1
|
Shukla J, Chopra S, Kaur K, Chakraborty S, Singh H, Duseja A, Kalra N, Mittal BR. 177 Lu-Microspheres Selective Intra-arterial Radionuclide Therapy : A Facile and Biocompatible Permanent Micro-Seed Implants for Unresectable Hepatocellular Carcinoma. Clin Nucl Med 2024; 49:e170-e171. [PMID: 38377367 DOI: 10.1097/rlu.0000000000005101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) is an aggressive malignancy with a poor prognosis. Surgical resection is limited. Selective intra-arterial radionuclide therapy (SIRT) emerged as a potential cure for intermediate HCC with portal vein thrombosis. We report a pilot study of a 48-year-old man with recurrent HCC who underwent 177 Lu-microsphere SIRT (2.2 GBq) in segment III. Posttherapy SPECT/CT images (24 hours to 3 months) demonstrated excellent localization and prolonged retention within the tumor. Pre- and 3-month post-SIRT CECT showed a notable decrease in arterial enhancement and tumor size. Time-activity curve of the standard and the lesion demonstrated similar decay pattern indicating that 177 Lu-microspheres act as permanent implant.
Collapse
Affiliation(s)
- Jaya Shukla
- From the Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Sejal Chopra
- From the Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Komalpreet Kaur
- From the Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai
| | - Harmandeep Singh
- From the Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | | | - Naveen Kalra
- Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant Rai Mittal
- From the Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| |
Collapse
|
2
|
Nak D, Küçük NÖ, Çelebioğlu EC, Bilgiç MS, Hayme S, Kır KM. The Role of 18F-FLT PET/CT in Assessing Early Response to Transarterial Radioembolization and Chemoembolization in Patients with Primary and Metastatic Liver Tumors. Mol Imaging Radionucl Ther 2022; 31:207-215. [PMID: 36268887 DOI: 10.4274/mirt.galenos.2022.85579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives Metastases and primary malignancies are common in the liver. Local ablative applications such as transarterial chemoembolization (TACE), and transarterial radioembolization (TARE) provide minimally invasive and safe treatment in unresectable liver tumors. Early detection of response to treatment prevents unnecessary toxicity and cost in non-responder patients and provides an earlier use of other options that may be effective. This study aimed to identify the role of 18F-fluorothymidine (FLT) positron emission tomography/computed tomography (PET/CT) in the assessment of early response to TACE and TARE treatments in patients with unresectable primary and metastatic liver tumors. Methods This single-center study included 63 patients who underwent 18F-FLT PET/CT for response evaluation after TACE and TARE. After excluding 20 patients whose data were missing 43 TARE-receiving patients were analyzed. The compatibility of change in semi-quantitative values obtained from the 18F-FLT PET/CT images with the treatment responses detected in 18F-fluorodeoxyglucose PET/CT, CT, and MR images and survival was evaluated. Results There was no correlation between early metabolic, morphological response, and 18F-FLT uptake pattern, and change in standardized uptake values (SUV) which were ΔSUVmax, ΔSUVmean, ΔSUVpeak., ΔSUVmean, Δ SUVpeak values. There was no significant correlation between 18F-FLT uptake pattern, ΔSUVmax, ΔSUVmean, ΔSUVpeak, and overall survival, progression-free survival (PFS) for the target lobe PFS for the whole-body. The survival distributions for the patients with >30% change in Δ SUVmax and ΔSUVpeak values were statistically significantly longer than the patients with <30% change (p<0.009 and p<0.024, respectively). Conclusion There was significant longer PFS for target liver lobe in patients with more than 30% decrease in 18F-FLT SUVmax and SUVpeak of the liver lesion in primary and metastatic unresectable liver tumors undergoing TARE.
Collapse
Affiliation(s)
- Demet Nak
- Recep Tayyip Erdoğan Training and Research Hospital, Clinic of Nuclear Medicine, Rize, Turkey
| | - Nuriye Özlem Küçük
- Ankara University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey
| | - Emre Can Çelebioğlu
- Ankara University Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Mehmet Sadık Bilgiç
- Ankara University Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Serhat Hayme
- Erzincan Binali Yıldırım University, Department of Biostatistics and Medical Informatics, Erzincan, Turkey
| | - Kemal Metin Kır
- Ankara University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Chen D, Chang C, Zhang Y, Yang S, Wang G, Lin L, Zhao X, Zhao K, Su X. Different Features of 18F-FAPI, 18F-FDG PET/CT and MRI in the Evaluation of Extrahepatic Metastases and Local Recurrent Hepatocellular Carcinoma (HCC): A Case Report and Review of the Literature. Cancer Manag Res 2022; 14:2649-2655. [PMID: 36090470 PMCID: PMC9462837 DOI: 10.2147/cmar.s374916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background Recurrence and metastasis are important causes of postoperative death in most HCC patients. Conventional imaging modalities such as 18F-FDG PET/CT and enhanced MRI are still unsatisfactory in evaluating these patients in the clinical setting. PET/CT imaging with a radiolabeled fibroblast activation protein inhibitor (FAPI) has emerged as a new imaging technique for the diagnosis and radiotherapy of malignant tumors. While many studies have focused on the diagnostic accuracy of intrahepatic primary HCC, the evaluation of recurrent and metastatic HCC remains only poorly investigated. Case Presentation A 71-year-old man with a five-year history of HCC after radical resection underwent 18F-FDG PET/CT due to further surgery for tumor recurrence, which revealed two iso-metabolic lesions in the right peritoneum and a hypo-metabolic lesion in the right liver. 18F-FAPI PET/CT was performed to further complement 18F-FDG PET/CT in the detection of these suspected metastatic lesions. Importantly, multiple diffuse intense radioactivity was shown in the hepatic capsule, suggesting metastatic lesions, but a wedge-shaped elevated 18F-FAPI uptake disorder around the FDG-unavid necrotic lesion after radiofrequency ablation (RFA) demonstrated benign stromal fibrosis. Conclusion This case suggested that 18F-FAPI may have an advantage over 18F-FDG in detecting peritoneal metastasis even in tiny or early hepatic capsules of HCC, but its false positives due to postoperative stromal fibrosis should be noted. Wedge- or strip-shaped FAPI-avid lesions with sharp edges may be post-treatment stromal fibrosis.
Collapse
Affiliation(s)
- Donghe Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Chengdong Chang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yafei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shuye Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Guolin Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lili Lin
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xin Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kui Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Damuka N, Dodda M, Bansode AH, Sai KKS. PET Use in Cancer Diagnosis, Treatment, and Prognosis. Methods Mol Biol 2022; 2413:23-35. [PMID: 35044651 PMCID: PMC9136679 DOI: 10.1007/978-1-0716-1896-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tumorigenesis is a multistep process marked by variations in numerous metabolic pathways that affect cellular architectures and functions. Cancer cells reprogram their energy metabolism to enable several basic molecular functions, including membrane biosynthesis, receptor regulations, bioenergetics, and redox stress. In recent years, cancer diagnosis and treatment strategies have targeted these specific metabolic changes and the tumor's interactions with its microenvironment. Positron emission tomography (PET) captures all molecular alterations leading to abnormal function and cancer progression. As a result, the development of PET radiotracers increasingly focuses on irregular biological pathways or cells that overexpress receptors that have the potential to function as biomarkers for early diagnosis and treatment measurements as well as research. This chapter reviews both established and evolving PET radiotracers used to image tumor biology. We have also included a few advantages and disadvantages of the routinely used PET radiotracers in cancer imaging.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Meghana Dodda
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | | |
Collapse
|
5
|
Gündoğan C, Ergül N, Çakır MS, Kılıçkesmez Ö, Gürsu RU, Aksoy T, Çermik TF. 68Ga-PSMA PET/CT Versus 18F-FDG PET/CT for Imaging of Hepatocellular Carcinoma. Mol Imaging Radionucl Ther 2021; 30:79-85. [PMID: 34082503 PMCID: PMC8185475 DOI: 10.4274/mirt.galenos.2021.92053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives: This study aimed to compare the metabolic parameters obtained from 18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) and gallium-68 (68Ga)-prostate-specific membrane antigen (PSMA) PET/CT and investigate the relationship between serum alpha-fetoprotein and PET scan parameters in patients with hepatocellular carcinoma. Methods: Fourteen patients were recruited after dynamic magnetic resonance imaging (MRI) of the upper abdomen, and 18F-FDG and 68Ga-PSMA PET/CT imaging studies were conducted. Regions of interest (ROIs) were drawn from lesion-free liver tissue, abdominal aorta (A), and right medial gluteal muscle (G) for the background activity. Maximum standard uptake value (SUVmax) of these regions were compared with the SUVmax of primary tumor (T). Results: On visual assessment, five patients (36%) experienced low 18F-FDG uptake in the primary lesion, three patients (21%) experienced moderate uptake, and six patients (43%) experienced high uptake. However, only one patient (7%) showed low 68Ga-PSMA uptake, two patients (14%) showed moderate uptake, and 11 patients (79%) showed high uptake. Four patients with a low 18F-FDG uptake showed high 68Ga-PSMA uptake, while one patient exhibited low uptake with both 18F-FDG and 68Ga-PSMA. The number of lesions on 68Ga-PSMA PET/CT and MRI was significantly higher than 18F-FDG PET/CT (p=0.042 and 0.026, respectively). T/A and T/G values were significantly higher in 68Ga-PSMA than 18F-FDG (p=0.002 and 0.002, respectively). Conclusion: 68Ga-PSMA PET/CT is superior to 18F-FDG PET/CT in the staging of hepatocellular carcinoma. High 68Ga-PSMA uptake could be promising for PSMA-targeted radionuclide treatments.
Collapse
Affiliation(s)
- Cihan Gündoğan
- University of Health Sciences Turkey, Gazi Yaşargil Training and Research Hospital, Clinic of Nuclear Medicine, Diyarbakır, Turkey
| | - Nurhan Ergül
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| | - Mehmet Semih Çakır
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Radiology, İstanbul, Turkey
| | - Özgür Kılıçkesmez
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Radiology, İstanbul, Turkey
| | - Rıza Umar Gürsu
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Medical Oncology, İstanbul, Turkey
| | - Tamer Aksoy
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| | - Tevfik Fikret Çermik
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| |
Collapse
|
6
|
Abrantes AM, Pires AS, Monteiro L, Teixo R, Neves AR, Tavares NT, Marques IA, Botelho MF. Tumour functional imaging by PET. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165717. [PMID: 32035103 DOI: 10.1016/j.bbadis.2020.165717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Carcinogenesis is a complex multistep process, characterized by changes at different levels, both genetic and epigenetic, which alter cell metabolism. Positron emission tomography (PET) is a very sensitive image modality that allows to evaluate oncometabolism. PET functionalities are immense, since by labelling a molecule that specifically intervenes in a biochemical regulatory pathway of interest with a positron-emitting radionuclide, we can easily image that pathway. Thus, PET makes possible imaging several metabolic processes and assessing risk prediction, screening, diagnosis, response to therapy, metastization and recurrence. In this paper, we provide an overview of different radiopharmaceuticals developed for PET use in oncology, with a focus on brain tumours, breast cancer, hepatocellular carcinoma, neuroendocrine tumours, bladder cancer and prostate cancer because for these cancer types PET has been shown to be valuable. Most of the described tracers are just used in the research environment, with the aim to assess if these tracers could be able to offer an improvement concerning staging/restaging, characterization and stratification of different types of cancer, as well as therapeutic response assessment. In pursuit of personalized therapy, we briefly discuss the more established metabolic tracers and describe recent work on the development of new radiopharmaceuticals, aware that there will continue to exist diagnostic challenges to face modern cancer medicine.
Collapse
Affiliation(s)
- Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Salomé Pires
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Lúcia Monteiro
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rita Neves
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), NL-5612 AE Eindhoven, the Netherlands
| | - Nuno Tiago Tavares
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Alexandra Marques
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
7
|
Kumar A, Acharya SK, Singh SP, Arora A, Dhiman RK, Aggarwal R, Anand AC, Bhangui P, Chawla YK, Datta Gupta S, Dixit VK, Duseja A, Kalra N, Kar P, Kulkarni SS, Kumar R, Kumar M, Madhavan R, Mohan Prasad V, Mukund A, Nagral A, Panda D, Paul SB, Rao PN, Rela M, Sahu MK, Saraswat VA, Shah SR, Shalimar, Sharma P, Taneja S, Wadhawan M. 2019 Update of Indian National Association for Study of the Liver Consensus on Prevention, Diagnosis, and Management of Hepatocellular Carcinoma in India: The Puri II Recommendations. J Clin Exp Hepatol 2020; 10:43-80. [PMID: 32025166 PMCID: PMC6995891 DOI: 10.1016/j.jceh.2019.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/15/2019] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of morbidity, mortality, and healthcare expenditure in patients with chronic liver disease in India. The Indian National Association for Study of the Liver (INASL) had published its first guidelines on diagnosis and management of HCC (The Puri Recommendations) in 2014, and these guidelines were very well received by the healthcare community involved in diagnosis and management of HCC in India and neighboring countries. However, since 2014, many new developments have taken place in the field of HCC diagnosis and management, hence INASL endeavored to update its 2014 consensus guidelines. A new Task Force on HCC was constituted that reviewed the previous guidelines as well as the recent developments in various aspects of HCC that needed to be incorporated in the new guidelines. A 2-day round table discussion was held on 5th and 6th May 2018 at Puri, Odisha, to discuss, debate, and finalize the revised consensus statements. Each statement of the guideline was graded according to the Grading of Recommendations Assessment Development and Evaluation system with minor modifications. We present here the 2019 Update of INASL Consensus on Prevention, Diagnosis, and Management of Hepatocellular Carcinoma in India: The Puri-2 Recommendations.
Collapse
Key Words
- AFP, alpha-fetoprotein
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- DAA, direct-acting antiviral
- DALY, disability-adjusted life-year
- DNA, deoxyribonucleic acid
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- Gd-BOPTA, gadolinium benzyloxypropionictetraacetate
- Gd-EOB-DTPA, gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid
- HBV, hepatitis B virus
- HBeAg, hepatitis B envelope antigen
- HCC, hepatocellular carcinoma
- HIV, human immunodeficiency virus
- IARC, International Agency for Research on Cancer
- IFN, interferon
- INASL, Indian National Association for Study of the Liver
- MiRNA, micro-RNA
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- PIVKA, protein induced by vitamin K absence
- RFA
- RNA, ribonucleic acid
- SVR, sustained virological response
- TACE
- TACE, trans-arterial chemoembolization
- TARE, transarterial radioembolization
- TNF, tumor necrosis factor
- WHO, World Health Organization
- liver cancer
- targeted therapy
- transplant
Collapse
Affiliation(s)
- Ashish Kumar
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Anil Arora
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Anil C. Anand
- Department of Gastroenterology, Indraprastha Apollo Hospital, Sarita Vihar, New Delhi, 110 076, India
| | - Prashant Bhangui
- Medanta Institute of Liver Transplantation and Regenerative Medicine, Medanta the Medicity, CH Baktawar Singh Road, Sector 38, Gurugram, Haryana, 122 001, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Vinod K. Dixit
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Naveen Kalra
- Department of Radio Diagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Suyash S. Kulkarni
- Division of Interventional Radiology, Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai, Maharashtra, 400 012, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Ram Madhavan
- Department of Radiation Oncology, Amrita Institute of Medical Sciences, Amrita University, Peeliyadu Road, Ponekkara, Edappally, Kochi, Kerala, 682 041, India
| | - V.G. Mohan Prasad
- Department of Gastroenterology, VGM Gastro Centre, 2100, Trichy Road, Rajalakshmi Mills Stop, Singanallur, Coimbatore, Tamil Nadu, 641 005, India
| | - Amar Mukund
- Department of Radiology, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Aabha Nagral
- Department of Gastroenterology, Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Dipanjan Panda
- Department of Oncology, Institutes of Cancer, Indraprastha Apollo Hospital, Sarita Vihar, New Delhi, 110 076, India
| | - Shashi B. Paul
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Padaki N. Rao
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, No. 6-3-661, Punjagutta Road, Somajiguda, Hyderabad, Telangana, 500 082, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Gleneagles Global Health City, 439, Cheran Nagar, Perumbakkam, Chennai, Tamil Nadu, 600 100, India
| | - Manoj K. Sahu
- Department of Medical Gastroenterology, IMS & SUM Hospital, K8 Kalinga Nagar, Shampur, Bhubaneswar, Odisha 751 003, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Samir R. Shah
- Department of Gastroenterology, Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Praveen Sharma
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Manav Wadhawan
- Liver & Digestive Diseases Institute, Institute of Liver & Digestive Diseases, BLK Super Specialty Hospital, Delhi, 110 005, India
| | | |
Collapse
|
8
|
Lu RC, She B, Gao WT, Ji YH, Xu DD, Wang QS, Wang SB. Positron-emission tomography for hepatocellular carcinoma: Current status and future prospects. World J Gastroenterol 2019; 25:4682-4695. [PMID: 31528094 PMCID: PMC6718031 DOI: 10.3748/wjg.v25.i32.4682] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality worldwide. Various imaging modalities provide important information about HCC for its clinical management. Since positron-emission tomography (PET) or PET-computed tomography was introduced to the oncologic setting, it has played crucial roles in detecting, distinguishing, accurately staging, and evaluating local, residual, and recurrent HCC. PET imaging visualizes tissue metabolic information that is closely associated with treatment. Dynamic PET imaging and dual-tracer have emerged as complementary techniques that aid in various aspects of HCC diagnosis. The advent of new radiotracers and the development of immuno-PET and PET-magnetic resonance imaging have improved the ability to detect lesions and have made great progress in treatment surveillance. The current PET diagnostic capabilities for HCC and the supplementary techniques are reviewed herein.
Collapse
Affiliation(s)
- Ren-Cai Lu
- PET-CT Center, the First People’s Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Bo She
- PET-CT Center, the First People’s Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Wen-Tao Gao
- PET-CT Center, the First People’s Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Yun-Hai Ji
- PET-CT Center, the First People’s Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Dong-Dong Xu
- PET-CT Center, the First People’s Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Quan-Shi Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Shao-Bo Wang
- PET-CT Center, the First People’s Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, China
| |
Collapse
|