1
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Non-[ 18F]FDG PET-Radiopharmaceuticals in Oncology. Pharmaceuticals (Basel) 2024; 17:1641. [PMID: 39770483 PMCID: PMC11677833 DOI: 10.3390/ph17121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Molecular imaging is a growing field, driven by technological advances, such as the improvement of PET-CT scanners through the introduction of digital detectors and scanners with an extended field of view, resulting in much higher sensitivity and a variety of new specific radiopharmaceuticals that allow the visualization of specific molecular pathways and even theragnostic approaches. In oncology, the development of dedicated tracers is crucial for personalized therapeutic approaches. Novel peptides allow the visualization of many different targets, such as PD-1 and PD-L1 expression, chemokine expression, HER expression, T-cell imaging, microenvironmental imaging, such as FAP imaging, and many more. In this article, we review recent advances in the development of non-[18F]FDG PET radiopharmaceuticals and their current clinical applications in oncology, as well as some future aspects.
Collapse
Affiliation(s)
- Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
2
|
Moradi H, Vashistha R, O'Brien K, Hammond A, Vegh V, Reutens D. A short 18F-FDG imaging window triple injection neuroimaging protocol for parametric mapping in PET. EJNMMI Res 2024; 14:1. [PMID: 38169031 PMCID: PMC10761663 DOI: 10.1186/s13550-023-01061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND In parametric PET, kinetic parameters are extracted from dynamic PET images. It is not commonly used in clinical practice because of long scan times and the requirement for an arterial input function (AIF). To address these limitations, we designed an 18F-fluorodeoxyglucose (18F-FDG) triple injection dynamic PET protocol for brain imaging with a standard field of view PET scanner using a 24-min imaging window and an input function modeled using measurements from a region of interest placed over the left ventricle. METHODS To test the protocol in 6 healthy participants, we examined the quality of voxel-based maps of kinetic parameters in the brain generated using the two-tissue compartment model and compared estimated parameter values with previously published values. We also utilized data from a 36-min validation imaging window to compare (1) the modeled AIF against the input function measured in the validation window; and (2) the net influx rate ([Formula: see text]) computed using parameter estimates from the short imaging window against the net influx rate obtained using Patlak analysis in the validation window. RESULTS Compared to the AIF measured in the validation window, the input function estimated from the short imaging window achieved a mean area under the curve error of 9%. The voxel-wise Pearson's correlation between [Formula: see text] estimates from the short imaging window and the validation imaging window exceeded 0.95. CONCLUSION The proposed 24-min triple injection protocol enables parametric 18F-FDG neuroimaging with noninvasive estimation of the AIF from cardiac images using a standard field of view PET scanner.
Collapse
Affiliation(s)
- Hamed Moradi
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Rajat Vashistha
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| | - Kieran O'Brien
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Amanda Hammond
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - David Reutens
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Long axial field of view (LAFOV) PET-CT: implementation in static and dynamic oncological studies. Eur J Nucl Med Mol Imaging 2023; 50:3354-3362. [PMID: 37079129 PMCID: PMC10541341 DOI: 10.1007/s00259-023-06222-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/02/2023] [Indexed: 04/21/2023]
Abstract
Long axial field of view (LAFOV) PET-CT scanners have been recently developed and are already in clinical use in few centers worldwide. Although still limited, the hitherto acquired experience with these novel systems highlights an increased sensitivity as their main advantage, which results in an increased lesion detectability. This attribute, alternatively, allows a reduction in PET acquisition time and/or administered radiotracer dose, while it renders delayed scanning of satisfying diagnostic accuracy possible. Another potential advantage of the new generation scanners is CT-less approaches for attenuation correction with the impact of marked reduction of radiation exposure, which may in turn lead to greater acceptance of longitudinal PET studies in the oncological setting. Further, the possibility for the first time of whole-body dynamic imaging, improved compartment modeling, and whole-body parametric imaging represent unique characteristics of the LAFOV PET-CT scanners. On the other hand, the advent of the novel LAFOV scanners is linked to specific challenges, such as the high purchase price and issues related to logistics and their optimal operation in a nuclear medicine department. Moreover, with regard to its research applications in oncology, the full potential of the new scanners can only be reached if different radiopharmaceuticals, both short and long-lived ones, as well as novel tracers, are available for use, which would, in turn, require the appropriate infrastructure in the area of radiochemistry. Although the novel LAFOV scanners are not yet widely used, this development represents an important step in the evolution of molecular imaging. This review presents the advantages and challenges of LAFOV PET-CT imaging for oncological applications with respect to static and dynamic acquisition protocols as well as to new tracers, while it provides an overview of the literature in the field.
Collapse
Affiliation(s)
- Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| |
Collapse
|
4
|
The Role of Molecular Imaging in Personalized Medicine. J Pers Med 2023; 13:jpm13020369. [PMID: 36836603 PMCID: PMC9959741 DOI: 10.3390/jpm13020369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of personalized medicine refers to the tailoring of medical treatment to each patient's unique characteristics. Scientific advancements have led to a better understanding of how a person's unique molecular and genetic profile makes them susceptible to certain diseases. It provides individualized medical treatments that will be safe and effective for each patient. Molecular imaging modalities play an essential role in this aspect. They are used widely in screening, detection and diagnosis, treatment, assessing disease heterogeneity and progression planning, molecular characteristics, and long-term follow-up. In contrast to conventional imaging approaches, molecular imaging techniques approach images as the knowledge that can be processed, allowing for the collection of relevant knowledge in addition to the evaluation of enormous patient groups. This review presents the fundamental role of molecular imaging modalities in personalized medicine.
Collapse
|
5
|
Kramer CS, Dimitrakopoulou-Strauss A. Immuno-Imaging (PET/SPECT)-Quo Vadis? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103354. [PMID: 35630835 PMCID: PMC9147562 DOI: 10.3390/molecules27103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
The use of immunotherapy has revolutionized the treatment regimen of certain cancer types, but response assessment has become a difficult task with conventional methods such as CT/MRT or FDG PET-CT and the classical response criteria such as RECIST or PERCIST which have been developed for chemotherapeutic treatment. Plenty of new tracers have been published to improve the assessment of treatment response and to stratify the patient population. We gathered the information on published tracers (in total, 106 individual SPECT/PET tracers were identified) and performed a descriptor-based analysis; in this way, we classify the tracers with regard to target choice, developability (probability to progress from preclinical stage into the clinic), translatability (probability to be widely applied in the 'real world'), and (assumed) diagnostic quality. In our analysis, we show that most tracers are targeting PD-L1, PD-1, CTLA-4, and CD8 receptors by using antibodies or their fragments. Another finding is that plenty of tracers possess only minor iterations regarding chelators and nuclides instead of approaching the problem in a new innovative way. Based on the data, we suggest an orthogonal approach by targeting intracellular targets with PET-activatable small molecules that are currently underrepresented.
Collapse
Affiliation(s)
- Carsten S. Kramer
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, D-65191 Wiesbaden, Germany
- Correspondence:
| | | |
Collapse
|
6
|
Dimitrakopoulou-Strauss A, Sachpekidis C, Lapa C. Editorial: Molecular Imaging in Multiple Myeloma: An Update and Future Perspectives. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:904502. [PMID: 39354967 PMCID: PMC11440837 DOI: 10.3389/fnume.2022.904502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 10/03/2024]
Affiliation(s)
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
7
|
Preclinical Molecular PET-CT Imaging Targeting CDCP1 in Colorectal Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:3153278. [PMID: 34621145 PMCID: PMC8455202 DOI: 10.1155/2021/3153278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/05/2021] [Indexed: 01/16/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy in the world, with 22% of patients presenting with metastatic disease and a further 50% destined to develop metastasis. Molecular imaging uses antigen-specific ligands conjugated to radionuclides to detect and characterise primary cancer and metastases. Expression of the cell surface protein CDCP1 is increased in CRC, and here we sought to assess whether it is a suitable molecular imaging target for the detection of this cancer. CDCP1 expression was assessed in CRC cell lines and a patient-derived xenograft to identify models suitable for evaluation of radio-labelled 10D7, a CDCP1-targeted, high-affinity monoclonal antibody, for preclinical molecular imaging. Positron emission tomography-computed tomography was used to compare zirconium-89 (89Zr)-10D7 avidity to a nonspecific, isotype control 89Zr-labelled IgGκ1 antibody. The specificity of CDCP1-avidity was further confirmed using CDCP1 silencing and blocking models. Our data indicate high avidity and specificity for of 89Zr-10D7 in CDCP1 expressing tumors at. Significantly higher levels than normal organs and blood, with greatest tumor avidity observed at late imaging time points. Furthermore, relatively high avidity is detected in high CDCP1 expressing tumors, with reduced avidity where CDCP1 expression was knocked down or blocked. The study supports CDCP1 as a molecular imaging target for CRC in preclinical PET-CT models using the radioligand 89Zr-10D7.
Collapse
|
8
|
Preliminary clinical assessment of dynamic 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for evaluating the clinicopathological grade in patients with non-Hodgkin's lymphoma: a prospective study. Nucl Med Commun 2020; 41:26-33. [PMID: 31800508 DOI: 10.1097/mnm.0000000000001120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We prospectively assessed the diagnostic capacity of dynamic and dual-time-point F-fluorodeoxyglucose PET/computed tomography and explored the most appropriate scan timing for clinicopathological discrimination of non-Hodgkin's lymphoma. METHODS Thirteen patients underwent dynamic scans dynamic scans (5-15, 15-25, and 25-35 minute postinjection) and consecutive dual-time-point scans (1- and 2-hour postinjection). For five indolent and 16 aggressive lymphomas, we statistically compared the maximum standardized uptake value (SUVmax) and the retention index of the SUVmax (RI-SUVmax) for each scan and explored the diagnostic capacities using receiver operating characteristic (ROC) curve analyses. RESULTS SUVmax increased progressively over time in all lymphomas and was significantly higher for aggressive lymphoma than for indolent lymphoma in each timephase. RI-SUVmax of dynamic scans (RI-SUV-dynamic) was significantly higher in aggressive than in indolent lymphoma. The cutoff values obtained a sensitivity of 94%, positive-predictive value of 94%, and accuracy of 91% for SUVmax analyses of the dynamic second and third phases, 1-hour early phase, and 2-hour delayed phase, and a sensitivity of 88%, positive-predictive value of 93%, and accuracy of 86% for RI-SUV-dynamic. In contrast, for the dynamic first phase, the cutoff value of SUVmax yielded moderate sensitivity of 69%, a positive-predictive value of 92%, and an accuracy of 71%. The area under the ROC curve (AUC) of the RI-SUV-dynamic had the highest value (0.938), whereas the AUCs of the other ROC analyses were not significantly different. CONCLUSION The dynamic second and third phase could potentially provide good predictors of clinicopathological discrimination, as can the early and delayed phases.
Collapse
|
9
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging 2020; 48:21-39. [PMID: 32430580 PMCID: PMC7835173 DOI: 10.1007/s00259-020-04843-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Dynamic PET (dPET) studies have been used until now primarily within research purposes. Although it is generally accepted that the information provided by dPET is superior to that of conventional static PET acquisitions acquired usually 60 min post injection of the radiotracer, the duration of dynamic protocols, the limited axial field of view (FOV) of current generation clinical PET systems covering a relatively small axial extent of the human body for a dynamic measurement, and the complexity of data evaluation have hampered its implementation into clinical routine. However, the development of new-generation PET/CT scanners with an extended FOV as well as of more sophisticated evaluation software packages that offer better segmentation algorithms, automatic retrieval of the arterial input function, and automatic calculation of parametric imaging, in combination with dedicated shorter dynamic protocols, will facilitate the wider use of dPET. This is expected to aid in oncological diagnostics and therapy assessment. The aim of this review is to present some general considerations about dPET analysis in oncology by means of kinetic modeling, based on compartmental and noncompartmental approaches, and parametric imaging. Moreover, the current clinical applications and future perspectives of the modality are outlined.
Collapse
Affiliation(s)
- Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Grizzi F, Castello A, Qehajaj D, Russo C, Lopci E. The Complexity and Fractal Geometry of Nuclear Medicine Images. Mol Imaging Biol 2019; 21:401-409. [PMID: 30003453 DOI: 10.1007/s11307-018-1236-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Irregularity in shape and behavior is the main feature of every anatomical system, including human organs, tissues, cells, and sub-cellular entities. It has been shown that this property cannot be quantified by means of the classical Euclidean geometry, which is only able to describe regular geometrical objects. In contrast, fractal geometry has been widely applied in several scientific fields. This rapid growth has also produced substantial insights in the biomedical imaging. Consequently, particular attention has been given to the identification of pathognomonic patterns of "shape" in anatomical entities and their changes from natural to pathological states. Despite the advantages of fractal mathematics and several studies demonstrating its applicability to oncological research, many researchers and clinicians remain unaware of its potential. Therefore, this review aims to summarize the complexity and fractal geometry of nuclear medicine images.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Hospital, Via Manzoni 56 - Rozzano, 20089, Milan, Italy
- Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20090, Milan, Italy
| | - Angelo Castello
- Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Via Manzoni 56 - Rozzano, 20089, Milan, Italy
| | - Dorina Qehajaj
- Department of Immunology and Inflammation, Humanitas Clinical and Research Hospital, Via Manzoni 56 - Rozzano, 20089, Milan, Italy
| | - Carlo Russo
- "Michele Rodriguez" Foundation, Via Ludovico di Breme, 79, 20156, Milan, Italy
| | - Egesta Lopci
- Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Via Manzoni 56 - Rozzano, 20089, Milan, Italy.
| |
Collapse
|
11
|
Son H, Jang K, Lee H, Kim SE, Kang KW, Lee H. Use of Molecular Imaging in Clinical Drug Development: a Systematic Review. Nucl Med Mol Imaging 2019; 53:208-215. [PMID: 31231441 DOI: 10.1007/s13139-019-00593-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Molecular imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can provide the crucial pharmacokinetic-pharmacodynamic information of a drug non-invasively at an early stage of clinical drug development. Nevertheless, not much has been known how molecular imaging has been actually used in drug development studies. Methods We searched PubMed using such keywords as molecular imaging, PET, SPECT, drug development, and new drug, or any combination of those to select papers in English, published from January 1, 1990, to December 31, 2015. The information about the publication year, therapeutic area of a drug candidate, drug development phase, and imaging modality and utility of imaging were extracted. Results Of 10,264 papers initially screened, 208 papers met the eligibility criteria. The more recent the publication year, the bigger the number of papers, particularly since 2010. The two major therapeutic areas using molecular imaging to develop drugs were oncology (47.6%) and the central nervous system (CNS, 36.5%), in which efficacy (63.5%) and proof-of-concept through either receptor occupancy (RO) or other than RO (29.7%), respectively, were the primary utility of molecular imaging. PET was used 4.7 times more frequently than SPECT. Molecular imaging was most frequently used in phase I clinical trials (40.8%), whereas it was employed rarely in phase 0 or exploratory IND studies (1.4%). Conclusions The present study confirmed the trend that molecular imaging has been more actively employed in recent clinical drug development studies although its adoption was rather slow and rare in phase 0 studies.
Collapse
Affiliation(s)
- Hyeomin Son
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea
| | - Kyungho Jang
- 2Center for Clinical Pharmacology, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk Republic of Korea
| | - Heechan Lee
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea
| | - Sang Eun Kim
- 3Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keon Wook Kang
- 5Department of Nuclear Medicine & Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Howard Lee
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea.,3Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Anwar H, Vogl TJ, Abougabal MA, Grünwald F, Kleine P, Elrefaie S, Nour-Eldin NEA. The value of different 18F-FDG PET/CT baseline parameters in risk stratification of stage I surgical NSCLC patients. Ann Nucl Med 2018; 32:687-694. [PMID: 30219989 DOI: 10.1007/s12149-018-1301-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Administration of postoperative chemotherapy to patients with completely resected stage I NSCLC is still a matter of debate. The aim of the present study was to evaluate the value of different baseline 18F-FDG PET parameters in identifying surgical stage I NSCLC patients who are at high risk of recurrence, and thus are indicated for further postoperative treatment. METHODS This is a retrospective study, which included 49 patients (28 males, 21 females) with the median age of 69 years (range 28-84), who had pathologically proven stage I NSCLC. All patients underwent 18F-FDG PET/CT at baseline followed by complete surgical resection of the tumor (R0). Baseline SUVmax, MTV and TLG were measured. Patients' follow-up records were retrospectively reviewed, and DFS (disease-free survival) was assessed. For each parameter, the most accurate cut-off value for the prediction of recurrence was calculated using the ROC curve analysis and the Youden index. DFS was evaluated for patients above and below the calculated cut-off value using the Kaplan-Meier method and the difference in survival between the two groups was estimated using the log-rank test. RESULTS Median observation time of the patients after surgery was 28.7 months (range 3.5-58.8 months). 9 patients developed recurrence. The calculated cut-off values for SUVmax, MTV and TLG were 6, 6.6 and 33.6, respectively. Using these cut-offs, the observed sensitivity for SUVmax, MTV and TLG for prediction of recurrence was 100%, 89% and 89%, respectively, while the observed specificity was 43%, 73% and 65%, respectively. The difference in survival between patients below and above the cut-off value was statistically significant in all three studied parameters. The highest AUC was observed for MTV (AUC = 0.825, p = 0.003), followed by TLG (AUC = 0.789, p = 0.007), and lastly SUVmax (AUC = 0.719, p = 0.041). ROC curve analysis showed that volumetric parameters had better predictive performance than SUVmax as regards recurrence. CONCLUSION PET-derived parameters at baseline were predictive of recurrence in stage I surgical NSCLC patients. Moreover, the metabolic volume of the tumor was the most significant parameter for this purpose among the studied indices.
Collapse
Affiliation(s)
- Hoda Anwar
- Nuclear Medicine Unit, Kasr Al-Ainy Center of Clinical Oncology and Nuclear Medicine, Faculty of Medicine-Cairo University, Cairo, Egypt.
| | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang von Goethe University Hospital, Frankfurt am Main, Germany
| | - Mahasen A Abougabal
- Nuclear Medicine Unit, Kasr Al-Ainy Center of Clinical Oncology and Nuclear Medicine, Faculty of Medicine-Cairo University, Cairo, Egypt
| | - Frank Grünwald
- Department of Nuclear Medicine, Johann Wolfgang von Goethe University Hospital, Frankfurt am Main, Germany
| | - Peter Kleine
- Department of Cardiothoracic Surgery, Johann Wolfgang von Goethe University Hospital, Frankfurt am Main, Germany
| | - Sherif Elrefaie
- Nuclear Medicine Unit, Kasr Al-Ainy Center of Clinical Oncology and Nuclear Medicine, Faculty of Medicine-Cairo University, Cairo, Egypt
| | - Nour-Eldin A Nour-Eldin
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang von Goethe University Hospital, Frankfurt am Main, Germany
- Department of Diagnostic and Interventional Radiology, Cairo University Hospital, Cairo, Egypt
| |
Collapse
|
13
|
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Anwar H, Sachpekidis C, Winkler J, Kopp-Schneider A, Haberkorn U, Hassel JC, Dimitrakopoulou-Strauss A. Absolute number of new lesions on 18F-FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab. Eur J Nucl Med Mol Imaging 2017; 45:376-383. [PMID: 29124281 DOI: 10.1007/s00259-017-3870-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE Evaluation of response to immunotherapy is a matter of debate. The aim of the present study was to evaluate the response of metastatic melanoma to treatment with ipilimumab by means of 18F-FDG PET/CT, using the patients' clinical response as reference. METHODS The final cohort included in the analyses consisted of 41 patients with metastatic melanoma who underwent 18F-FDG PET/CT before and after administration of ipilimumab. After determination of the best clinical response, the PET/CT scans were reviewed and a separate independent analysis was performed, based on the number and functional size of newly emerged 18F-FDG-avid lesions, as well as on the SUV changes after therapy. RESULTS The median observation time of the patients after therapy was 21.4 months (range 6.3-41.9 months). Based on their clinical response, patients were dichotomized into those with clinical benefit (CB) and those without CB (No-CB). The CB group (31 patients) included those with stable disease, partial remission and complete remission, and the No-CB group (10 patients) included those with progressive disease. The application of a threshold of four newly emerged 18F-FDG-avid lesions on the posttherapy PET/CT scan led to a sensitivity (correctly predicting CB) of 84% and a specificity (correctly predicting No-CB) of 100%. This cut-off was lower for lesions with larger functional diameters (three new lesions larger than 1.0 cm and two new lesions larger than 1.5 cm). SUV changes after therapy did not correlate with clinical response. Based on these findings, we developed criteria for predicting clinical response to immunotherapy by means of 18F-FDG PET/CT (PET Response Evaluation Criteria for Immunotherapy, PERCIMT). CONCLUSION Our results show that a cut-off of four newly emerged 18F-FDG-avid lesions on posttherapy PET/CT gives a reliable indication of treatment failure in patients under ipilimumab treatment. Moreover, the functional size of the new lesions plays an important role in predicting the clinical response. Validation of these results in larger cohorts of patients is warranted.
Collapse
Affiliation(s)
- Hoda Anwar
- Medical PET Group-Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | - Christos Sachpekidis
- Medical PET Group-Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Julia Winkler
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Uwe Haberkorn
- Medical PET Group-Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Medical PET Group-Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
15
|
Munk OL, Tolbod LP, Hansen SB, Bogsrud TV. Point-spread function reconstructed PET images of sub-centimeter lesions are not quantitative. EJNMMI Phys 2017; 4:5. [PMID: 28091957 PMCID: PMC5236043 DOI: 10.1186/s40658-016-0169-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/10/2016] [Indexed: 11/25/2022] Open
Abstract
Background PET image reconstruction methods include modeling of resolution degrading phenomena, often referred to as point-spread function (PSF) reconstruction. The aim of this study was to develop a clinically relevant phantom and characterize the reproducibility and accuracy of high-resolution PSF reconstructed images of small lesions, which is a prerequisite for using PET in the prediction and evaluation of responses to treatment. Sets of small homogeneous 18F-spheres (range 3–12 mm diameter, relevant for small lesions and lymph nodes) were suspended and covered by a 11C-silicone, which provided a scattering medium and a varying sphere-to-background ratio. Repeated measurements were made on PET/CT scanners from two vendors using a wide range of reconstruction parameters. Recovery coefficients (RCs) were measured for clinically used volume-of-interest definitions. Results For non-PSF images, RCs were reproducible and fell monotonically as the sphere diameter decreased, which is the expected behavior. PSF images converged slower and had artifacts: RCs did not fall monotonically as sphere diameters decreased but had a maximum RC for sphere sizes around 8 mm, RCs could be greater than 1, and RCs were less reproducible. To some degree, post-reconstruction filters could suppress PSF artifacts. Conclusions High-resolution PSF images of small lesions showed artifacts that could lead to serious misinterpretations when used for monitoring treatment response. Thus, it could be safer to use non-PSF reconstruction for quantitative purposes unless PSF reconstruction parameters are optimized for the specific task. Electronic supplementary material The online version of this article (doi:10.1186/s40658-016-0169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- O L Munk
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - L P Tolbod
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - S B Hansen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - T V Bogsrud
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Breki CM, Dimitrakopoulou-Strauss A, Hassel J, Theoharis T, Sachpekidis C, Pan L, Provata A. Fractal and multifractal analysis of PET/CT images of metastatic melanoma before and after treatment with ipilimumab. EJNMMI Res 2016; 6:61. [PMID: 27473846 PMCID: PMC4967051 DOI: 10.1186/s13550-016-0216-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND PET/CT with F-18-fluorodeoxyglucose (FDG) images of patients suffering from metastatic melanoma have been analysed using fractal and multifractal analysis to assess the impact of monoclonal antibody ipilimumab treatment with respect to therapy outcome. RESULTS Thirty-one cases of patients suffering from metastatic melanoma have been scanned before and after two and after four cycles of treatment. For each patient, we calculated the fractal and multifractal dimensions using the box-counting method on the digitalised PET/CT images of all three studies to assess the therapeutic outcome. We modelled the spreading of malignant cells in the body via kinetic Monte Carlo simulations to address the dynamical evolution of the metastatic process and to predict the spatial distribution of malignant lesions. Our analysis shows that the fractal dimensions which describe the tracer dispersion in the body decrease consistently with the deterioration of the patient's therapeutic outcome condition. In 20 out of 24 cases, the fractal analysis results match those of the treatment outcome as defined by the oncologists, while 7 cases are considered as special cases because the patients had non-tumour-related findings or side effects which affect the results. The decrease in the fractal dimensions with the deterioration of the patient conditions (in terms of disease progression) is attributed to the hierarchical localisation of the tracer which accumulates in the affected lesions and does not spread homogeneously throughout the body. Fractality emerges as a result of the migration patterns which the malignant cells follow for propagating within the body (circulatory system, lymphatic system). Analysis of the multifractal spectrum complements and supports the results of the fractal analysis. In the kinetic Monte Carlo modelling of the metastatic process, a small number of malignant cells diffuse through a fractal medium representing the blood circulatory network. Along their way, the malignant cells engender random metastases (colonies) with a small probability and, as a result, fractal spatial distributions of the metastases are formed similar to the ones observed in the PET/CT images. CONCLUSIONS The Monte Carlo-generated spatial distribution of metastases changes with time approaching values close to the ones recorded in the metastatic patients. Thus, we propose that fractal and multifractal analyses have potential applications in quantification of the evaluation of PET/CT images to monitor the disease evolution as well as the response to different medical treatments. The proposed approach, being operator independent, can offer new diagnostic tools in parallel to the visual location of the lesions and may improve multiparameter assessment of FDG PET/CT studies.
Collapse
Affiliation(s)
- Christina-Marina Breki
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Athens, Greece.,Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Jessica Hassel
- National Center for Tumour Disease, Heidelberg, Germany and Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Theoharis Theoharis
- Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Athens, Greece.,Visual Computing Laboratory, Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), DE-69120, Heidelberg, Germany.,Department of Nuclear Medicine, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), DE-69120, Heidelberg, Germany
| | - Astero Provata
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
17
|
Belhocine TZ, Blankenberg FG, Kartachova MS, Stitt LW, Vanderheyden JL, Hoebers FJP, Van de Wiele C. (99m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. Eur J Nucl Med Mol Imaging 2015; 42:2083-97. [PMID: 26275392 DOI: 10.1007/s00259-015-3152-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE (99m)Tc-Annexin A5 has been used as a molecular imaging probe for the visualization, characterization and measurement of apoptosis. In an effort to define the quantitative (99m)Tc-annexin A5 uptake criteria that best predict tumor response to treatment, we performed a systematic review and meta-analysis of the results of all clinical imaging trials found in the literature or publicly available databases. METHODS Included in this review were 17 clinical trials investigating quantitative (99m)Tc-annexin A5 (qAnx5) imaging using different parameters in cancer patients before and after the first course of chemotherapy and/or radiation therapy. Qualitative assessment of the clinical studies for diagnostic accuracy was performed using the QUADAS-2 criteria. Of these studies, five prospective single-center clinical trials (92 patients in total) were included in the meta-analysis after exclusion of one multicenter clinical trial due to heterogeneity. Pooled positive predictive values (PPV) and pooled negative predictive values (NPV) (with 95% CI) were calculated using Meta-Disc software version 1.4. RESULTS Absolute quantification and/or relative quantification of (99m)Tc-annexin A5 uptake were performed at baseline and after the start of treatment. Various quantitative parameters have been used for the calculation of (99m)Tc-annexin A5 tumor uptake and delta (Δ) tumor changes post-treatment compared to baseline including: tumor-to-background ratio (TBR), ΔTBR, tumor-to-noise ratio, relative tumor ratio (TR), ΔTR, standardized tumor uptake ratio (STU), ΔSTU, maximum count per pixel within the tumor volume (Cmax), Cmax%, absolute ΔU and percentage (ΔU%), maximum ΔU counts, semiquantitative visual scoring, percent injected dose (%ID) and %ID/cm(3). Clinical trials investigating qAnx5 imaging have included patients with lung cancer, lymphoma, breast cancer, head and neck cancer and other less common tumor types. In two phase I/II single-center clinical trials, an increase of ≥25% in uptake following treatment was considered a significant threshold for an apoptotic tumor response (partial response, complete response). In three other phase I/II clinical trials, increases of ≥28%, ≥42% and ≥47% in uptake following treatment were found to be the mean cut-off levels in responders. In a phase II/III multicenter clinical trial, an increase of ≥23% in uptake following treatment was found to be the minimum cut-off level for a tumor response. In one clinical trial, no significant difference in (99m)Tc-annexin A5 uptake in terms of %ID was found in healthy tissues after chemotherapy compared to baseline. In two other clinical trials, intraobserver and interobserver measurements of (99m)Tc-annexin A5 tumor uptake were found to be reproducible (mean difference <5%, kappa = 0.90 and 0.82, respectively) and to be highly correlated with treatment outcome (Spearman r = 0.99, p < 0.0001). The meta-analysis demonstrated a pooled positive PPV of 100% (95% CI 92 - 100%) and a pooled NPV of 70% (95% CI 55 - 82%) for prediction of a tumor response after the first course of chemotherapy and/or radiotherapy in terms of ΔU%. In a symmetric sROC analysis, the AUC was 0.919 and the Q* index was 85.21 %. CONCLUSION Quantitative (99m)Tc-annexin A5 imaging has been investigated in clinical trials for the assessment of apoptotic tumor responses. This meta-analysis showed a high pooled PPV and a moderate pooled NPV with ΔU cut-off values ranging between 20% and 30%. Standardization of quantification and harmonization of results are required for high-quality clinical research. A standardized uptake value score (SUV, ΔSUV) using quantitative SPECT/CT imaging may be a promising approach to the simple, reproducible and semiquantitative assessment of apoptotic tumor changes.
Collapse
Affiliation(s)
- Tarik Z Belhocine
- Biomedical Imaging Research Centre (BIRC), Western University, London, Ontario, Canada.
| | - Francis G Blankenberg
- Division of Pediatric Radiology, Department of Radiology, Lucile Salter Packard Children's Hospital, Stanford, Palo Alto, CA, USA
| | - Marina S Kartachova
- Department of Nuclear Medicine, Medical Center Alkmaar, Alkmaar, The Netherlands
| | - Larry W Stitt
- LW Stitt Statistical Services, London, Ontario, Canada
| | | | - Frank J P Hoebers
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | |
Collapse
|