samples, demonstrating a high level of concordance with the findings obtained from a commercially available miRNA detection kit.
Collapse
Affiliation(s)
- Xialing Xu
- Department of Gastroenterology, People's Hospital Of Chongqing Liang Jiang New Area, Chongqing, 401147, China
| | - Ping Zhang
- Department of Gastroenterology, People's Hospital Of Chongqing Liang Jiang New Area, Chongqing, 401147, China
| | - Siyu Tao
- Department of Gastroenterology, People's Hospital Of Chongqing Liang Jiang New Area, Chongqing, 401147, China
| |
Collapse
|
5
|
Wang L, Pu G, Liu T, Chen G, Li H, Amuda TO, Cao S, Yan H, Yin H, Fu B, Luo X. Parasite-derived microRNA let-7-5p detection for metacestodiasis based on rolling circular amplification-assisted CRISPR/Cas9. FASEB J 2024; 38:e23708. [PMID: 38805151 DOI: 10.1096/fj.202302449r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).
Collapse
Affiliation(s)
- Liqun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Guiting Pu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Tingli Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Guoliang Chen
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hong Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Tharheer Oluwashola Amuda
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Shanling Cao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hongbin Yan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Baoquan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuenong Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Tran C, Dinh P. Potential diagnostic value of serum microRNAs for 19 cancer types: a meta-analysis of bioinformatics data. J Biomol Struct Dyn 2024:1-14. [PMID: 38487855 DOI: 10.1080/07391102.2024.2328744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 03/29/2025]
Abstract
Cancer is the second most common cause of mortality worldwide, accounting for almost 10 million deaths in 2020. These deaths were partly due to delayed diagnosis that led to deferred treatment. Therefore, new diagnostic methods are necessary to enhance the accuracy of noninvasive cancer detection. The present study developed a microRNA (miRNA)-based serum diagnostic marker for detecting a wide range of cancers. The study involved 61,019 serum samples from 19 different cancer types. A miRNA prediction model was established through bioinformatics analysis of serum samples from various cancer pathologies and qRT-PCR results from studies in PubMed aligned to the analysis criteria. R software v.4.1.1 with the limma data analysis package was used for single gene expression series data series, and batchNormalize and robustRankAggreg were used to predict the changes in miRNA expression in multiple datasets. GO and KEGG analyses showed that these miRNAs play a role in cancer-related biological signaling pathways. Finally, the diagnostic capability of these miRNA biomarkers was assessed using area under the curve analysis. The study predicted that 7 miRNAs were upregulated and 10 miRNAs were downregulated in 19 different types of cancer. Some miRNAs showed significant differential expression in a specific cancer type. Additionally, downstream genes regulated by miRNAs focused on many cancer-related molecular signaling pathways. In this review, we summarize the current understanding of miRNAs in various cancers, with a particular focus on their potential as future noninvasive diagnostic biomarkers. The emphasis is on their capacity for achieving high accuracy and cost savings compared to conventional biomarkers.
Collapse
Affiliation(s)
- ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - PhongSon Dinh
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| |
Collapse
|
7
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
8
|
You J, Xia H, Huang Z, He R, Zhao X, Chen J, Liu S, Xu Y, Cui Y. Research progress of circulating non-coding RNA in diagnosis and treatment of hepatocellular carcinoma. Front Oncol 2023; 13:1204715. [PMID: 37546394 PMCID: PMC10400719 DOI: 10.3389/fonc.2023.1204715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor that carries a significant risk of morbidity and mortality. This type of cancer is prevalent in Asia due to the widespread presence of risk factors. Unfortunately, HCC often goes undetected until it has reached an advanced stage, making early detection and treatment critical for better outcomes. Alpha-fetoprotein (AFP) is commonly used in clinical practice for diagnosing HCC, but its sensitivity and specificity are limited. While surgery and liver transplantation are the main radical treatments, drug therapy and local interventions are better options for patients with advanced HCC. Accurately assessing treatment efficacy and adjusting plans in a timely manner can significantly improve the prognosis of HCC. Non-coding RNA gene transcription products cannot participate in protein production, but they can regulate gene expression and protein function through the regulation of transcription and translation processes. These non-coding RNAs have been found to be associated with tumor development in various types of tumors. Noncoding RNA released by tumor or blood cells can circulate in the blood and serve as a biomarker for diagnosis, prognosis, and efficacy assessment. This article explores the unique role of circulating noncoding RNA in HCC from various perspectives.
Collapse
Affiliation(s)
- Junqi You
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xudong Zhao
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiali Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sidi Liu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
He C, Zhao J, Long Y, Yang H, Dong J, Liu H, Hu Z, Yang M, Huo D, Hou C. An ultrasensitive electrochemical biosensor for microRNA-21 detection via AuNPs/GAs and Y-shaped DNA dual-signal amplification strategy. Chem Commun (Camb) 2023; 59:350-353. [PMID: 36514997 DOI: 10.1039/d2cc06329h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a gold nanoparticles/graphene aerogels (AuNPs/GAs) modified electrochemical biosensor with catalytic hairpin assembly (CHA) and Y-shaped DNA nanostructure dual-signal amplification approaches for ultrasensitive microRNA-21 (miR-21) detection was successfully constructed, which displayed an ultra-wide detection linear range from 5 fM to 50 nM, as well as a relatively low detection limit (LOD) of 14.70 aM (S/N = 3). Furthermore, the sensing strategy had excellent specificity among highly homologous miRNA family members and exhibited satisfactory analytical performance for miRNA detection.
Collapse
Affiliation(s)
- Congjuan He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yanyi Long
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China
| | - Zhikun Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
10
|
Liu X, Zhao X, Yuan Y, Cao Z, Zhu M, Li T, Wu Z. Accurate detection of lung cancer-related microRNA through CRISPR/Cas9-assisted garland rolling circle amplification. J Thorac Dis 2022; 14:4427-4434. [PMID: 36524084 PMCID: PMC9745504 DOI: 10.21037/jtd-22-1405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 02/19/2024]
Abstract
BACKGROUND MicroRNA (miRNA) is reported to be closely related to a variety of pathophysiological processes for carcinoma and considered a potential biomarker for the diagnosis of lung cancer with brain metastasis. However, developing an accurate and sensitive miRNA detection method has proven to be a challenge. The aim of the present study was to integrate the advantages of rolling circle amplification (RCA), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nucleases 9 (Cas9), and catalytic hairpin assembly (CHA) technologies to develop an miRNA detection method. METHODS In the present study, we developed a novel approach for the sensitive and accurate detection of miRNA through integrating garland RCA and CRISPR/Cas9-assisted signal generation. In this method, target miRNA cyclized dumbbell padlock and triggered the RCA process to form long single-stranded DNA products with a repeated hairpin structure. Double-stranded DNA sequences (dsDNA) were formed with the addition of complementary sequences. With the assistance of the Cas9 enzyme for specific recognition and cleavage of formed dsDNA, RCA products were disassembled into hairpin probes. The generated hairpin probe could be unfolded by target miRNA to initiate the CHA process for signal generation. RESULTS Through integration of the RCA and CHA processes, the method demonstrated favorable detection performance. The correlation equation between the signal and concentration of target miRNA was determined to be Y=312.3 × lgC + 2108, with a high correlation coefficient of 0.9786. The approach also exhibited high selectivity to the mismatched miRNAs. CONCLUSIONS Our method could be used in the screening, diagnosis, and prognosis of multiple diseases without complicated thermal cycling instrumentation.
Collapse
Affiliation(s)
- Xiaoya Liu
- Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianxian Zhao
- Department of Clinical Laboratory, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ye Yuan
- Department of Clinical Laboratory, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhenrui Cao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingxue Zhu
- Department of Pharmacy, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Li
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Sensitive detection of MiRNA and CircRNA through DSN enzyme cooperating NEase assisted dual signal amplification. Anal Biochem 2022; 654:114744. [DOI: 10.1016/j.ab.2022.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
|
12
|
Construction of Dual-Target Recognition-Based Specific MicroRNA Detection Method for Acute Pancreatitis Analysis. Appl Biochem Biotechnol 2022; 194:3136-3144. [PMID: 35347672 DOI: 10.1007/s12010-022-03907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023]
|
13
|
Li J, Luo H. Nicking site enzyme assisted catalytic hairpin assembly based scaffold for sensitive monitoring of miRNA-21. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Liu C, Xiang X, Han S, Lim HY, Li L, Zhang X, Ma Z, Yang L, Guo S, Soo R, Ren B, Wang L, Goh BC. Blood-based liquid biopsy: Insights into early detection and clinical management of lung cancer. Cancer Lett 2022; 524:91-102. [PMID: 34656690 DOI: 10.1016/j.canlet.2021.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Currently, early detection of lung cancer relies on the characterisation of images generated from computed tomography (CT). However, lung tissue biopsy, a highly invasive surgical procedure, is required to confirm CT-derived diagnostic results with very high false-positive rates. Hence, a non-invasive or minimally invasive biomarkers is essential to complement the existing low-dose CT (LDCT) for early detection, improve responses to a certain treatment, predict cancer recurrence, and to evaluate prognosis. In the past decade, liquid biopsies (e.g., blood) have been demonstrated to be highly effective for lung cancer biomarker discovery. In this review, the roles of emerging liquid biopsy-derived biomarkers such as circulating nucleic acids, circulating tumour cells (CTCs), long non-coding RNA (lncRNA), and microRNA (miRNA), as well as exosomes, have been highlighted. The advantages and limitations of these blood-based minimally invasive biomarkers have been discussed. Furthermore, the current progress of the identified biomarkers for clinical management of lung cancer has been summarised. Finally, a potential strategy for the early detection of lung cancer, using a combination of LDCT scans and well-validated biomarkers, has been discussed.
Collapse
Affiliation(s)
- Cuiliu Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shuangqing Han
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Hannah Ying Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Lingrui Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xing Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Li Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ross Soo
- Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| |
Collapse
|
15
|
Boyer M, Cayrefourcq L, Dereure O, Meunier L, Becquart O, Alix-Panabières C. Clinical Relevance of Liquid Biopsy in Melanoma and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12040960. [PMID: 32295074 PMCID: PMC7226137 DOI: 10.3390/cancers12040960] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma and Merkel cell carcinoma are two aggressive skin malignancies with high disease-related mortality and increasing incidence rates. Currently, invasive tumor tissue biopsy is the gold standard for their diagnosis, and no reliable easily accessible biomarker is available to monitor patients with melanoma or Merkel cell carcinoma during the disease course. In these last years, liquid biopsy has emerged as a candidate approach to overcome this limit and to identify biomarkers for early cancer diagnosis, prognosis, therapeutic response prediction, and patient follow-up. Liquid biopsy is a blood-based non-invasive procedure that allows the sequential analysis of circulating tumor cells, circulating cell-free and tumor DNA, and extracellular vesicles. These innovative biosources show similar features as the primary tumor from where they originated and represent an alternative to invasive solid tumor biopsy. In this review, the biology and technical challenges linked to the detection and analysis of the different circulating candidate biomarkers for melanoma and Merkel cell carcinoma are discussed as well as their clinical relevance.
Collapse
Affiliation(s)
- Magali Boyer
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Olivier Dereure
- Department of Dermatology and INSERM 1058 Pathogenesis and Control of Chronic Infections, University of Montpellier, 34090 Montpellier, France;
| | - Laurent Meunier
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Ondine Becquart
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
- Correspondence: ; Tel.: +33-4-1175-99-31; Fax: +33-4-1175-99-33
| |
Collapse
|
16
|
Li Y, Wang D, Li X, Shao Y, He Y, Yu H, Ma Z. MiR-199a-5p suppresses non-small cell lung cancer via targeting MAP3K11. J Cancer 2019; 10:2472-2479. [PMID: 31258753 PMCID: PMC6584351 DOI: 10.7150/jca.29426] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) comprise a class of short, non-coding RNAs that directly target 3'UTR of mRNA, causing subsequent degradation or suppression of translation. Here, we verified that miR-199a-5p was significantly down-regulated in mouse NSCLC tissues and human patient samples. To further study the function of miR-199a-5p, lentivirus system was adopted to construct stably over-expressing miR-199a-5p A549, SPC-A1 and H1299 cell lines. Then, miR-199a-5p played a tumor suppression role via directly targeting MAP3K11 gene in non-small cell lung cancer (NSCLC). Elevated miR-199a-5p suppressed cell proliferation and arrested cell cycle in G1 phase. We found that MAP3K11 was negatively correlated with miR-199a-5p in NSCLC patient tissues and mouse xenograft tumors. Our results suggest that miR-199a-5p together with its target gene MAP3K11 is a key factor and constitutes a complicated regulation network in NSCLC.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Detao Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yang Shao
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanyun He
- Exprimental Center for Life Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Zhu D, Lu B, Zhu Y, Ma Z, Wei Y, Su S, Wang L, Song S, Zhu Y, Wang L, Chao J. Cancer-Specific MicroRNA Analysis with a Nonenzymatic Nucleic Acid Circuit. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11220-11226. [PMID: 30816697 DOI: 10.1021/acsami.9b01653] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sensitive detection of gastric cancer-related biomarkers in human serum provides a promising means for early cancer diagnosis. Herein, we report the design of a nucleic acid circuit for gastric cancer-related microRNA-27a (miRNA-27a) detection based on dual toehold-mediated circular strand displacement amplification (CSDA). In the presence of miRNA-27a, the hybridization between miRNA-27a and probe DNA on magnetic beads through toehold 1 leads to the release of fluorescent DNA and the exposure of a new toehold 2 on linker DNA. After hybridization with catalytic DNA, CSDA is initiated and target miRNA-27a is released to participate in the next cyclic reaction; therefore, a greatly enhanced fluorescence signal is produced. The efficient magnetic separation makes the sensitive detection of miRNA-27a be accomplished within 45 min. With the efficient CSDA, the detection limit of the system (0.8 pM) is ∼100 folds lower than that of the system based on strand displacement without CSDA (79.3 pM). Furthermore, the system also showed good stability and sensitivity to discriminate single-base mismatch, which allows the detection of miRNA-27a in human serum samples. This study provides a novel platform and approach for the rapid quantitative determination of miRNA, which has great potential in clinical diagnosis and disease treatment.
Collapse
Affiliation(s)
- Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Bang Lu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Yu Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Zihao Ma
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Yaqi Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Shiping Song
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Ying Zhu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , China
| |
Collapse
|
18
|
Song L, Xiao Y. Downregulation of hsa_circ_0007534 suppresses breast cancer cell proliferation and invasion by targeting miR-593/MUC19 signal pathway. Biochem Biophys Res Commun 2018; 503:2603-2610. [PMID: 30139516 DOI: 10.1016/j.bbrc.2018.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are important non-coding RNAs that are reportedly involved in the progression of diverse human cancers through their action as a microRNA (miRNA) sponge. However, the exact roles of circRNAs in breast cancer (BC) remain largely unknown. The present data demonstrate the significantly upregulated expression of hsa_circ_0007534 circRNA in BC tissues and cell lines. In contrast, miR-593 expression was significantly downregulated. Knockdown of hsa_circ_0007534 inhibited BC cell proliferation, colony formation, and invasion, and promoted apoptosis in BC cells. Moreover, hsa_circ_0007534 was demonstrated to be a sponge of miR-593, and expression of miR-593 in BC cells was negatively correlated with hsa_circ_0007534. MUC19 expression was markedly increased in BC tissues and cell lines, and the 3'-UTR of MUC19 was targeted by miR-593. The expression of MUC19 was negatively regulated by miR-593 in BC cells. Our findings suggest an oncogenic role for hsa_circ_0007534 in BC by acting as a miR-593 sponge to promote MUC19 expression.
Collapse
Affiliation(s)
- Lili Song
- Department of Pathology, General Hospital of Daqing-oil-field, Daqing City, 163001, Heilongjiang Province, China.
| | - Yue Xiao
- Department of Oncology, General Hospital of Daqing-oil-field, Daqing City, 163001, Heilongjiang Province, China
| |
Collapse
|
19
|
HSP90: A Novel Target Gene of miRNA-628-3p in A549 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4149707. [PMID: 29888262 PMCID: PMC5985115 DOI: 10.1155/2018/4149707] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023]
Abstract
Lung cancer is one of the leading causes of cancer-related death in the world. MicroRNA- (miR-) 628-3p plays critical roles in many cancers, including lung cancer. We investigated how miR-628-3p affected migration and apoptosis in A549 cells. We used bioinformatics algorithms to predict the miR-628-3p target gene to study the molecular mechanism by which miR-628-3p contributes to lung cancer. Then, we used the luciferase reporter assay to identify whether heat shock protein 90a (HSP90) is a direct target of miR-628-3p. Western blotting and quantitative real-time PCR showed that miR-628-3p downregulated HSP90a protein expression via a posttranscriptional mechanism. We confirm that miR-628-3p promotes apoptosis and inhibits migration in A549 cells by negatively regulating HSP90. Our results may reveal a novel strategy for lung cancer treatment.
Collapse
|
20
|
Xie ZC, Li TT, Gan BL, Gao X, Gao L, Chen G, Hu XH. Investigation of miR-136-5p key target genes and pathways in lung squamous cell cancer based on TCGA database and bioinformatics analysis. Pathol Res Pract 2018; 214:644-654. [PMID: 29650443 DOI: 10.1016/j.prp.2018.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lung squamous cell cancer (LUSC) is a common but challenging malignancy. It is important to illuminate the molecular mechanism of LUSC. Thus, we aim to explore the molecular mechanism of miR-136-5p in relation to LUSC. METHODS We used the Cancer Genome Atlas (TCGA) database to investigate the expression of miR-136-5p in relation to LUSC. Then, we identified the possible miR-136-5p target genes through intersection of the predicted miR-136-5p target genes and LUSC upregulated genes from TCGA. Bioinformatics analysis was performed to determine the key miR-136-5p targets and pathways associated with LUSC. Finally, the expression of hub genes, correlation between miR-136-5p and hub genes, and expected significance of hub genes were evaluated via the TCGA and Genotype-Tissue Expression (GTEx) project. RESULTS MiR-136-5p was significantly downregulated in LUSC patients. Glucuronidation, glucuronosyltransferase, and the retinoic acid metabolic process were the most enriched metabolic interactions in LUSC patients. Ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism were identified as crucial pathways. Seven hub genes (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A10, SRD5A1, and ADH7) were found to be upregulated, and UGT1A1, UGT1A3, UGT1A6, UGT1A7, and ADH7 were negatively correlated with miR-136-5p. UGT1A7 and ADH7 were the most significantly involved miR-136-5p target genes, and high expression of these genes was correlated with better overall survival and disease-free survival of LUSC patients. CONCLUSIONS Downregulated miR-136-5p may target UGT1A7 and ADH7 and participate in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism. High expression of UGT1A7 and ADH7 may indicate better prognosis of LUSC patients.
Collapse
Affiliation(s)
- Zu-Cheng Xie
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Tian-Tian Li
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Bin-Liang Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiang Gao
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
21
|
Gallach S, Jantus-Lewintre E, Calabuig-Fariñas S, Montaner D, Alonso S, Sirera R, Blasco A, Usó M, Guijarro R, Martorell M, Camps C. MicroRNA profiling associated with non-small cell lung cancer: next generation sequencing detection, experimental validation, and prognostic value. Oncotarget 2017; 8:56143-56157. [PMID: 28915579 PMCID: PMC5593550 DOI: 10.18632/oncotarget.18603] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Background The average five-year survival for non-small cell lung cancer (NSCLC) patients is approximately 15%. Emerging evidence indicates that microRNAs (miRNAs) constitute a new class of gene regulators in humans that may play an important role in tumorigenesis. Hence, there is growing interest in studying their role as possible new biomarkers whose expression is aberrant in cancer. Therefore, in this study we identified dysregulated miRNAs by next generation sequencing (NGS) and analyzed their prognostic value. Methods Sequencing by oligo ligation detection technology was used to identify dysregulated miRNAs in a training cohort comprising paired tumor/normal tissue samples (N = 32). We validated 22 randomly selected differentially-expressed miRNAs by quantitative real time PCR in tumor and adjacent normal tissue samples (N = 178). Kaplan-Meier survival analysis and Cox regression were used in multivariate analysis to identify independent prognostic biomarkers. Results NGS analysis revealed that 39 miRNAs were dysregulated in NSCLC: 28 were upregulated and 11 were downregulated. Twenty-two miRNAs were validated in an independent cohort. Interestingly, the group of patients with high expression of both miRNAs (miR-21high and miR-188high) showed shorter relapse-free survival (RFS) and overall survival (OS) times. Multivariate analysis confirmed that this combined signature is an independent prognostic marker for RFS and OS (p = 0.001 and p < 0.0001, respectively). Conclusions NGS technology can specifically identify dysregulated miRNA profiles in resectable NSCLC samples. MiR-21 or miR-188 overexpression correlated with a negative prognosis, and their combined signature may represent a new independent prognostic biomarker for RFS and OS.
Collapse
Affiliation(s)
- Sandra Gallach
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Pathology, Universitat de València, Valencia, Spain
| | - David Montaner
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Institut de Reserca Germans Trias i Pujol (PMPPC-IGTP), Badalona, Spain
| | - Rafael Sirera
- Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Ana Blasco
- Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Marta Usó
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain
| | - Ricardo Guijarro
- Department of Surgery, Universitat de València, Valencia, Spain.,Department of Thoracic Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Miguel Martorell
- Department of Pathology, Universitat de València, Valencia, Spain.,Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
22
|
Zatelli MC, Grossrubatscher EM, Guadagno E, Sciammarella C, Faggiano A, Colao A. Circulating tumor cells and miRNAs as prognostic markers in neuroendocrine neoplasms. Endocr Relat Cancer 2017; 24:R223-R237. [PMID: 28389504 DOI: 10.1530/erc-17-0091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
The prognosis of neuroendocrine neoplasms (NENs) is widely variable and has been shown to associate with several tissue- and blood-based biomarkers in different settings. The identification of prognostic factors predicting NEN outcome is of paramount importance to select the best clinical management for these patients. Prognostic markers have been intensively investigated, also taking advantage of the most modern techniques, in the perspective of personalized medicine and appropriate resource utilization. This review summarizes the available data on the possible role of circulating tumor cells and microRNAs as prognostic markers in NENs.
Collapse
Affiliation(s)
- Maria Chiara Zatelli
- Department of Medical SciencesSection of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | | | - Elia Guadagno
- Department of Advanced Biomedical SciencesPathology Section, University of Naples Federico II, Naples, Italy
| | | | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery UnitIstituto Nazionale per lo Studio e la Cura Dei Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | | |
Collapse
|
23
|
Tian H, Zhou C, Yang J, Li J, Gong Z. Long and short noncoding RNAs in lung cancer precision medicine: Opportunities and challenges. Tumour Biol 2017; 39:1010428317697578. [PMID: 28381159 DOI: 10.1177/1010428317697578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The long and short noncoding RNAs have been involved in the molecular diagnosis, targeted therapy, and predicting prognosis of lung cancer. Utilizing noncoding RNAs as biomarkers and systemic RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision oncology. Targeting of RNA interference payloads such as small interfering RNAs, microRNA mimetic, or anti-microRNA (antagomirs) into specific cell types has achieved initial success. The clinical trials of noncoding RNA-based therapies are on the way with some positive results. Many attempts are done for developing novel noncoding RNA delivery strategies that could overcome systemic or local barriers. Furthermore, it precipitates concerted efforts to define the molecular subtypes of lung cancer, characterize the genomic landscape of lung cancer subtypes, identify novel therapeutic targets, and reveal mechanisms of sensitivity and resistance to targeted therapies. These efforts contribute a visible effect now in lung cancer precision medicine: patients receive molecular testing to determine whether their tumor harbors an actionable come resistance to the first-generation drugs are in clinical trials, and drugs targeting the immune system are showing activity in patients. This extraordinary promise is tempered by the sobering fact that even the newest treatments for metastatic disease are rarely curative and are effective only in a small fraction of all patients. Thus, ongoing and future efforts to find new vulnerabilities of lung cancers unravel the complexity of drug resistance, increase the efficacy of immunotherapies, and perform biomarker-driven clinical trials are necessary to improve the outcome of lung cancer patients.
Collapse
Affiliation(s)
- Haihua Tian
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, China.,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China.,3 Department of Laboratory Medicine, Ningbo Kangning Hospital, Ningbo, China
| | - Chengwei Zhou
- 4 Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, China
| | - Jie Yang
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, China.,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Jingqiu Li
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, China.,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Zhaohui Gong
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, China.,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
24
|
Zhang X, Tang W, Li R, He R, Gan T, Luo Y, Chen G, Rong M. Downregulation of microRNA-132 indicates progression in hepatocellular carcinoma. Exp Ther Med 2016; 12:2095-2101. [PMID: 27698698 PMCID: PMC5038555 DOI: 10.3892/etm.2016.3613] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 06/16/2016] [Indexed: 12/17/2022] Open
Abstract
Although miR-132 has been studied in various human tumors, few studies have investigated the role of miR-132 in hepatocellular carcinoma (HCC). The present study aimed to evaluate the associations between miR-132 and clinicopathological parameters, including recurrence, in patients with HCC. Reverse transcription-quantitative polymerase chain reaction analysis was used to detect the expression levels of miR-132 in 95 cases of HCC and their corresponding non-cancerous liver tissues. Th e associations between miR-132 expression levels and clinicopathological characteristics, including recurrence, were investigated in patients with HCC. miR-132 expression levels were significantly reduced in HCC tissues, as compared with adjacent non-cancerous tissues (1.9245±0.7564 vs. 2.7326±1.1475; P<0.001). The area under curve (AUC) of receiver operating characteristic (ROC) used to distinguish cancerous and non-cancerous tissues was 0.711 for miR-132 expression (95% confidence interval, 0.637-0.785; P<0.001) and the optimal cut-off value was 2.25. Expression levels of miR-132 were significantly reduced in the distant metastasis (P=0.031), advanced clinical TNM stage (P=0.022), hepatitis B virus-positive (P<0.001), NM23-expressed (P=0.034), high Ki-67 labeling index (LI; P=0.005) and tumor infiltration or no capsule groups (P=0.026). Spearman correlation analysis demonstrated that miR-132 was significantly correlated with hepatitis B virus infection (r=-0.351; P<0.001), NM23 (r=-0.220; P=0.032), Ki-67 LI (r=-0.264; P=0.010) and tumor capsule (r=-0.207; P=0.044). Kaplan-Meier analysis with the log-rank test indicated an approximate difference of 8 months, although miR-132 may exhibit inferior values for the prediction of recurrence in HCC patients (50.95 vs. 58.68 months; P=0.512). Therefore, the findings of the present study indicated that miR-132 is downregulated in HCC and may serve as a tumor suppressor in its progression.
Collapse
Affiliation(s)
- Xin Zhang
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ruishan Li
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tingqing Gan
- Department of Medical Oncology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yihuan Luo
- Department of Pathology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Minhua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
25
|
Reclusa P, Sirera R, Araujo A, Giallombardo M, Valentino A, Sorber L, Bazo IG, Pauwels P, Rolfo C. Exosomes genetic cargo in lung cancer: a truly Pandora's box. Transl Lung Cancer Res 2016; 5:483-491. [PMID: 27826529 DOI: 10.21037/tlcr.2016.10.06] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer is a highly lethal disease. Targeted therapies have been developed in last years, however survival rates are not improving due to the delay in the diagnosis, making biomarkers one of the most interesting fields of study in cancer. Liquid biopsy has raised as an alternative to tissue biopsy due to improvements in analytical techniques for circulating tumor cells (CTCs), cell free DNA and exosomes. Among all, exosomes have raised as one of the most promising tools to understand the tumor due to their stability in the blood and their similarity to the cells of origin. In the last years, different alterations have been described inside the exosomes derived from non-small cell lung cancer (NSCLC) cells mirroring the processes inside these tumoral cells, such as EGFR mutation, translocations or microRNA (miRNA) deregulation. All these studies have opened the window to a new world of possibilities in the study of tumor biomarkers.
Collapse
Affiliation(s)
- Pablo Reclusa
- Phase I- Early Clinical trials Unit, Oncology Department & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Rafael Sirera
- Department of Biotechnology, Politechnic University of Valencia Hospitality Centre of Oporto, Valencia, Spain
| | - Antonio Araujo
- Department of Medical Oncology, Centro Hospitalar do Porto, Porto, Portugal
| | - Marco Giallombardo
- Phase I- Early Clinical trials Unit, Oncology Department & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Anna Valentino
- Phase I- Early Clinical trials Unit, Oncology Department & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Laure Sorber
- Molecular Pathology Unit, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Ignacio Gil Bazo
- Department of Medical Oncology, University of Navarra, Pamplona, Spain
| | - Patrick Pauwels
- Molecular Pathology Unit, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Christian Rolfo
- Phase I- Early Clinical trials Unit, Oncology Department & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
26
|
Liao SH, Liu WZ, Liu T, Sun Y, Feng X, Zhou HF. Potential signaling pathway of hypoxia-inducible factor in lung cancer and its gene polymorphism with lung cancer risk. J Recept Signal Transduct Res 2015; 35:233-7. [DOI: 10.3109/10799893.2015.1041648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Boeri M, Sestini S, Fortunato O, Verri C, Suatoni P, Pastorino U, Sozzi G. Recent advances of microRNA-based molecular diagnostics to reduce false-positive lung cancer imaging. Expert Rev Mol Diagn 2015; 15:801-13. [PMID: 25924864 DOI: 10.1586/14737159.2015.1041377] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lung cancer is the leading cause of cancer deaths in the world. Advances in early detection crucial to enable timely curative surgery have been made in recent years. Cost-benefit profiles of lung cancer screening in smokers by low-dose computed tomography are still under evaluation. In particular, the high false-positive rates of low-dose computed tomography, together with the issue of overdiagnosis and the overall costs of screening, prompted a focus on the development of noninvasive complementary biomarkers to implement lung cancer screening. MicroRNA are a new class of blood-based biomarkers useful for early lung cancer detection and prognosis definition. Here, we discuss the seminal publications that reported circulating microRNA signatures with the greatest potential to impact clinical activity and patient care.
Collapse
Affiliation(s)
- Mattia Boeri
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, Milan 20133, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Hu QY, Zhang S, Zhang CM. MicroRNAs as diagnostic biomarkers for hepatocellular carcinoma: A meta-analysis. Shijie Huaren Xiaohua Zazhi 2015; 23:1314-1322. [DOI: 10.11569/wcjd.v23.i8.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To perform a literature review and meta-analysis of the diagnostic accuracy of microRNAs (miRNAs) for HCC.
METHODS: We systematically searched the Cochrane Central Register of Controlled Trials, PubMed, MEDLINE, EMBASE, the Chinese Biomedical Literature Database, the China Academic Journals Full-text Database, and the Chinese Scientific Journals Database for potential studies till October 2014. Studies were included and excluded according to inclusion and exclusion criteria. Meta-analysis was then performed to evaluate the overall diagnostic performance of miRNAs.
RESULTS: A total of 676 studies were retrieved, of which 11 were finally included in this meta-analysis. The range of the diagnostic sensitivity of miRNAs for HCC was 72%-98%, pooled sensitivity was 85%; specificity was 76%-100%, pooled specificity was 89%; positive likelihood ratio was 3.52-97.45, pooled positive likelihood ratio was 7.20; negative likelihood ratio was 0.02-0.57, pooled negative likelihood ratio was 0.18; and diagnostic odds ratio was 13.14-2646.00, pooled diagnostic odds ratio was 51.09.
CONCLUSION: MiRNAs have a relatively high accuracy in identifying HCC.
Collapse
|
29
|
Braoudaki M, Lambrou GI. MicroRNAs in pediatric central nervous system embryonal neoplasms: the known unknown. J Hematol Oncol 2015; 8:6. [PMID: 25652781 PMCID: PMC4333163 DOI: 10.1186/s13045-014-0101-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/27/2014] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that repress post-transcriptional regulation of gene expression, while embryonal central nervous system tumors are the foremost cause of mortality in children suffering from a neoplasm. MiRNAs and their regulatory mechanisms are new to understand, while pediatric CNS tumors are difficult to comprehend. Therefore, identification of the link between them composes a major scientific challenge. The present study, reviewed the current knowledge on the role of miRNA in pediatric CNS embryonal tumors, attempting to collect the existing information in one piece of work that could ideally be used as a guide for future reference and research.
Collapse
Affiliation(s)
- Maria Braoudaki
- First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, Athens, Greece. .,University Research Institute for the Study and Treatment of Childhood Genetic and Malignant Diseases, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece.
| | - George I Lambrou
- First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, Athens, Greece.
| |
Collapse
|