1
|
Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020; 12:v12020151. [PMID: 32013091 PMCID: PMC7077188 DOI: 10.3390/v12020151] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
DNA viruses that replicate in the nucleus encompass a range of ubiquitous and clinically important viruses, from acute pathogens to persistent tumor viruses. These viruses must co-opt nuclear processes for the benefit of the virus, whilst evading host processes that would otherwise attenuate viral replication. Accordingly, DNA viruses induce the formation of membraneless assemblies termed viral replication compartments (VRCs). These compartments facilitate the spatial organization of viral processes and regulate virus–host interactions. Here, we review advances in our understanding of VRCs. We cover their initiation and formation, their function as the sites of viral processes, and aspects of their composition and organization. In doing so, we highlight ongoing and emerging areas of research highly pertinent to our understanding of nuclear-replicating DNA viruses.
Collapse
|
2
|
Hidalgo P, Gonzalez RA. Formation of adenovirus DNA replication compartments. FEBS Lett 2019; 593:3518-3530. [PMID: 31710378 DOI: 10.1002/1873-3468.13672] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Adenoviruses induce an extensive reorganization of the host cell nucleus during replication. Such a process results in the assembly of viral and cellular macromolecules into nuclear structures called adenovirus replication compartments (AdRCs), which function as platforms for viral DNA replication and gene expression. AdRCs co-opt host proteins and cellular pathways that restrict viral replication, suggesting that the mechanisms that control AdRC formation and function are essential for viral replication and lay at the basis of virus-host interactions. Here, we review the hallmarks of AdRCs and recent progress in our understanding of the formation, composition, and function of AdRCs. Furthermore, we discuss how AdRCs facilitate the interplay between viral and cellular machineries and hijack cellular functions to promote viral genome replication and expression.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
3
|
Aho V, Mäntylä E, Ekman A, Hakanen S, Mattola S, Chen JH, Weinhardt V, Ruokolainen V, Sodeik B, Larabell C, Vihinen-Ranta M. Quantitative Microscopy Reveals Stepwise Alteration of Chromatin Structure during Herpesvirus Infection. Viruses 2019; 11:v11100935. [PMID: 31614678 PMCID: PMC6832731 DOI: 10.3390/v11100935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
During lytic herpes simplex virus 1 (HSV-1) infection, the expansion of the viral replication compartments leads to an enrichment of the host chromatin in the peripheral nucleoplasm. We have shown previously that HSV-1 infection induces the formation of channels through the compacted peripheral chromatin. Here, we used three-dimensional confocal and expansion microscopy, soft X-ray tomography, electron microscopy, and random walk simulations to analyze the kinetics of host chromatin redistribution and capsid localization relative to their egress site at the nuclear envelope. Our data demonstrated a gradual increase in chromatin marginalization, and the kinetics of chromatin smoothening around the viral replication compartments correlated with their expansion. We also observed a gradual transfer of capsids to the nuclear envelope. Later in the infection, random walk modeling indicated a gradually faster transport of capsids to the nuclear envelope that correlated with an increase in the interchromatin channels in the nuclear periphery. Our study reveals a stepwise and time-dependent mechanism of herpesvirus nuclear egress, in which progeny viral capsids approach the egress sites at the nuclear envelope via interchromatin spaces.
Collapse
Affiliation(s)
- Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Elina Mäntylä
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
- Correspondence:
| |
Collapse
|
4
|
Simões M, Freitas FB, Leitão A, Martins C, Ferreira F. African swine fever virus replication events and cell nucleus: New insights and perspectives. Virus Res 2019; 270:197667. [PMID: 31319112 DOI: 10.1016/j.virusres.2019.197667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 12/30/2022]
Abstract
African swine fever (ASF) is currently matter for major concerns in global swine industry as it is highly contagious and causes acute fatal haemorrhagic fever in domestic pigs and wild boar. The absence of effective vaccines and treatments pushes ASF control to relay on strict sanitary and stamping out measures with costly socio-economic impacts. The current epidemic scenario of fast spreading throughout Asiatic countries impels further studies on prevention and combat strategies against ASF. Herein we review knowledge on African Swine Fever Virus (ASFV) interactions with the host cell nucleus and on the functional properties of different viral DNA-replication related proteins. This entails, the confirmation of an intranuclear viral DNA replication phase, the characterization of cellular DNA damage responses (DDR), the subnuclear compartments disruption due to viral modulation, and the unravelling of the biological role of several viral proteins (A104R, I215 L, P1192R, QP509 L and Q706 L), so to contribute to underpin rational strategies for vaccine candidates development.
Collapse
Affiliation(s)
- Margarida Simões
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal; Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Ferdinando B Freitas
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Alexandre Leitão
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Carlos Martins
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Fernando Ferreira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| |
Collapse
|
5
|
Caprara G, Prosperini E, Piccolo V, Sigismondo G, Melacarne A, Cuomo A, Boothby M, Rescigno M, Bonaldi T, Natoli G. PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN-Inducible Proteins. THE JOURNAL OF IMMUNOLOGY 2018; 200:2439-2454. [PMID: 29500242 DOI: 10.4049/jimmunol.1701117] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
The enzymes of the poly-ADP-ribose polymerase (PARP) superfamily control many relevant cellular processes, but a precise understanding of their activities in different physiological or disease contexts is largely incomplete. We found that transcription of several Parp genes was dynamically regulated upon murine macrophage activation by endotoxin. PARP14 was strongly induced by several inflammatory stimuli and translocated into the nucleus of stimulated cells. Quantitative mass spectrometry analysis showed that PARP14 bound to a group of IFN-stimulated gene (ISG)-encoded proteins, most with an unknown function, and it was required for their nuclear accumulation. Moreover, PARP14 depletion attenuated transcription of primary antiviral response genes regulated by the IFN regulatory transcription factor 3, including Ifnb1, thus reducing IFN-β production and activation of ISGs involved in the secondary antiviral response. In agreement with the above-mentioned data, PARP14 hindered Salmonella typhimurium proliferation in murine macrophages. Overall, these data hint at a role of PARP14 in the control of antimicrobial responses and specifically in nuclear activities of a subgroup of ISG-encoded proteins.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy;
| | - Elena Prosperini
- Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Viviana Piccolo
- Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | | | - Alessia Melacarne
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Mark Boothby
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy.,Department of Biosciences, University of Milan, 20133 Milan, Italy; and
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy; .,Humanitas University, 20089 Rozzano, Milan, Italy
| |
Collapse
|
6
|
Flomm F, Bosse JB. Potential mechanisms facilitating herpesvirus-induced nuclear remodeling: how are herpesvirus capsids able to leave the nucleus? Future Virol 2017. [DOI: 10.2217/fvl-2017-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpesviruses replicate their DNA, assemble and package their capsids in the host nucleus. How capsids transverse the nuclear space to reach nuclear egress sites at the inner nuclear membrane has been a matter of some debate. We recently showed that HSV-1 and pseudorabies virus rely on the large-scale remodeling of host chromatin to allow intranuclear capsids to cross the nucleoplasm by diffusion. Which molecular pathways induce large-scale chromatin remodeling is currently not known. In this perspective, we propose a four-step speculative model that bridges the gap between known virus–host interactions and large-scale chromatin remodeling. We hope that this hypothetical framework will be used as a basis to elucidate how herpesviruses remodel the host nucleus and enable capsids to escape the nucleus.
Collapse
Affiliation(s)
- Felix Flomm
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Jens Bernhard Bosse
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
- Institute for Biochemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
7
|
Komatsu T, Nagata K, Wodrich H. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies. J Virol 2016; 90:1657-67. [PMID: 26608315 PMCID: PMC4719639 DOI: 10.1128/jvi.02545-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. IMPORTANCE The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and/or subsequent viral DNA replication. Here we performed a detailed analyses of the spatiotemporal distribution of incoming adenoviral genome complexes and found, in contrast to the expectation, that an adenoviral DNA replication factor, but not incoming genomes, targets PML-NBs. Thus, our findings may explain why adenoviral genomes could be observed at PML-NBs in earlier reports but argue against a generalized role for PML-NBs in targeting invading viral genomes.
Collapse
Affiliation(s)
- Tetsuro Komatsu
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, Bordeaux, France Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Abstract
Many viruses replicate and assemble in subcellular microenvironments called virus factories or ‘viroplasm.’ Virus factories increase the efficiency of replication and at the same time protect viruses from antiviral defenses. We describe how viruses reorganize cellular membrane compartments and cytoskeleton to generate these ‘mini-organelles’ and how these rearrangements parallel cellular responses to stress such as protein aggregation and DNA damage.
Collapse
|
9
|
Simões M, Rino J, Pinheiro I, Martins C, Ferreira F. Alterations of Nuclear Architecture and Epigenetic Signatures during African Swine Fever Virus Infection. Viruses 2015; 7:4978-96. [PMID: 26389938 PMCID: PMC4584302 DOI: 10.3390/v7092858] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
Viral interactions with host nucleus have been thoroughly studied, clarifying molecular mechanisms and providing new antiviral targets. Considering that African swine fever virus (ASFV) intranuclear phase of infection is poorly understood, viral interplay with subnuclear domains and chromatin architecture were addressed. Nuclear speckles, Cajal bodies, and promyelocytic leukaemia nuclear bodies (PML-NBs) were evaluated by immunofluorescence microscopy and Western blot. Further, efficient PML protein knockdown by shRNA lentiviral transduction was used to determine PML-NBs relevance during infection. Nuclear distribution of different histone H3 methylation marks at lysine’s 9, 27 and 36, heterochromatin protein 1 isoforms (HP1α, HPβ and HPγ) and several histone deacetylases (HDACs) were also evaluated to assess chromatin status of the host. Our results reveal morphological disruption of all studied subnuclear domains and severe reduction of viral progeny in PML-knockdown cells. ASFV promotes H3K9me3 and HP1β foci formation from early infection, followed by HP1α and HDAC2 nuclear enrichment, suggesting heterochromatinization of host genome. Finally, closeness between DNA damage response factors, disrupted PML-NBs, and virus-induced heterochromatic regions were identified. In sum, our results demonstrate that ASFV orchestrates spatio-temporal nuclear rearrangements, changing subnuclear domains, relocating Ataxia Telangiectasia Mutated Rad-3 related (ATR)-related factors and promoting heterochromatinization, probably controlling transcription, repressing host gene expression, and favouring viral replication.
Collapse
Affiliation(s)
- Margarida Simões
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Inês Pinheiro
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| | - Carlos Martins
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Fernando Ferreira
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|
10
|
Abstract
Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication.
Collapse
|
11
|
Vogel R, Seyffert M, Pereira BDA, Fraefel C. Viral and Cellular Components of AAV2 Replication Compartments. Open Virol J 2013; 7:98-120. [PMID: 24222808 PMCID: PMC3822785 DOI: 10.2174/1874357901307010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection.
Collapse
Affiliation(s)
| | | | | | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|