1
|
Wang D, Mukhtar A, Humayun M, Wu K, Du Z, Wang S, Zhang Y. A Critical Review on Nanowire-Motors: Design, Mechanism and Applications. CHEM REC 2022; 22:e202200016. [PMID: 35616156 DOI: 10.1002/tcr.202200016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Indexed: 01/18/2023]
Abstract
Nanowire-motors (NW-Ms) are promoting the rapid development of emerging biomedicine and environmental governance, and are an important branch of micro-nano motors in the development of nanotechnology. In recent years, huge research breakthroughs have been made in these fields in terms of the fascinating microstructure, conversion efficiency and practical applications of NW-Ms. This review article introduces the latest milestones in NW-Ms research, from production methods, driving mechanisms, control methods to targeted drug delivery, sewage detection, sensors and cell capture. The dynamics and physics of micro-nano devices are reviewed, and finally the current challenges and future research directions in this field are discussed. This review further aims to provide certain guidance for the driving of NW-Ms to meet the urgent needs of emerging applications.
Collapse
Affiliation(s)
- Dashuang Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Aiman Mukhtar
- The State Key Laboratory of Refractories and Metallurgy, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Kaiming Wu
- The State Key Laboratory of Refractories and Metallurgy, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhilan Du
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Shushen Wang
- The State Key Laboratory of Refractories and Metallurgy, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
2
|
Koksharov YA, Gubin SP, Taranov IV, Khomutov GB, Gulyaev YV. Magnetic Nanoparticles in Medicine: Progress, Problems, and Advances. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS 2022; 67:101-116. [PMCID: PMC8988108 DOI: 10.1134/s1064226922020073] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 10/27/2023]
Abstract
The review presents an analysis of the current state of research related to the design, development, and practical application of methods for biomedical radioelectronics and nanomedicine, including the use of magnetic nanoparticles. The important role of rational scientific physical approaches and experimental methods in the design of efficient and safe magnetic nanoparticle-based agents for therapy, controlled targeted drug delivery, and diagnostics, including spatial imaging, is emphasized. Examples of successful practical application of magnetic nanoparticles in medicine based on these methods are given, and an analysis of the main problems and prospects of this area of science is conducted.
Collapse
Affiliation(s)
- Yu. A. Koksharov
- Moscow State University, 119991 Moscow, Russia
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - S. P. Gubin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - I. V. Taranov
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - G. B. Khomutov
- Moscow State University, 119991 Moscow, Russia
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Yu. V. Gulyaev
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| |
Collapse
|
3
|
Ferreira LM, Sari MHM, Azambuja JH, da Silveira EF, Cervi VF, Marchiori MCL, Maria-Engler SS, Wink MR, Azevedo JG, Nogueira CW, Braganhol E, Cruz L. Xanthan gum-based hydrogel containing nanocapsules for cutaneous diphenyl diselenide delivery in melanoma therapy. Invest New Drugs 2019; 38:662-674. [DOI: 10.1007/s10637-019-00823-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
4
|
Jiang S, Hua L, Guo Z, Sun L. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:257-263. [PMID: 29853089 DOI: 10.1016/j.msec.2018.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 01/02/2023]
Abstract
The present work reveals a new and simple one-pot green method to load doxorubicin (DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the formation of silica nanoparticles. The release profile, cellular uptake behavior, cytotoxicity and antitumor effect of SiNPs/DOX nanoparticles were investigated and compared to free DOX. The silica nanoparticles improved the cellular drug delivery efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group. The one-pot green synthesis system may have the potential to be developed as a promising drug delivery system.
Collapse
Affiliation(s)
- Shan Jiang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Li Hua
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Zilong Guo
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Lin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
5
|
Gao W, de Ávila BEF, Zhang L, Wang J. Targeting and isolation of cancer cells using micro/nanomotors. Adv Drug Deliv Rev 2018; 125:94-101. [PMID: 28893551 PMCID: PMC5844782 DOI: 10.1016/j.addr.2017.09.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
Micro/nanomotors distinguish themselves with in situ energy conversion capability for autonomous movement, a feature that confers remarkable potential to improve cancer treatment. In this review article, three areas are highlighted where micro/nanomotors have established themselves with unique contributions, including propelled navigation to promote cancer cell targeting, powered cell membrane penetration to enhance intracellular delivery, and steered isolation of circulating tumor cells for detection. Progress made in these areas has offered promising inspiration and opportunities aimed for enhancing the efficiency and precision of drug targeting to cancer cells, improving the capability of delivering anticancer drug into cytoplasm for bioactivity, and enabling more rapid and sensitive cancer cell detection. Herein, we review each area with highlights of the current and forthcoming micro/nanomotor techniques in advancing cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States.
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States.
| |
Collapse
|
6
|
Zhang Q, Zhang L, Li Z, Xie X, Gao X, Xu X. Inducing Controlled Release and Increased Tumor-Targeted Delivery of Chlorambucil via Albumin/Liposome Hybrid Nanoparticles. AAPS PharmSciTech 2017; 18:2977-2986. [PMID: 28477146 DOI: 10.1208/s12249-017-0782-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Liposomes possess good biocompatibility and excellent tumor-targeting capacity. However, the rapid premature release of lipophilic drugs from the lipid bilayer of liposomes has negative effect on the tumor-targeted drug delivery of liposomes. In this study, a lipophilic antitumor drug-chlorambucil (CHL)-was encapsulated into the aqueous interior of liposomes with the aid of albumin to obtain the CHL-loaded liposomes/albumin hybrid nanoparticles (CHL-Hybrids). The in vitro accumulative release rate of CHL from CHL-Hybrids was less than 50% within 48 h, while the accumulative CHL release was more than 80% for CHL-loaded liposomes (CHL-Lip). After intravenous injection into rats, the half-life (t 1/2β = 5.68 h) and maximum blood concentration (C max = 4.58 μg/mL) of CHL-Hybrids were respectively 1.1 times and 3.5 times higher than that of CHL-Lip. In addition, CHL-Hybrids had better tumor-targeting capacity for it significantly increased the drug accumulation in B16F10 tumors, which contributed to the significantly control of tumor growth compared with CHL-Lip. Furthermore, CHL-Hybrid-treated B16F10 melanoma-bearing mice displayed the longest median survival time of 30.0 days among all the treated groups. Our results illustrated that the proposed hybrids drug delivery system would be a promising strategy to maintain the controlled release of lipophilic antitumor drugs from liposomes and simultaneously facilitate the tumor-targeted drug delivery.
Collapse
|
7
|
Michel D, Mohammed-Saeid W, Getson H, Roy C, Poorghorban M, Chitanda JM, Verrall R, Badea I. Evaluation of β-cyclodextrin-modified gemini surfactant-based delivery systems in melanoma models. Int J Nanomedicine 2016; 11:6703-6712. [PMID: 28003746 PMCID: PMC5161338 DOI: 10.2147/ijn.s121156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel drug delivery systems are developed to improve the biological behavior of poorly soluble drugs and to improve therapeutic outcomes. In melanoma therapy, the goal is efficient drug delivery and mitigation of drug resistance. Melphalan (Mel), a currently used therapeutic agent for melanoma, requires solvent system for solubilization, leading to poor chemical stability. Moreover, drug resistance often renders the drug inefficient in clinical setting. A novel β-cyclodextrin-modified gemini surfactant (CDgemini) delivery system was developed to incorporate Mel in order to improve its physicochemical and biological behavior. Melphalan nanoparticles (Mel-NP) showed optimal particle size in the 200-250 nm range for endocytosis and induced significantly higher cell death compared with Mel (50% of inhibitory concentration [IC50] of 36 µM for the complexes vs 82 µM for Mel). The CDgemini delivery system did not alter the pathway of the cellular death triggered by Mel and caused no intrinsic toxicity to the cells. The Mel-NP complexes induced significant cell death in melanoma cells that were rendered resistant to Mel. These findings demonstrate in principle the applicability of the CDgemini delivery system as safe and efficient alternative to the current melanoma therapy, especially in chemoresistant cases.
Collapse
Affiliation(s)
- Deborah Michel
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | | | - Heather Getson
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | - Caitlin Roy
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | | | - Jackson M Chitanda
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ronald Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| |
Collapse
|