1
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Zhang W, Dun J, Li H, Liu J, Chen H, Yu H, Xu J, Zhou F, Qiu Y, Hao J, Hu Q, Wu X. Analysis 33 patients of non-DS-AMKL with or without acquired trisomy 21 from multiple centers and compared to 118 AML patients. Hematology 2023; 28:2231731. [PMID: 37522469 DOI: 10.1080/16078454.2023.2231731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Acute megakaryoblastic leukemia (AMKL) without Down syndrome (non-DS-AMKL) usually a worse outcome than DS-AMKL. Acquired trisomy 21(+21) was one of the most common cytogenetic abnormalities in non-DS-AMKL. Knowledge of the difference in the clinical characteristics and prognosis between non-DS-AMKL with +21 and those without +21 is limited. OBJECTIVE Verify the clinical characteristics and prognosis of non-DS-AMKL with +21. METHOD We retrospectively analyzed 33 non-DS-AMKL pediatric patients and 118 other types of AML, along with their clinical manifestations, laboratory data, and treatment response. RESULTS Compared with AMKL without +21, AMKL with +21 has a lower platelet count (44.04 ± 5.01G/L) at onset (P > 0.05). Differences in remission rates between AMKL and other types of AML were not significant. Acquired trisomy 8 in AMKL was negatively correlated with the long-term OS rate (P < 0.05), while +21 may not be an impact factor. Compared with the other types of AML, AMKL has a younger onset age (P < 0.05), with a mean of 22.27 months. Anemia, hemorrhage, lymph node enlargement, lower white blood cell, and complex karyotype were more common in AMKL (P < 0.05). AMKL has a longer time interval between onset to diagnosis (53.61 ± 71.15 days) (P < 0.05), and patients with a diagnosis delay ≥3 months always presented as thrombocytopenia or pancytopenia initially. CONCLUSIONS Due to high heterogeneity, high misdiagnosis rate, and myelofibrosis, parts of AMKL may take a long time to be diagnosed, requiring repeated bone marrow punctures. Complex karyotype was common in AMKL. +21 may not be a promising indicator of a poor prognosis.
Collapse
Affiliation(s)
- Wenzhi Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianxin Dun
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Li
- Department of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingzhen Liu
- Department of Pediatrics, The Central Hospital of Enshi Autonomous Prefecture, Enshi, People's Republic of China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiawei Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yining Qiu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinjin Hao
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Auger N, Douet-Guilbert N, Quessada J, Theisen O, Lafage-Pochitaloff M, Troadec MB. Cytogenetics in the management of myelodysplastic neoplasms (myelodysplastic syndromes, MDS): Guidelines from the groupe francophone de cytogénétique hématologique (GFCH). Curr Res Transl Med 2023; 71:103409. [PMID: 38091642 DOI: 10.1016/j.retram.2023.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 12/26/2023]
Abstract
Myelodysplastic neoplasms (MDS) are clonal hematopoietic neoplasms. Chromosomal abnormalities (CAs) are detected in 40-45% of de novo MDS and up to 80% of post-cytotoxic therapy MDS (MDS-pCT). Lately, several changes appeared in World Health Organization (WHO) classification and International Consensus Classification (ICC). The novel 'biallelic TP53 inactivation' (also called 'multi-hit TP53') MDS entity requires systematic investigation of TP53 locus (17p13.1). The ICC maintains CA allowing the diagnosis of MDS without dysplasia (del(5q), del(7q), -7 and complex karyotype). Deletion 5q is the only CA, still representing a low blast class of its own, if isolated or associated with one additional CA other than -7 or del(7q) and without multi-hit TP53. It represents one of the most frequent aberrations in adults' MDS, with chromosome 7 aberrations, and trisomy 8. Conversely, translocations are rarer in MDS. In children, del(5q) is very rare while -7 and del(7q) are predominant. Identification of a germline predisposition is key in childhood MDS. Aberrations of chromosomes 5, 7 and 17 are the most frequent in MDS-pCT, grouped in complex karyotypes. Despite the ever-increasing importance of molecular features, cytogenetics remains a major part of diagnosis and prognosis. In 2022, a molecular international prognostic score (IPSS-M) was proposed, combining the prognostic value of mutated genes to the previous scoring parameters (IPSS-R) including cytogenetics, still essential. A karyotype on bone marrow remains mandatory at diagnosis of MDS with complementary molecular analyses now required. Analyses with FISH or other technologies providing similar information can be necessary to complete and help in case of karyotype failure, for doubtful CA, for clonality assessment, and for detection of TP53 deletion to assess TP53 biallelic alterations.
Collapse
Affiliation(s)
- Nathalie Auger
- Gustave Roussy, Génétique des tumeurs, 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Nathalie Douet-Guilbert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, CHU Timone Aix Marseille University, Marseille, France
| | - Olivier Theisen
- Hematology Biology, Nantes University Hospital, Nantes, France
| | | | - Marie-Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France.
| |
Collapse
|
4
|
Decamp M, Klein E, Godon C, Lestringant V, Roynard P, Theisen O, Jimenez-Pocquet M, Roche-Lestienne C, Bidet A, Veronese L. Cytogenetics in the management of myeloproliferative neoplasms, mastocytosis and myelodysplastic/myeloproliferative neoplasms: Guidelines from the Group Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103424. [PMID: 38011761 DOI: 10.1016/j.retram.2023.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
Myeloproliferative neoplasms, mastocytosis, myeloid/lymphoid neoplasms with hypereosinophilia and tyrosine kinase gene fusions, and myelodysplastic/myeloproliferative neoplasms are clonal hematopoietic cancers that, with the exception of certain entities, have an indolent course. In addition to their increasingly important role in the diagnosis of these entities, as shown by the recent classification of hematolymphoid tumors in the 5th edition of the World Health Organization and the International Consensus Classification of myeloid neoplasms and acute leukemias, identification of the profile of acquired genetic abnormalities is essential for adapting patient management and early detection of patients at high risk of progression. Alongside molecular abnormalities, cytogenetic abnormalities play an important role in the diagnosis, prognosis and follow-up of these diseases. Here, we review the recent literature on the impact of chromosomal abnormalities in these different entities and provide updated cytogenetic recommendations and guidelines for their management.
Collapse
Affiliation(s)
- Matthieu Decamp
- CHU de Caen Normandie, Service de Génétique, Avenue de la côte de Nacre, 14033 Cedex 9, Caen 14000, France.
| | - Emilie Klein
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Catherine Godon
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | - Pauline Roynard
- Institut de Génétique Médicale, CHRU de Lille, Lille, France
| | - Olivier Theisen
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | | | - Audrey Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, Clermont-Ferrand, France
| |
Collapse
|
5
|
Tang Z, Wang W, Yang S, El Achi H, Fang H, Nahmod KA, Toruner GA, Xu J, Thakral B, Ayoub E, Issa GC, Yin CC, You MJ, Miranda RN, Khoury JD, Medeiros LJ, Tang G. 3q26.2/ MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features. Cancers (Basel) 2023; 15:458. [PMID: 36672407 PMCID: PMC9856433 DOI: 10.3390/cancers15020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
MECOM rearrangement (MECOM-R) resulting from 3q26.2 aberrations is often associated with myeloid neoplasms and inferior prognosis in affected patients. Uncommonly, certain 3q26.2/MECOM-R can be subtle/cryptic and consequently overlooked by karyotyping. We identified 17 acute myeloid leukemia (AML) patients (male/female: 13/4 with a median age of 67 years, range 42 to 85 years) with a pericentric inv(3) leading to MECOM-R, with breakpoints at 3p23 (n = 11), 3p25 (n = 3), 3p21 (n = 2) and 3p13 (n = 1) on 3p and 3q26.2 on 3q. These pericentric inv(3)s were overlooked by karyotyping initially in 16 of 17 cases and later detected by metaphase FISH analysis. Similar to the patients with classic/paracentric inv(3)(q21q26.2), patients with pericentric inv(3) exhibited frequent cytopenia, morphological dysplasia (especially megakaryocytes), -7/del(7q), frequent NRAS (n = 6), RUNX1 (n = 5) and FLT-3 (n = 4) mutations and dismal outcomes (median overall survival: 14 months). However, patients with pericentric inv(3) more frequently had AML with thrombocytopenia (n = 15, 88%), relative monocytosis in peripheral blood (n = 15, 88%), decreased megakaryocytes (n = 11, 65%), and lower SF3B1 mutation. We conclude that AML with pericentric inv(3) shares some similarities with AML associated with classic/paracentric inv(3)/GATA2::MECOM but also shows certain unique features. Pericentric inv(3)s are often subtle/cryptic by chromosomal analysis. A reflex FISH analysis for MECOM-R is recommended in myeloid neoplasms showing -7/del(7q).
Collapse
Affiliation(s)
- Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Su Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hanadi El Achi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Amelia Nahmod
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward Ayoub
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roberto N. Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Lee J, Kim SM, Kim S, Yun J, Jeong D, Lee YE, Roh EY, Lee DS. Clinical and Genomic Profiles of Korean Patients with MECOM Rearrangement and the t(3;21)(q26.2;q22.1) Translocation. Ann Lab Med 2022; 42:590-596. [PMID: 35470277 PMCID: PMC9057822 DOI: 10.3343/alm.2022.42.5.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
The translocation (3;21)(q26.2;q22.1) is a unique cytogenetic aberration that characterizes acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) in patients with AML and myelodysplastic syndrome (MDS) or a therapy-related myeloid neoplasm. Using multigene target sequencing and FISH, we investigated the clinical and genomic profiles of patients with t(3;21) over the past 10 years. The frequency of t(3;21) among myeloid malignancies was very low (0.2%). Half of the patients had a history of cancer treatment and the remaining patients had de novo MDS. Twenty-one somatic variants were detected in patients with t(3;21), including in CBL, GATA2, and SF3B1. Recurrent variants in RUNX1 (c.1184A>C, p.Glu395Ala) at the same site were detected in two patients. None of the patients with t(3;21) harbored germline predisposition mutations for myeloid neoplasms. MECOM rearrangement was detected at a higher rate using FISH than using G-banding, suggesting that FISH is preferable for monitoring. Although survival of patients with t(3;21) is reportedly poor, the survival of patients with t(3;21) in this study was not poor when compared with that of other AML patients in Korea.
Collapse
Affiliation(s)
- Jikyo Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Soonok Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jiwon Yun
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dajeong Jeong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Youn Roh
- Department of Laboratory Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Zhao M, Medeiros LJ, Wang W, Tang G, Jung HS, Sfamenos SM, Fang H, Toruner GA, Hu S, Yin CC, Lin P, Gu J, Peng G, You MJ, Khoury JD, Wang SA, Tang Z. Newly designed breakapart FISH probe helps to identify cases with true MECOM rearrangement in myeloid malignancies. Cancer Genet 2021; 262-263:23-29. [PMID: 34974290 DOI: 10.1016/j.cancergen.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022]
Abstract
A home-brew, tri-color MECOM breakapart FISH probe with a full MECOM coverage labeled with a separate dye is compared in parallel with a 2-color commercial MECOM breakapart probe in 17 cases of hematologic malignancies. Cases with a typical positive signal pattern (or "balanced" signal pattern) (n = 2) and a negative result (n = 3) using the commercial probe achieved the same results using the new probe (100% concordance), whereas 9 of 12 (75%) remaining cases with an atypical signal pattern (or "unbalanced" signal pattern) using the commercial probe showed a "balanced" signal pattern using the new probe. Three cases with undetermined MECOM rearrangement status by the commercial probe were further clarified with no MECOM rearrangement in 2 cases and presence of a subclone with simultaneous gain and rearrangement of MECOM in 1 case. More importantly, the new probe is capable of determining the presence, location and integrity of MECOM after rearrangement. In conclusion, atypical signal patterns obtained using a commercial FISH probe for MECOM can be solved through re-design and optimization of a new BAP probe, especially in those cases with a true MECOM rearrangement. The potential of the new probe for use in the clinical laboratory will be further investigated. (Word count: 196).
Collapse
Affiliation(s)
- Ming Zhao
- Cytogenetic Technology Program, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hai Suk Jung
- Cytogenetic Technology Program, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Steven M Sfamenos
- Cytogenetic Technology Program, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gokce A Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jun Gu
- Cytogenetic Technology Program, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Guang Peng
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.
| |
Collapse
|
8
|
Myeloid neoplasms associated with t(3;12)(q26.2;p13) are clinically aggressive, show myelodysplasia, and frequently harbor chromosome 7 abnormalities. Mod Pathol 2021; 34:300-313. [PMID: 33110238 DOI: 10.1038/s41379-020-00663-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/13/2023]
Abstract
Sporadic reports of t(3;12)(q26.2;p13) indicate that this abnormality is associated with myeloid neoplasms, myelodysplasia, and a poor prognosis. To better characterize neoplasms with this abnormality, we assessed 20 patients utilizing clinicopathological data, cytogenetic, and targeted next-generation sequencing analysis. We also performed literature review of 58 prior reported cases. Patients included ten men and ten women with median age 55.8 years (range, 27.8-78.8). Diagnoses included 11 acute myeloid leukemia (AML, 5 de novo and 6 secondary), 5 myelodysplastic syndromes (MDS, 3 de novo excess blasts-2 and 2 therapy-related), 2 chronic myeloid leukemia BCR-ABL1-positive blast phase (1 de novo and 1 secondary), 1 primary myelofibrosis (secondary), and 1 mixed-phenotype acute leukemia T/myeloid (MPAL, secondary). Morphologic dysplasia was identified in all AML cases (5/5), MDS cases (4/4), therapy-related cases (3/3), half of myeloproliferative neoplasm cases (1/2), and one MPAL case assessed. The t(3;12) was detected de novo and in subsequent workups in 9 and 11 patients, respectively. Seven patients had t(3;12) only and eight patients had additional chromosome 7 abnormalities. Fluorescence in-situ hybridization detected MECOM (n = 11) and ETV6 (n = 7) rearrangements in all cases assessed. FLT3 internal tandem duplication was identified in five (25%) patients. We identified 13 genetic abnormalities in the de novo group (n = 9), and 25 in the secondary disease group (n = 11). All patients received chemotherapy, with seven allogeneic and two autologous stem cell transplantations. At last follow-up, 14 (70%) patients died with median survival of 6.3 months (range, 0.1-17.3) after detection of t(3;12). In summary, t(3;12)(q26.2;p13) is a rare cytogenetic abnormality in myeloid neoplasms. Myelodysplasia, chromosome 7 abnormalities, and high blast counts are common, and the prognosis is poor. Given the close relationship between the presence of this cytogenetic abnormality and the MDS-related changes, we recommend adding t(3;12)(q26.2;p13) to the list of AML with myelodysplasia-related changes defining abnormalities of the World Health Organization 2017 classification of myeloid neoplasms.
Collapse
|
9
|
High EVI1 Expression due to NRIP1/EVI1 Fusion in Therapy-related Acute Myeloid Leukemia: Description of the First Pediatric Case. Hemasphere 2020; 4:e471. [PMID: 33163906 PMCID: PMC7643912 DOI: 10.1097/hs9.0000000000000471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
|
10
|
Nameki R, Chang H, Reddy J, Corona RI, Lawrenson K. Transcription factors in epithelial ovarian cancer: histotype-specific drivers and novel therapeutic targets. Pharmacol Ther 2020; 220:107722. [PMID: 33137377 DOI: 10.1016/j.pharmthera.2020.107722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are major contributors to cancer risk and somatic development. In preclinical and clinical studies, direct or indirect inhibition of TF-mediated oncogenic gene expression profiles have proven to be effective in many tumor types, highlighting this group of proteins as valuable therapeutic targets. In spite of this, our understanding of TFs in epithelial ovarian cancer (EOC) is relatively limited. EOC is a heterogeneous disease composed of five major histologic subtypes; high-grade serous, low-grade serous, endometrioid, clear cell and mucinous. Each histology is associated with unique clinical etiologies, sensitivity to therapies, and molecular signatures - including diverse transcriptional regulatory programs. While some TFs are shared across EOC subtypes, a set of TFs are expressed in a histotype-specific manner and likely explain part of the histologic diversity of EOC subtypes. Targeting TFs present with unique opportunities for development of novel precision medicine strategies for ovarian cancer. This article reviews the critical TFs in EOC subtypes and highlights the potential of exploiting TFs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Chan LS, Lung HL, Ngan RKC, Lee AWM, Tsao SW, Lo KW, Kahn M, Lung ML, Wieser R, Mak NK. Role of miR-96/EVI1/miR-449a Axis in the Nasopharyngeal Carcinoma Cell Migration and Tumor Sphere Formation. Int J Mol Sci 2020; 21:ijms21155495. [PMID: 32752071 PMCID: PMC7432346 DOI: 10.3390/ijms21155495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The Wnt signaling pathway is one of the major signaling pathways used by cancer stem cells (CSC). Ecotropic Viral Integration Site 1 (EVI1) has recently been shown to regulate oncogenic development of tumor cells by interacting with multiple signaling pathways, including the Wnt signaling. In the present study, we found that the Wnt modulator ICG-001 could inhibit the expression of EVI1 in nasopharyngeal carcinoma (NPC) cells. Results from loss-of-function and gain-of-function studies revealed that EVI1 expression positively regulated both NPC cell migration and growth of CSC-enriched tumor spheres. Subsequent studies indicated ICG-001 inhibited EVI1 expression via upregulated expression of miR-96. Results from EVI1 3′UTR luciferase reporter assay confirmed that EVI1 is a direct target of miR-96. Further mechanistic studies revealed that ICG-001, overexpression of miR-96, or knockdown of EVI1 expression could restore the expression of miR-449a. The suppressive effect of miR-449a on the cell migration and tumor sphere formation was confirmed in NPC cells. Taken together, the miR-96/EVI1/miR-449a axis is a novel pathway involved in ICG-001-mediated inhibition of NPC cell migration and growth of the tumor spheres.
Collapse
Affiliation(s)
- Lai-Sheung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
| | - Hong-Lok Lung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
| | - Roger Kai-Cheong Ngan
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Sai Wah Tsao
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
- Department of Anatomy, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Central Ave, Hong Kong, China;
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA 91010-3000, USA;
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Nai-Ki Mak
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
- Correspondence: ; Tel.: +852-3411-7059
| |
Collapse
|
12
|
Smith SC, Qdaisat TZS, Althof PA, Dave BJ, Sanmann JN. MECOM rearrangement involving the MYC locus: Two additional patients with the rare translocation, t(3;8)(q26.2;q24), and molecular review. Leuk Res 2020; 95:106387. [PMID: 32535247 DOI: 10.1016/j.leukres.2020.106387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
A relatively small subset of myeloid neoplasms involve rearrangements of cytoband 3q26.2. Such rearrangements are often in response to therapy and carry a poor prognosis. The ectopic expression of MECOM is the result of such translocations. To date, thirty-three t(3;8)(q26.2;q24) cases have been reported; we contribute two patients with confirmed MECOM and MYC rearrangements. Both patients presented with pancytopenia and were diagnosed with myelodysplastic/myeloproliferative disorders. In addition to translocation t(3;8), Patient 1 possessed a derivative chromosome 5, while Patient 2 possessed monosomy 7; neither patient's clonal abnormalities resolved in follow-up studies. Of the previous 33 cases, one exhibited 5q loss, while monosomy 7 was found in fifteen. These findings contribute to the small number of reported cases with t(3;8) translocations. We also speculate about the molecular mechanisms associated with this translocation.
Collapse
Affiliation(s)
- Scott C Smith
- University of Nebraska Medical Center, United States; Human Genetics Laboratory, Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE, United States
| | - Tareq Z S Qdaisat
- University of Nebraska Medical Center, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pamela A Althof
- University of Nebraska Medical Center, United States; Human Genetics Laboratory, Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE, United States
| | - Bhavana J Dave
- University of Nebraska Medical Center, United States; Human Genetics Laboratory, Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE, United States
| | - Jennifer N Sanmann
- University of Nebraska Medical Center, United States; Human Genetics Laboratory, Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE, United States.
| |
Collapse
|
13
|
Idel C, Ribbat-Idel J, Kuppler P, Krupar R, Offermann A, Vogel W, Rades D, Kirfel J, Wollenberg B, Perner S. EVI1 as a Marker for Lymph Node Metastasis in HNSCC. Int J Mol Sci 2020; 21:ijms21030854. [PMID: 32013033 PMCID: PMC7038015 DOI: 10.3390/ijms21030854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HNSCC is the sixth most common cancer in humans and has still a very poor prognosis. The treatment methods so far are very often associated with mutilation and impairment in the quality of life. Except for p16 expression, there are no reliable prognostic markers in HNSCC so far. Ecotropic Viral Integration Site 1 (EVI1) is a well-described prognostic marker in leukemia and different types of solid cancers. In these, a high EVI1 expression is associated with a poor prognosis. In HNSCC, it is not known so far if EVI1 has any prognostic relevance. MATERIALS AND METHODS We used our representative tissue cohort of 389 primary HNSCCs, of which 57.2% had one or more lymph node metastases. Here EVI1 expression was analyzed via immunohistochemistry and correlated with the clinical characteristics of these patients. RESULTS Although in HNSCC EVI1 expression does not predict poor survival, a high EVI1 expression in the primary tumor correlates with a lymph node metastatic disease. CONCLUSION Consequently, EVI1 may serve as a biomarker to predict an occult lymph node metastasis in a clinical nodal negative (cN0) HNSCC.
Collapse
Affiliation(s)
- Christian Idel
- Department of Otorhinolaryngology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Correspondence: ; Tel.: +49-451-500-42001
| | - Julika Ribbat-Idel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Patrick Kuppler
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Rosemarie Krupar
- Pathology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany; (R.K.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Wenzel Vogel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Luebeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany; (R.K.)
| |
Collapse
|
14
|
Tang Z, Tang G, Hu S, Patel KP, Cameron Yin C, Wang W, Lin P, Toruner GA, Ok CY, Gu J, Lu X, Khoury JD, Jeffrey Medeiros L. Data on MECOM rearrangement-driven chromosomal aberrations in myeloid malignancies. Data Brief 2019; 24:104025. [PMID: 31193989 PMCID: PMC6545385 DOI: 10.1016/j.dib.2019.104025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
Data in this article presents the results of conventional cytogenetics and fluorescence in situ hybridization (FISH) analyses in 129 patients with confirmed MECOM rearrangement (https://doi.org/10.1016/j.cancergen.2019.03.002) [1]. Generally, the MECOM rearrangement has arisen through translocation, inversion, and insertion and/or unknown mechanism. In addition to the typical chromosomal aberrations, inv(3)(q21q26.2) and t(3; 3)(q21; q26.6) [2–4], over 50% of cases presented here exhibit a wide spectrum of MECOM rearrangement-driven, atypical chromosomal aberrations, including inv(3) with breakpoint other than 3q21; t(1; 3); t(2; 3); t(3; 6); t(3; 8); t(3; 12); t(3; 17); t(3; 21) as well as an insertion of 3q26.2 into different chromosomes. These cases are thoroughly characterized by karyotyping, interphase-, metaphase-, map-back FISH and whole chromosomal painting (WCP) analyses.
Collapse
Affiliation(s)
- Zhenya Tang
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Corresponding author.
| | - Guilin Tang
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shimin Hu
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keyur P. Patel
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Wang
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei Lin
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gokce A. Toruner
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi Y. Ok
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Gu
- Cytogenetic Technology Program, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinyan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph D. Khoury
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Yamamoto K, Yakushijin K, Ichikawa H, Okamura A, Nagao S, Kakiuchi S, Kurata K, Kawamoto S, Matsui K, Nakamachi Y, Saegusa J, Matsuoka H, Minami H. Coexpression of ETV6/MDS1/EVI1 and ETV6/EVI1 fusion transcripts in acute myeloid leukemia with t(3;12)(q26.2;p13) and thrombocytosis. Leuk Lymphoma 2019; 60:1294-1298. [PMID: 30526151 DOI: 10.1080/10428194.2018.1529311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/13/2018] [Accepted: 09/22/2018] [Indexed: 10/27/2022]
MESH Headings
- Bone Marrow/pathology
- Cell Line, Tumor
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 3
- DNA Mutational Analysis
- Gene Expression Regulation, Leukemic
- Humans
- Karyotype
- Leukemia, Myeloid, Acute/genetics
- MDS1 and EVI1 Complex Locus Protein/genetics
- Male
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins c-ets/genetics
- Repressor Proteins/genetics
- Thrombocytosis/genetics
- Translocation, Genetic
- Young Adult
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Katsuya Yamamoto
- a Division of Medical Oncology/Hematology, Department of Medicine , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Kimikazu Yakushijin
- a Division of Medical Oncology/Hematology, Department of Medicine , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Hiroya Ichikawa
- a Division of Medical Oncology/Hematology, Department of Medicine , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Atsuo Okamura
- a Division of Medical Oncology/Hematology, Department of Medicine , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Shigeki Nagao
- a Division of Medical Oncology/Hematology, Department of Medicine , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Seiji Kakiuchi
- a Division of Medical Oncology/Hematology, Department of Medicine , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Keiji Kurata
- a Division of Medical Oncology/Hematology, Department of Medicine , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Shinichiro Kawamoto
- a Division of Medical Oncology/Hematology, Department of Medicine , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Keiji Matsui
- b Department of Clinical Laboratory , Kobe University Hospital , Kobe , Japan
| | - Yuji Nakamachi
- b Department of Clinical Laboratory , Kobe University Hospital , Kobe , Japan
| | - Jun Saegusa
- b Department of Clinical Laboratory , Kobe University Hospital , Kobe , Japan
| | - Hiroshi Matsuoka
- b Department of Clinical Laboratory , Kobe University Hospital , Kobe , Japan
| | - Hironobu Minami
- b Department of Clinical Laboratory , Kobe University Hospital , Kobe , Japan
| |
Collapse
|
16
|
Tang Z, Tang G, Hu S, Patel KP, Yin CC, Wang W, Lin P, Toruner GA, Ok CY, Gu J, Lu X, Khoury JD, Medeiros LJ. Deciphering the complexities of MECOM rearrangement-driven chromosomal aberrations. Cancer Genet 2019; 233-234:21-31. [DOI: 10.1016/j.cancergen.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
|
17
|
Tang G, Hu S, Wang SA, Xie W, Lin P, Xu J, Toruner G, Zhao M, Gu J, Doty M, Li S, Medeiros LJ, Tang Z. t(3;8)(q26.2;q24) Often Leads to MECOM/MYC Rearrangement and Is Commonly Associated with Therapy-Related Myeloid Neoplasms and/or Disease Progression. J Mol Diagn 2019; 21:343-351. [DOI: 10.1016/j.jmoldx.2018.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/09/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023] Open
|
18
|
Ghosh K. Acute myeloid leukemia with 3q26 abnormality: An editorial perspective. J Postgrad Med 2018; 64:77-79. [PMID: 29692398 PMCID: PMC5954817 DOI: 10.4103/jpgm.jpgm_255_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- K Ghosh
- Stem Cell Laboratory, Surat Raktadan Kendra and Research Centre, Surat, Gujarat, India
| |
Collapse
|
19
|
Capela de Matos RR, Othman MAK, Ferreira GM, Costa ES, Melo JB, Carreira IM, de Souza MT, Lopes BA, Emerenciano M, Land MGP, Liehr T, Ribeiro RC, Silva MLM. Molecular approaches identify a cryptic MECOM rearrangement in a child with a rapidly progressive myeloid neoplasm. Cancer Genet 2018; 221:25-30. [PMID: 29405993 DOI: 10.1016/j.cancergen.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/15/2022]
Abstract
Myeloid neoplasms are a heterogeneous group of hematologic disorders with divergent patterns of cell differentiation and proliferation, as well as divergent clinical courses. Rare recurrent genetic abnormalities related to this group of cancers are associated with poor outcomes. One such abnormality is the MECOM gene rearrangement that typically occurs in cases with chromosome 7 abnormalities. MECOM encodes a transcription factor that plays an essential role in cell proliferation and maintenance and also in epigenetic regulation. Aberrant expression of this gene is associated with reduced survival. Hence, its detailed characterization provides biological and clinical information relevant to the management of pediatric myeloid neoplasms. In this work, we describe a rare karyotype harboring three copies of MECOM with overexpression of the gene in a child with a very aggressive myeloid neoplasm. Cytogenetic studies defined the karyotype as 46,XX,der(7)t(3;7)(q26.2;q21.2). Array comparative genomic hybridization (aCGH) revealed a gain of 26.04 Mb in the 3q26.2-3qter region and a loss of 66.6 Mb in the 7q21.2-7qter region. RT-qPCR analysis detected elevated expression of the MECOM and CDK6 genes (458.5-fold and 35.2-fold, respectively). Overall, we show the importance of performing detailed molecular cytogenetic analysis of MECOM to enable appropriate management of high-risk pediatric myeloid neoplasms.
Collapse
Affiliation(s)
- Roberto R Capela de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Moneeb A K Othman
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - Gerson M Ferreira
- Stem Cells Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Elaine S Costa
- Internal Medicine post-graduation program of Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Joana B Melo
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M Carreira
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mariana T de Souza
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Bruno A Lopes
- Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Pediatric Hematology-Oncology Program, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Mariana Emerenciano
- Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Pediatric Hematology-Oncology Program, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Marcelo G P Land
- Internal Medicine post-graduation program of Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - Raul C Ribeiro
- Departments of Oncology and Global Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Instituto Pelé Pequeno Príncipe, Postgraduate Program in Child Adolescent Health, Curitiba, Paraná, Brazil
| | - Maria Luiza M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Internal Medicine post-graduation program of Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Hu Z, Hu S, Ji C, Tang Z, Thakral B, Loghavi S, Medeiros LJ, Wang W. 3q26/EVI1 rearrangement in myelodysplastic/myeloproliferative neoplasms: An early event associated with a poor prognosis. Leuk Res 2017; 65:25-28. [PMID: 29288910 DOI: 10.1016/j.leukres.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
3q26.2/EVI1 rearrangements resulting in EVI1 overexpression play an important role in leukemogenesis and are associated with treatment resistance and a poorer prognosis in patients with acute myeloid leukemia, myelodysplastic syndrome, chronic myeloid leukemia and BCR-ABL negative myeloproliferative neoplasms. In this study, we aim to explore the clinicopathological features of myelodysplastic/myeloproliferative (MDS/MPN) neoplasms with 3q26.2/EVI1 rearrangements and determine the potential impact of these cytogenetic abnormalities on treatment response and survival. The study group included 12 cases of MDS/MPN with 3q26.2 rearrangements detected by conventional karyotyping. There were 7 men and 5 women with a median age of 67 years (range, 51-79 years) at time of initial MDS/MPN diagnosis. Ten cases were classified as chronic myelomonocytic leukemia (CMML) and 2 were MDS/MPN, unclassifiable. Among CMML cases, 5 (50%) were proliferative type and 5 (50%) were dysplastic type. Based on blast counts, these 10 CMML were: CMML-0 (n = 2), CMML-1 (n = 3), and CMML-2 (n = 5). Eleven (92%) patients had 3q26 rearrangements at the initial diagnosis. Inv(3)(q21q26.2) was most common, identified in 7(58%) patients, followed by t(3;21)(q26.2;q22) in 2 patients and 1 patient each with t(3;3)(q21;q26.2), t(2;3)(p21;q26-27), and t(3;6)(q26.2;q26). Six (50%) patients had 3q26.2 rearrangements as a sole cytogenetic abnormality and 6 (50%) patients had additional cytogenetic abnormalities. Molecular studies revealed DNMT3A mutations in all 3 patients assessed and RAS mutations in 2 of 8 (25%) patients. No mutations in ASXL1 (n = 3), TET2 (n = 3), FLT3 ITD/D835 (n = 10), and CEBPA (n = 7) were detected. Most patients received hypomethylating agent based chemotherapy. The median follow-up was 11.5 months (range, 1.5-24 months) and at time of last follow-up, 11 (92%) died with a median survival of 13.4 months (range, 1.5-24 months). The only patient alive had a relatively short follow-up of 2.4 months and showed disease progression at the last visit. In conclusion, 3q26.2/EVI1 rearrangements are a rare event and usually present at time of initial diagnosis in MDS/MPN. The presence of 3q26.2/EVI1 rearrangements in MDS/MPN is associated with rapid disease progression, poor response to treatment, and a poor prognosis.
Collapse
Affiliation(s)
- Zhihong Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Changsheng Ji
- Department of Pathology, Jimo People's Hospital, Qingdao, China
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
21
|
Hu Z, Medeiros LJ, Wang W, Chen Z, Tang G, Hodjat P, Yang S, Fang L, Li Y, Verstovsek S, Hu S. 3q26.2/EVI1 rearrangement is associated with poor prognosis in classical Philadelphia chromosome-negative myeloproliferative neoplasms. Mod Pathol 2017; 30:940-951. [PMID: 28338652 DOI: 10.1038/modpathol.2017.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
Classical Philadelphia chromosome-negative myeloproliferative neoplasms are a group of closely related myeloid disorders with different histologic features and clinical presentations at an early stage, but all later develop into a similar fibrotic stage with variable risk of acute transformation. The significance of 3q26.2/EVI1 rearrangement has been well recognized in acute myeloid leukemia, myelodysplastic syndrome, and chronic myeloid leukemia. However, the clinical importance of 3q26.2/EVI1 rearrangement in classical Philadelphia chromosome-negative myeloproliferative neoplasms is unknown. Here we reported 15 patients with classical Philadelphia chromosome-negative myeloproliferative neoplasms showing 3q26.2 rearrangement, including inv(3)(q21q26.2) (n=6), t(3;21)(q26.2;q22)(n=4), t(3;3)(q21;q26.2)(n=3), inv(3)(q13.3q26.2)(n=1), and t(3;12)(q26.2;p13)(n=1). In addition to 3q26.2 rearrangement, 9 of 15 cases had other concurrent karyotypical abnormalities, including -7/7q- and -5/5q-. There were 8 men and 7 women with a median age of 59 years (range, 35-79 years) at initial diagnosis of myeloproliferative neoplasms: 8 patients had primary myelofibrosis, 4 had polycythemia vera, and 3 had essential thrombocythemia. JAK2 V617F mutation was detected in 8/14 patients, including 4/4 with polycythemia vera. The median interval from the initial diagnosis of myeloproliferative neoplasms to the detection of 3q26.2 rearrangement was 44 months (range, 1-219 months). At time of emergence of 3q26.2 rearrangement, 11 patients were in blast phase and 2 patients had increased blasts (6-19%). Dyspoiesis, predominantly in megakaryocytes, were detected in all patients with adequate specimens at time of 3q26.2 rearrangement. Following 3q26.2 rearrangement, 12 patients received chemotherapy, but none of them achieved complete remission. Of 14 patients with follow-up information, all died with a median overall survival time of only 3 months (range 0-14 months) after the emergence of 3q26.2 rearrangement. In summary, 3q26.2 rearrangement in classical Philadelphia chromosome-negative myeloproliferative neoplasms is associated with other concurrent cytogenetic abnormalities, a rapid disease progression and blast transformation, a poor response to chemotherapy and a dismal prognosis.
Collapse
Affiliation(s)
- Zhihong Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zi Chen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Parsa Hodjat
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Su Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lianghua Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Leucemia mieloide aguda. Una perspectiva de los mecanismos moleculares del cáncer. GACETA MEXICANA DE ONCOLOGÍA 2016. [DOI: 10.1016/j.gamo.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Abstract
Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistant myeloid malignancies bearing chromosomal inv(3)(q21q26·2) or t(3;3)(q21;q26·2) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis.
Collapse
Affiliation(s)
- Adil A Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Yuan X, Wang X, Bi K, Jiang G. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol 2015; 47:2028-36. [PMID: 26496831 DOI: 10.3892/ijo.2015.3207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 11/06/2022] Open
Abstract
Ecotropic virus integration site-1 (EVI-1) gene, locus on chromosome 3 (3q26.2) in the human genome, was first found in the AKXD strain of mice, in a model of retrovirus-induced acute myeloid leukemia (AML) established twenty years ago. Since then, EVI-1 was regarded as one of the most invasive proto-oncogenes in human leukemia. EVI-1 can encode a unique zinc-finger protein of 145 kDa that can bind with DNA, and its overexpression was closely related to human hemopoietic diseases. Furthermore, accumulating research indicates that EVI-1 is involved in the differentiation, apoptosis and proliferation of leukemia cells. The present review focuses on the biochemical properties of EVI-1 which plays a role in myeloid malignancies.
Collapse
Affiliation(s)
- Xiaofen Yuan
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, P.R. China
| | - Kehong Bi
- Department of Hematology, Qianfoshan Hospital of Shandong, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|