1
|
Rashmi SH, Disha KS, Sudheesh N, Karunakaran J, Joseph A, Jagadesh A, Mudgal PP. Repurposing of approved antivirals against dengue virus serotypes: an in silico and in vitro mechanistic study. Mol Divers 2024; 28:2831-2844. [PMID: 37632595 PMCID: PMC11611978 DOI: 10.1007/s11030-023-10716-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Dengue is an emerging, mosquito-borne viral disease of international public health concern. Dengue is endemic in more than 100 countries across the world. However, there are no clinically approved antivirals for its cure. Drug repurposing proves to be an efficient alternative to conventional drug discovery approaches in this regard, as approved drugs with an established safety profile are tested for new indications, which circumvents several time-consuming experiments. In the present study, eight approved RNA-dependent RNA polymerase inhibitors of Hepatitis C virus were virtually screened against the Dengue virus polymerase protein, and their antiviral activity was assessed in vitro. Schrödinger software was used for in silico screening, where the compounds were passed through several hierarchical filters. Among the eight compounds, dasabuvir was finally selected for in vitro cytotoxicity and antiviral screening. Cytotoxicity profiling of dasabuvir in Vero cells revealed changes in cellular morphology, cell aggregation, and detachment at 50 μM. Based on these results, four noncytotoxic concentrations of dasabuvir (0.1, 0.25, 0.5, and 1 µM) were selected for antiviral screening against DENV-2 under three experimental conditions: pre-infection, co-infection, and post-infection treatment, by plaque reduction assay. Viral plaques were reduced significantly (p < 0.05) in the co-infection and post-infection treatment regimens; however, no reduction was observed in the pretreatment group. This indicated a possible interference of dasabuvir with NS5 RdRp, as seen from in silico interaction studies, translating into a reduction in virus plaques. Such studies reiterate the usefulness of drug repurposing as a viable strategy in antiviral drug discovery.
Collapse
Affiliation(s)
- S H Rashmi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - K Sai Disha
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - N Sudheesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Joseph Karunakaran
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anitha Jagadesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - P P Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Exploring Evolutionary Constraints in the Proteomes of Zika, Dengue, and Other Flaviviruses to Find Fitness-Critical Sites. J Mol Evol 2020; 88:399-414. [DOI: 10.1007/s00239-020-09941-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
|
3
|
de Albuquerque PPLF, Santos LHS, Antunes D, Caffarena ER, Figueiredo AS. Structural insights into NS5B protein of novel equine hepaciviruses and pegiviruses complexed with polymerase inhibitors. Virus Res 2020; 278:197867. [PMID: 31972246 DOI: 10.1016/j.virusres.2020.197867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Infections produced by hepaciviruses have been associated with liver disease in horses. Currently, at least three viruses belonging to the Flaviviridae family are capable of producing a chronic infection in equines: non-primate hepacivirus (NPHV), Theiler's disease-associated virus (TDAV), and equine pegivirus (EPgV). The RNA-dependent RNA polymerases of viruses (RdRp) (NS5 protein), from the flavivirus family, use de novo RNA synthesis to initiate synthesis. The two antiviral drugs currently used to treat hepatitis C (HCV), sofosbuvir and dasabuvir, act on the viral NS5B polymerase as nucleoside and non-nucleoside inhibitors, respectively. Both drugs have shown significant clinical inhibition of viral response. In this work, we aimed to model the NS5B polymerase of the equine hepacivirus (EHCV) subtypes 1 and 2, TDAV and EPgV, to assess whether current direct-acting antiviral drugs against HCV interact with these proteins. Crystal structures of HCV-NS5B were used as templates for modeling target sequences in both conformations (open and closed). Also, molecular docking of sofosbuvir and dasabuvir were performed to predict their possible binding modes at the modeled NS5B polymerase binding sites. We observed that the NS5B models of the EHCV and EPgV shared well-conserved 3D structures to HCV-NS5B and other RdRps, suggesting functional conservation. Interactions of EHCV subtypes 1, 2 and TDAV polymerases with sofosbuvir showed a similar molecular interaction pattern compared to HCV-NS5B, while interactions with dasabuvir were less conserved. In silico studies of molecular interactions between these modeled structures and sofosbuvir suggest that this compound could be efficient in combating equine pathogens, thus contributing to animal welfare.
Collapse
Affiliation(s)
| | - Lucianna H S Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Ernesto Raul Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brazil
| | - Andreza Soriano Figueiredo
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
El-Bitar AMH, Sarhan M, Abdel-Rahman MA, Quintero-Hernandez V, Aoki-Utsubo C, Moustafa MA, Possani LD, Hotta H. Smp76, a Scorpine-Like Peptide Isolated from the Venom of the Scorpion Scorpio maurus palmatus, with a Potent Antiviral Activity Against Hepatitis C Virus and Dengue Virus. Int J Pept Res Ther 2019; 26:811-821. [PMID: 32435168 PMCID: PMC7223391 DOI: 10.1007/s10989-019-09888-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Growing global viral infections have been a serious public health problem in recent years. This current situation emphasizes the importance of developing more therapeutic antiviral compounds. Hepatitis C virus (HCV) and dengue virus (DENV) belong to the Flaviviridae family and are an increasing global health threat. Our previous study reported that the crude venom of Scorpio maurus palmatus possessed anti-HCV and anti-DENV activities in vitro. We report here the characterization of a natural antiviral peptide (scorpion-like peptide Smp76) that prevents HCV and DENV infection. Smp76 was purified from S. m. palmatus venom and contains 76 amino acids with six residues of cysteine. Smp76 antiviral activity was evaluated using a cell culture technique utilizing Huh7it-1, Vero/SLAM, HCV (JFH1, genotype 2a) and DENV (Trinidad 1751, type 2). A potential antiviral activity of Smp76 was detected in culture cells with an approximate IC50 of 0.01 μg/ml. Moreover, Smp76 prevents HCV infection and suppresses secondary infection, by inactivating extra-cellular infectious particles without affecting viral replication. Interestingly, Smp76 is neither toxic nor hemolytic in vitro at a concentration 1000-fold higher than that required for antiviral activity. Conclusively, this report highlights novel anti-HCV and anti-DENV activities of Smp76, which may lay the foundation for developing a new therapeutic intervention against these flaviviruses.
Collapse
Affiliation(s)
- Alaa M H El-Bitar
- 1Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt.,2Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Moustafa Sarhan
- 1Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt.,2Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | | | - Veronica Quintero-Hernandez
- 5Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, 62210 Cuernavaca, Morelos Mexico.,6CONACYT-Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570 Puebla, Mexico
| | - Chie Aoki-Utsubo
- 3Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142 Japan
| | - Mohsen A Moustafa
- 1Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Lourival D Possani
- 5Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, 62210 Cuernavaca, Morelos Mexico
| | - Hak Hotta
- 2Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan.,3Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142 Japan
| |
Collapse
|
5
|
Tarasuk M, Songprakhon P, Chimma P, Sratongno P, Na-Bangchang K, Yenchitsomanus PT. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression. Virus Res 2017; 240:180-189. [PMID: 28864423 DOI: 10.1016/j.virusres.2017.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection.
Collapse
Affiliation(s)
- Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattamawan Chimma
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Center for Emerging and Neglected Infectious Disease, Mahidol University, Bangkok 73170, Thailand
| | - Panudda Sratongno
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Center for Emerging and Neglected Infectious Disease, Mahidol University, Bangkok 73170, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
6
|
Yokokawa F, Nilar S, Noble CG, Lim SP, Rao R, Tania S, Wang G, Lee G, Hunziker J, Karuna R, Manjunatha U, Shi PY, Smith PW. Discovery of Potent Non-Nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from a Fragment Hit Using Structure-Based Drug Design. J Med Chem 2016; 59:3935-52. [PMID: 26984786 DOI: 10.1021/acs.jmedchem.6b00143] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The discovery and optimization of non-nucleoside dengue viral RNA-dependent-RNA polymerase (RdRp) inhibitors are described. An X-ray-based fragment screen of Novartis' fragment collection resulted in the identification of a biphenyl acetic acid fragment 3, which bound in the palm subdomain of RdRp. Subsequent optimization of the fragment hit 3, relying on structure-based design, resulted in a >1000-fold improvement in potency in vitro and acquired antidengue activity against all four serotypes with low micromolar EC50 in cell-based assays. The lead candidate 27 interacts with a novel binding pocket in the palm subdomain of the RdRp and exerts a promising activity against all clinically relevant dengue serotypes.
Collapse
Affiliation(s)
- Fumiaki Yokokawa
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Shahul Nilar
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Christian G Noble
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Siew Pheng Lim
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Ranga Rao
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Stefani Tania
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Gang Wang
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Gladys Lee
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Jürg Hunziker
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Ratna Karuna
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Ujjini Manjunatha
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore.,Department of Biochemistry & Molecular Biology, Department of Phamarcology & Toxicology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Paul W Smith
- Novartis Institute for Tropical Diseases , 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| |
Collapse
|
7
|
Selisko B, Wang C, Harris E, Canard B. Regulation of Flavivirus RNA synthesis and replication. Curr Opin Virol 2014; 9:74-83. [PMID: 25462437 DOI: 10.1016/j.coviro.2014.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/21/2023]
Abstract
RNA synthesis and replication of the members of the Flavivirus genus (including dengue, West Nile and Japanese encephalitis viruses) is regulated by a wide variety of mechanisms and actors. These include the sequestration of the RNA-dependent RNA polymerase (RdRp) for functions other than RNA synthesis, regulatory interactions with other viral and host proteins within the replication complex (RC), and regulatory elements within the RNA genome itself. In this review, we discuss our current knowledge of the multiple levels at which Flavivirus RNA synthesis is controlled. We aim to bring together two active research fields: the structural and functional biology of individual proteins of the RC and the impressive wealth of knowledge acquired regarding the viral genomic RNA.
Collapse
Affiliation(s)
- Barbara Selisko
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, Berkeley, CA 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, Berkeley, CA 94720-3370, USA
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
8
|
Potisopon S, Priet S, Collet A, Decroly E, Canard B, Selisko B. The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain. Nucleic Acids Res 2014; 42:11642-56. [PMID: 25209234 PMCID: PMC4191377 DOI: 10.1093/nar/gku666] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltransferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conformations during RNA synthesis.
Collapse
Affiliation(s)
- Supanee Potisopon
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Stéphane Priet
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Axelle Collet
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Etienne Decroly
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Barbara Selisko
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France CNRS, AFMB UMR 7257, 13288 Marseille, France
| |
Collapse
|