1
|
Transcriptomic Analysis Reveals Host miRNAs Correlated with Immune Gene Dysregulation during Fatal Disease Progression in the Ebola Virus Cynomolgus Macaque Disease Model. Microorganisms 2021; 9:microorganisms9030665. [PMID: 33806942 PMCID: PMC8005181 DOI: 10.3390/microorganisms9030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ebola virus is a continuing threat to human populations, causing a virulent hemorrhagic fever disease characterized by dysregulation of both the innate and adaptive host immune responses. Severe cases are distinguished by an early, elevated pro-inflammatory response followed by a pronounced lymphopenia with B and T cells unable to mount an effective anti-viral response. The precise mechanisms underlying the dysregulation of the host immune system are poorly understood. In recent years, focus on host-derived miRNAs showed these molecules to play an important role in the host gene regulation arsenal. Here, we describe an investigation of RNA biomarkers in the fatal Ebola virus disease (EVD) cynomolgus macaque model. We monitored both host mRNA and miRNA responses in whole blood longitudinally over the disease course in these non-human primates (NHPs). Analysis of the interactions between these classes of RNAs revealed several miRNA markers significantly correlated with downregulation of genes; specifically, the analysis revealed those involved in dysregulated immune pathways associated with EVD. In particular, we noted strong interactions between the miRNAs hsa-miR-122-5p and hsa-miR-125b-5p with immunological genes regulating both B and T-cell activation. This promising set of biomarkers will be useful in future studies of severe EVD pathogenesis in both NHPs and humans and may serve as potential prognostic targets.
Collapse
|
2
|
Exploring the secrets of brain transcriptional regulation: developing methodologies, recent significant findings, and perspectives. Brain Struct Funct 2021; 226:313-322. [PMID: 33547496 DOI: 10.1007/s00429-021-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
Exploring and revealing the secret of the function of the human brain has been the dream of mankind and science. Delineating brain transcriptional regulation has been extremely challenging, but recent technological advances have facilitated a deeper investigation of molecular processes in the brain. Tracing the molecular regulatory mechanisms of different gene expression profiles in the brain is divergent and has made it possible to connect spatial and temporal variations in gene expression to distributed properties of brain structure and function. Here, we review the molecular diversity of the brain among rodents, non-human primates and humans. We also discuss the molecular mechanism of non-coding DNA/RNA at the transcriptional/post-transcriptional level based on recent technical advances to highlight an improved understanding of the complex transcriptional network in the brain. Spatiotemporal and single-cell transcriptomics have attempted to gain novel insight into the development and evolution of the brain as well as the progression of human diseases. Although it is clear that the field is developing and challenges remain to be resolved, the impressive recent progress provides a solid foundation to better understand the brain and evidence-based recommendations for the diagnosis and treatment of brain diseases.
Collapse
|
3
|
Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques. Commun Biol 2021; 4:27. [PMID: 33398113 PMCID: PMC7782745 DOI: 10.1038/s42003-020-01543-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lassa virus (LASV) is endemic in West Africa and induces a viral hemorrhagic fever (VHF) with up to 30% lethality among clinical cases. The mechanisms involved in control of Lassa fever or, in contrast, the ensuing catastrophic illness and death are poorly understood. We used the cynomolgus monkey model to reproduce the human disease with asymptomatic to mild or fatal disease. After initial replication at the inoculation site, LASV reached the secondary lymphoid organs. LASV did not spread further in nonfatal disease and was rapidly controlled by balanced innate and T-cell responses. Systemic viral dissemination occurred during severe disease. Massive replication, a cytokine/chemokine storm, defective T-cell responses, and multiorgan failure were observed. Clinical, biological, immunological, and transcriptomic parameters resembled those observed during septic-shock syndrome, suggesting that similar pathogenesis is induced during Lassa fever. The outcome appears to be determined early, as differentially expressed genes in PBMCs were associated with fatal and non-fatal Lassa fever outcome very early after infection. These results provide a full characterization and important insights into Lassa fever pathogenesis and could help to develop early diagnostic tools.
Collapse
|
4
|
Boyce AM, Garibaldi BT. Genomics and High-Consequence Infectious Diseases: A Scoping Review of Emerging Science and Potential Ethical Issues. Health Secur 2019; 17:62-68. [PMID: 30724614 PMCID: PMC6424158 DOI: 10.1089/hs.2018.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023] Open
Abstract
Host genomic research on high-consequence infectious diseases is a growing area, but the ethical, legal, and social implications of such findings related to potential applications of the research have not yet been identified. While there is a robust ethical debate about the ethical, legal, and social implications of research during an emergency, there has been less consideration of issues facing research conducted outside of the scope of emergency response. Addressing the implications of research at an early stage (anticipatory ethics) helps define the issue space, facilitates preparedness, and promotes ethically and socially responsible practices. To lay the groundwork for more comprehensive anticipatory ethics work, this article provides a preliminary assessment of the state of the field with a scoping review of host genomic research on a subset of high-consequence infectious diseases of relevance to high-level isolation units, focusing on its ethically relevant features and identifying several ethical, legal, and social implications raised by the literature. We discuss the challenges of genomic studies of low-frequency, high-risk events and applications of the science, including identifying targets to guide the development of new therapeutics, improving vaccine development, finding biomarkers to predict disease outcome, and guiding decisions about repurposing existing drugs and genetic screening. Some ethical, legal, and social implications identified in the literature included the rise of systems biology and paradigm shifts in medical countermeasure development; controversies over repurposing of existing drugs; genetic privacy and discrimination; and benefit-sharing and global inequity as part of the broader ecosystem surrounding high-level isolation units. Future anticipatory ethics work should forecast the science and its applications; identify a more comprehensive list of ethical, legal, and social implications; and facilitate evaluation by multiple stakeholders to inform the integration of ethical concerns into high-level isolation unit policy and practice.
Collapse
Affiliation(s)
- Angie M. Boyce
- Angie M. Boyce, PhD, is Research Scholar and Associate Faculty, Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD
| | - Brian T. Garibaldi
- Brian T. Garibaldi, MD, MEHP, is Director, Johns Hopkins Biocontainment Unit, and Associate Professor, Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Okokhere P, Colubri A, Azubike C, Iruolagbe C, Osazuwa O, Tabrizi S, Chin E, Asad S, Ediale E, Rafiu M, Adomeh D, Odia I, Atafo R, Aire C, Okogbenin S, Pahlman M, Becker-Ziaja B, Asogun D, Fradet T, Fry B, Schaffner SF, Happi C, Akpede G, Günther S, Sabeti PC. Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. THE LANCET. INFECTIOUS DISEASES 2018; 18:684-695. [PMID: 29523497 PMCID: PMC5984133 DOI: 10.1016/s1473-3099(18)30121-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lassa fever is a viral haemorrhagic disease endemic to west Africa. No large-scale studies exist from Nigeria, where the Lassa virus (LASV) is most diverse. LASV diversity, coupled with host genetic and environmental factors, might cause differences in disease pathophysiology. Small-scale studies in Nigeria suggest that acute kidney injury is an important clinical feature and might be a determinant of survival. We aimed to establish the demographic, clinical, and laboratory factors associated with mortality in Nigerian patients with Lassa fever, and hypothesised that LASV was the direct cause of intrinsic renal damage for a subset of the patients with Lassa fever. METHODS We did a retrospective, observational cohort study of consecutive patients in Nigeria with Lassa fever, who tested positive for LASV with RT-PCR, and were treated in Irrua Specialist Teaching Hospital. We did univariate and multivariate statistical analyses, including logistic regression, of all demographic, clinical, and laboratory variables available at presentation to identify the factors associated with patient mortality. FINDINGS Of 291 patients treated in Irrua Specialist Teaching Hospital between Jan 3, 2011, and Dec 11, 2015, 284 (98%) had known outcomes (died or survived) and seven (2%) were discharged against medical advice. Overall case-fatality rate was 24% (68 of 284 patients), with a 1·4 times increase in mortality risk for each 10 years of age (p=0·00017), reaching 39% (22 of 57) for patients older than 50 years. Of 284 patients, 81 (28%) had acute kidney injury and 104 (37%) had CNS manifestations and thus both were considered important complications of acute Lassa fever in Nigeria. Acute kidney injury was strongly associated with poor outcome (case-fatality rate of 60% [49 of 81 patients]; odds ratio [OR] 15, p<0·00001). Compared with patients without acute kidney injury, those with acute kidney injury had higher incidence of proteinuria (32 [82%] of 39 patients) and haematuria (29 [76%] of 38) and higher mean serum potassium (4·63 [SD 1·04] mmol/L) and lower blood urea nitrogen to creatinine ratio (8·6 for patients without clinical history of fluid loss), suggesting intrinsic renal damage. Normalisation of creatinine concentration was associated with recovery. Elevated serum creatinine (OR 1·3; p=0·046), aspartate aminotransferase (OR 1·5; p=0·075), and potassium (OR 3·6; p=0·0024) were independent predictors of death. INTERPRETATION Our study presents detailed clinical and laboratory data for Nigerian patients with Lassa fever and provides strong evidence for intrinsic renal dysfunction in acute Lassa fever. Early recognition and treatment of acute kidney injury might significantly reduce mortality. FUNDING German Research Foundation, German Center for Infection Research, Howard Hughes Medical Institute, US National Institutes of Health, and World Bank.
Collapse
Affiliation(s)
- Peter Okokhere
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria; Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria; Department of Medicine, Faculty of Clinical Sciences, Ambrose Alli University, Ekpoma, Edo, Nigeria.
| | - Andres Colubri
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Maryland, MD, USA.
| | | | | | - Omoregie Osazuwa
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Elizabeth Chin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; University of California, Los Angeles, CA, USA; Department of Bioinformatics, Los Angeles, CA, USA
| | - Sara Asad
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ehi Ediale
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mojeed Rafiu
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Donatus Adomeh
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ikponmwosa Odia
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Rebecca Atafo
- Lassa fever Ward, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Chris Aire
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Sylvanus Okogbenin
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Meike Pahlman
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner site, Hamburg, Germany
| | - Beate Becker-Ziaja
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner site, Hamburg, Germany
| | - Danny Asogun
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Ben Fry
- Fathom Information Design, Boston, MA, USA
| | - Stephen F Schaffner
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard School of Public Health, Boston, MA, USA
| | - Christian Happi
- Department of Biological Sciences and African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Edo, Nigeria
| | - George Akpede
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Nigeria; Department of Paediatrics, Faculty of Clinical Sciences, Ambrose Alli University, Ekpoma, Edo, Nigeria
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner site, Hamburg, Germany
| | - Pardis C Sabeti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Maryland, MD, USA; Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Campbell CL, Phillips AT, Rico A, McGuire A, Aboellail TA, Quackenbush S, Olson KE, Schountz T. Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters. Viruses 2018; 10:v10050232. [PMID: 29724035 PMCID: PMC5977225 DOI: 10.3390/v10050232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022] Open
Abstract
New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus (PIRV), a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni), causes a disease in Syrian golden hamsters (Mesocricetus auratus) (biosafety level-3, BSL-3) that has many pathologic similarities to the South American hemorrhagic fevers (BSL-4) and, thus, is considered among the best small-animal models for human arenavirus disease. Here, we extend in greater detail previously described clinical and pathological findings in Syrian hamsters and provide evidence for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal target organ of the disease, and signs of Kupffer cell involvement were identified in mortally infected hamster histopathology data. Differential expression analysis of liver mRNA revealed signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway and other host response pathways, including 17 key transcripts that were also reported in two non-human primate (NHP) arenavirus liver-infection models, representing both Old and New World mammarenavirus infections. Although antigen presentation may differ among rodent and NHP species, key hemostatic and innate immune-response components showed expression parallels. Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute PIRV infection.
Collapse
Affiliation(s)
- Corey L Campbell
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Aaron T Phillips
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Amber Rico
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Amanda McGuire
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Tawfik A Aboellail
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Sandra Quackenbush
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Ken E Olson
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Tony Schountz
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
7
|
Salvato MS, Lukashevich IS, Yang Y, Medina-Moreno S, Djavani M, Bryant J, Rodas JD, Zapata JC. A Primate Model for Viral Hemorrhagic Fever. Methods Mol Biol 2018; 1604:279-290. [PMID: 28986843 DOI: 10.1007/978-1-4939-6981-4_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lymphocytic choriomeningitis virus strain WE (LCMV-WE), a Risk Group 3 virus, causes a disease in rhesus monkeys that closely resembles human infection with Lassa fever virus, a Risk Group 4 agent. Three stages of disease progression have been defined and profiled in this model: pre-viremic, viremic, and terminal. The earliest or pre-viremic stage reveals changes in the blood profile predictive of the later stages of disease. In order to identify whether specific changes are pathognomonic, it was necessary to perform a parallel infection with an attenuated virus (LCMV-Armstrong). Here we review the use of nonhuman primates to model viral hemorrhagic fever and offer a step-by-step guide to using a rhesus macaque model for Lassa fever.
Collapse
Affiliation(s)
- Maria S Salvato
- University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD, 21201, USA.
| | | | - Yida Yang
- Institute of Infectious Diseases, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Sandra Medina-Moreno
- University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD, 21201, USA
| | - Mahmoud Djavani
- Institute of Human Virology, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD, 21201, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD, 21201, USA
| | - Juan David Rodas
- Linea de zoonosis Emergentes y Re-emergentes, Grupo Centauro, Facultad de, Ciencias Agrarias, Universidad de Antioquia, Colombia
| | - Juan Carlos Zapata
- Institute of Human Virology, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
McElroy AK, Akondy RS, Harmon JR, Ellebedy AH, Cannon D, Klena JD, Sidney J, Sette A, Mehta AK, Kraft CS, Lyon MG, Varkey JB, Ribner BS, Nichol ST, Spiropoulou CF. A Case of Human Lassa Virus Infection With Robust Acute T-Cell Activation and Long-Term Virus-Specific T-Cell Responses. J Infect Dis 2017; 215:1862-1872. [PMID: 28863472 DOI: 10.1093/infdis/jix201] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
A nurse who acquired Lassa virus infection in Togo in the spring of 2016 was repatriated to the United States for care at Emory University Hospital. Serial sampling from this patient permitted the characterization of several aspects of the innate and cellular immune responses to Lassa virus. Although most of the immune responses correlated with the kinetics of viremia resolution, the CD8 T-cell response was of surprisingly high magnitude and prolonged duration, implying prolonged presentation of viral antigens. Indeed, long after viremia resolution, there was persistent viral RNA detected in the semen of the patient, accompanied by epididymitis, suggesting the male reproductive tract as 1 site of antigen persistence. Consistent with the magnitude of acute T-cell responses, the patient ultimately developed long-term, polyfunctional memory T-cell responses to Lassa virus.
Collapse
Affiliation(s)
- Anita K McElroy
- Departments of Pediatrics.,CDC Viral Special Pathogens Branch, Atlanta, Georgia
| | | | | | | | | | - John D Klena
- CDC Viral Special Pathogens Branch, Atlanta, Georgia
| | - John Sidney
- La Jolla Institute for Allergy and Immunology Center for Infectious Disease, California
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology Center for Infectious Disease, California
| | | | - Colleen S Kraft
- Medicine, Division of Infectious Disease.,Pathology and Laboratory Medicine, Emory University
| | | | | | | | | | | |
Collapse
|