1
|
Mutlu O, Mazhar N, Saribay M, Yavuz MM, Ozturk D, Ghareeb AN, Alnabti A, Yalcin HC. Finite Element Analysis of Evolut Transcatheter Heart Valves: Effects of Aortic Geometries and Valve Sizes on Post-TAVI Wall Stresses and Deformations. J Clin Med 2025; 14:850. [PMID: 39941521 PMCID: PMC11818669 DOI: 10.3390/jcm14030850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: For transcatheter aortic valve implantation (TAVI) therapy, a catheter-guided crimped valve is deployed into the aortic root. Valve types such as Edwards balloon-expandable valves and Medtronic self-expandable valves come in different sizes and are chosen based on patient-specific aortic anatomy, including aortic root diameter measurement. Complications may arise due to variations in anatomical characteristics and the implantation procedure, making pre-implantation assessment important for predicting complications. Methods: Computational modeling, particularly finite element analysis (FEA), has become popular for assessing wall stresses and deformations in TAVI. In this study, a finite element model including the aorta, native leaflets, and TAVI device was used to simulate procedures and assess patient-specific wall stresses and deformations. Results: Using the Medtronic Evolut R valve, we simulated TAVI for 14 patients to analyze the effects of geometrical variations on structural stresses. Virtual TAVIs with different valve sizes were also simulated to study the influence of TAV size on stresses. Our results show that variations in aortic wall geometries and TAV sizes significantly influence wall stresses and deformations. Conclusions: Our study is one of the first comprehensive FEA investigations of aortic geometrical variations and valve sizes on post-TAVI stresses, demonstrating the non-linear relationship between aortic dimensions, TAV sizes, and wall stresses.
Collapse
Affiliation(s)
- Onur Mutlu
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar; (O.M.); (N.M.)
| | - Noaman Mazhar
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar; (O.M.); (N.M.)
| | - Murat Saribay
- Mechanical Engineering Department, Istanbul Bilgi University, Istanbul 34050, Turkey;
| | - Mehmet Metin Yavuz
- Mechanical Engineering Department, Middle East Technical University, Ankara 06800, Turkey;
| | | | - Abdel Naser Ghareeb
- Heart Hospital, Hamad Medical Corporation, Doha 3050, Qatar;
- Faculty of Medicine, Al Azhar University, Cairo 11884, Egypt
| | | | - Huseyin Cagatay Yalcin
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar; (O.M.); (N.M.)
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
2
|
Nappi F, Avtaar Singh SS, Nappi P, Fiore A. Biomechanics of Transcatheter Aortic Valve Implant. Bioengineering (Basel) 2022; 9:299. [PMID: 35877350 PMCID: PMC9312295 DOI: 10.3390/bioengineering9070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Transcatheter aortic valve implantation (TAVI) has grown exponentially within the cardiology and cardiac surgical spheres. It has now become a routine approach for treating aortic stenosis. Several concerns have been raised about TAVI in comparison to conventional surgical aortic valve replacement (SAVR). The primary concerns regard the longevity of the valves. Several factors have been identified which may predict poor outcomes following TAVI. To this end, the lesser-used finite element analysis (FEA) was used to quantify the properties of calcifications which affect TAVI valves. This method can also be used in conjunction with other integrated software to ascertain the functionality of these valves. Other imaging modalities such as multi-detector row computed tomography (MDCT) are now widely available, which can accurately size aortic valve annuli. This may help reduce the incidence of paravalvular leaks and regurgitation which may necessitate further intervention. Structural valve degeneration (SVD) remains a key factor, with varying results from current studies. The true incidence of SVD in TAVI compared to SAVR remains unclear due to the lack of long-term data. It is now widely accepted that both are part of the armamentarium and are not mutually exclusive. Decision making in terms of appropriate interventions should be undertaken via shared decision making involving heart teams.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Antonio Fiore
- Department of Cardiac Surgery, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94000 Creteil, France;
| |
Collapse
|
3
|
Costa G, Angelillis M, Petronio AS. Bicuspid Valve Sizing for Transcatheter Aortic Valve Implantation: The Missing Link. Front Cardiovasc Med 2022; 8:770924. [PMID: 35155597 PMCID: PMC8828944 DOI: 10.3389/fcvm.2021.770924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
Transcatheter aortic valve implantation (TAVI) is a well-recognized and established therapy for severe aortic stenosis, with expanding indications toward younger patients with low surgical risk profile. As bicuspid aortic valve (BAV) affects ~1-2% of the population, it may be speculated that an increasing number of patients with degenerated BAV may eventually need TAVI during the course of the disease. On the other hand, BAV represents a challenge due to its peculiar anatomical features and the lack of consensus on the optimal sizing strategy. The aim of this paper is to review the peculiar aspects of BAV and to discuss and compare the currently available sizing methods. Special attention is given to the role of pre-procedural imaging, mostly with multislice computed tomography, and to the aspects that operators should evaluate in order to ensure an optimal procedural planning and avoid procedural-related complications.
Collapse
Affiliation(s)
| | | | - Anna Sonia Petronio
- Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
4
|
Bidar E, Folliguet T, Kluin J, Muneretto C, Parolari A, Barili F, Suwalski P, Bonaros N, Punjabi P, Sadaba R, De Bonis M, Al-Attar N, Obadia JF, Czerny M, Shrestha M, Zegdi R, Natour E, Lorusso R. Postimplant biological aortic prosthesis degeneration: challenges in transcatheter valve implants. Eur J Cardiothorac Surg 2019; 55:191-200. [PMID: 30541101 DOI: 10.1093/ejcts/ezy391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022] Open
Abstract
Surgical aortic valve replacement (SAVR) is highly effective and can be achieved with relatively low risk in patients with severe aortic stenosis. Bioprostheses have been used most frequently during the past 60 years. However, the function of biological valves usually declines after 10-15 years from implant when structural valve degeneration occurs often mandating a reoperation once valve dysfunction becomes haemodynamically significant. Known for many years by surgeons and cardiologists taking care of patients with SAVR, the issue of postimplant structural valve degeneration has been recently highlighted also in patients with transcatheter aortic valve implant (TAVI). There is growing concern that TAVI valves exhibit structural valve degeneration due to inherent challenges of the deployment mode. The impact on postimplant degeneration of TAVI valves compared to SAVR has still to be understood and defined. Based on the ongoing process of expanding TAVI indications, several potential shortcomings and caveats, learned during the last 60 years of SAVR experience, should be taken into consideration to refine this technique.
Collapse
Affiliation(s)
- Elham Bidar
- Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Thierry Folliguet
- Centre Hospitalo-Universitaire Brabois ILCV, Hôpital Henri Mondor, Division of Cardio Thoracic Surgery and Transplantation, Université Paris 12 UPEC, France
| | - Jolanda Kluin
- Department of Cardio-Thoracic Surgery, Academic Medical Center, Amsterdam, Netherlands
| | - Claudio Muneretto
- Cardiac Surgery Unit, University of Brescia Medical School, Brescia, Italy
| | - Alessandro Parolari
- Cardiac Surgery and Translational Research Units, IRCCS, Policlinico S. Donato, University of Milan, Milan, Italy
| | - Fabio Barili
- Department of Cardiac Surgery, S. Croce Hospital, Cuneo, Italy
| | - Piotr Suwalski
- Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior and Administration, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Prakash Punjabi
- Department of Cardio-Thoracic Surgery, Imperial College Healthcare NHS Trust, Imperial College School of Medicine, London, UK
| | - Rafa Sadaba
- Department of Cardiac Surgery, Hospital de Navarra, Pamplona, Spain
| | - Michele De Bonis
- Department of Cardiac Surgery, S. Raffaele University Hospital, Milan, Italy
| | - Nawwar Al-Attar
- Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK
| | - Jean Francois Obadia
- Department of Cardio-Thoracic Surgery, Hôpital Cardiothoracique Louis Pradel, Lyon, France
| | - Martin Czerny
- Department of Cardio-Vascular Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Malakh Shrestha
- Department of Cardio-Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Rachid Zegdi
- Hôpital Européen Georges Pompidou, Paris, France
| | - Ehsan Natour
- Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
5
|
Aljalloud A, Shoaib M, Egron S, Arias J, Tewarie L, Schnoering H, Lotfi S, Goetzenich A, Hatam N, Pott D, Zhong Z, Steinseifer U, Zayat R, Autschbach R. The flutter-by effect: a comprehensive study of the fluttering cusps of the Perceval heart valve prosthesis. Interact Cardiovasc Thorac Surg 2018; 27:664-670. [PMID: 29788476 DOI: 10.1093/icvts/ivy162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/15/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Sutureless aortic valve prostheses are gaining popularity due to the substantial reduction in cross-clamp time. In this study, we report our observations on the cusp-fluttering phenomenon of the Perceval bioprosthesis (LivaNova, London, UK) using a combination of technical and medical perspectives. METHODS Between August 2014 and December 2016, a total of 108 patients (69% women) with a mean age of 78 years had aortic valve replacement using the Perceval bioprosthesis (34 combined procedures). All patients underwent transoesophageal echocardiography (TOE) intraoperatively. TOE was performed postoperatively to detect paravalvular leakage and to measure gradients, acceleration time, Doppler velocity indices (Vmax and LVOT/Vmax AV) and effective orifice area indices. In addition, a TOE examination was performed in 21 patients postoperatively. Data were collected retrospectively from our hospital database. RESULTS The retrospective evaluation of the intraoperative TOE examinations revealed consistent fluttering in all patients with the Perceval bioprosthesis. The echocardiographic postoperative measurements showed a mean effective orifice area index of 0.91 ± 0.12 cm2/m2. The overall mean pressure and peak pressure gradients were in a higher range (13.5 ± 5.1 mmHg and 25.5 ± 8.6 mmHg, respectively), whereas acceleration time (62.8 ± 16.4 ms) and Doppler velocity indices (0.43 ± 0.11) were within the normal range according to the American Society of Echocardiography or european association of echocardiography (EAE) guidelines. The 2-dimensional TOE in Motion Mode (M-Mode) that was performed in patients with elevated lactate dehydrogenase (LDH) levels revealed remarkable fluttering of the cusps of the Perceval bioprosthesis. CONCLUSIONS In our study cohort, we observed the fluttering phenomenon in all patients who received the Perceval bioprosthesis, which was correlated with elevated LDH levels and higher pressure gradients.
Collapse
Affiliation(s)
- Ali Aljalloud
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Mohamed Shoaib
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Sandrine Egron
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Jessica Arias
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Lachmandath Tewarie
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Heike Schnoering
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Shahram Lotfi
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Nima Hatam
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Desiree Pott
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Zhaoyang Zhong
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Monash Institute of Medical Engineering, Monash University, Melbourne, Australia
| | - Rachad Zayat
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Ruediger Autschbach
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
6
|
Nappi F, Mazzocchi L, Avtaar Singh SS, Morganti S, Sablayrolles JL, Acar C, Auricchio F. Complementary Role of the Computed Biomodelling through Finite Element Analysis and Computed Tomography for Diagnosis of Transcatheter Heart Valve Thrombosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1346308. [PMID: 30426001 PMCID: PMC6217904 DOI: 10.1155/2018/1346308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The TAVR procedure is associated with a substantial risk of thrombosis. Current guidelines recommend catheter-based aortic valve implantation for prohibitive-high-risk patients with severe aortic valve stenosis but acknowledge that the aetiology and mechanism of thrombosis are unclear. METHODS From 2015 to 2018, 607 patients with severe aortic valve stenosis underwent either self-expandable or balloon-expandable catheter-based aortic valve implantation at our institute. A complementary study was designed to support computed tomography as a predictor of complications using an advanced biomodelling process through finite element analysis (FEA). The primary evaluation of study was the thrombosis of the valve at 12 months. RESULTS At 12 months, 546 patients had normal valvular function. 61 patients had THVT while 6 showed thrombosis and dislodgement with deterioration to NYHA Class IV requiring rehospitalization. The FEA biomodelling revealed a strong link between solid uncrushed calcifications, delayed dislodgement of TAVR and late thrombosis. We observed an interesting phenomenon of fibrosis/calcification originating at the level of the misplaced valve, which was the primary cause of coronary obstruction. CONCLUSION The use of cardiac CT and predictive biomodelling should be integrated into routine practice for the selection of TAVR candidates and as a predictor of negative outcomes given the lack of accurate investigations available. This would assist in effective decision-making and diagnosis especially in a high-risk cohort of patients.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Laura Mazzocchi
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | | | - Simone Morganti
- Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| | | | - Christophe Acar
- Department of Cardiac Surgery, Hopital La Pitie Salpetriere, Paris, France
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Vy P, Auffret V, Castro M, Badel P, Rochette M, Haigron P, Avril S. Patient-specific simulation of guidewire deformation during transcatheter aortic valve implantation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2974. [PMID: 29486528 DOI: 10.1002/cnm.2974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/11/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Transcatheter aortic valve implantation is a recent mini-invasive procedure to implant an aortic valve prosthesis. Prosthesis positioning in transcatheter aortic valve implantation appears as an important aspect for the success of the intervention. Accordingly, we developed a patient-specific finite element framework to predict the insertion of the stiff guidewire, used to position the aortic valve. We simulated the guidewire insertion for 2 patients based on their pre-operative CT scans. The model was designed to primarily predict the position and the angle of the guidewires in the aortic valve, and the results were successfully compared with intraoperative images. The present paper describes extensively the numerical model, which was solved by using the ANSYS software with an implicit resolution scheme, as well as the stabilization techniques which were used to overcome numerical instabilities. We performed sensitivity analysis on the properties of the guidewire (curvature angle, curvature radius, and stiffness) and the conditions of insertion (insertion force and orientation). We also explored the influence of the model parameters. The accuracy of the model was quantitatively evaluated as the distance and the angle difference between the simulated guidewires and the intraoperative ones. A good agreement was obtained between the model predictions and intraoperative views available for 2 patient cases. In conclusion, we showed that the shape of the guidewire in the aortic valve was mainly determined by the geometry of the patient's aorta and by the conditions of insertion (insertion force and orientation).
Collapse
Affiliation(s)
- Phuoc Vy
- ANSYS France, 69100, Villeurbanne, France
- Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, INSERM:U1059, SAINBIOSE, 42023, Saint-Etienne, France
- INSERM, U1099, 35000, Rennes, France
- LTSI, Université de Rennes 1, 35000, Rennes, France
| | - Vincent Auffret
- INSERM, U1099, 35000, Rennes, France
- LTSI, Université de Rennes 1, 35000, Rennes, France
- CHU Rennes, Service de Cardiologie et Maladies Vasculaires, 35000, Rennes, France
| | - Miguel Castro
- INSERM, U1099, 35000, Rennes, France
- LTSI, Université de Rennes 1, 35000, Rennes, France
| | - Pierre Badel
- Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, INSERM:U1059, SAINBIOSE, 42023, Saint-Etienne, France
| | | | - Pascal Haigron
- INSERM, U1099, 35000, Rennes, France
- LTSI, Université de Rennes 1, 35000, Rennes, France
| | - Stéphane Avril
- Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, INSERM:U1059, SAINBIOSE, 42023, Saint-Etienne, France
| |
Collapse
|
8
|
Bosi GM, Capelli C, Cheang MH, Delahunty N, Mullen M, Taylor AM, Schievano S. Population-specific material properties of the implantation site for transcatheter aortic valve replacement finite element simulations. J Biomech 2018; 71:236-244. [PMID: 29482928 PMCID: PMC5889787 DOI: 10.1016/j.jbiomech.2018.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 10/31/2022]
Abstract
Patient-specific computational models are an established tool to support device development and test under clinically relevant boundary conditions. Potentially, such models could be used to aid the clinical decision-making process for percutaneous valve selection; however, their adoption in clinical practice is still limited to individual cases. To be fully informative, they should include patient-specific data on both anatomy and mechanics of the implantation site. In this work, fourteen patient-specific computational models for transcatheter aortic valve replacement (TAVR) with balloon-expandable Sapien XT devices were retrospectively developed to tune the material parameters of the implantation site mechanical model for the average TAVR population. Pre-procedural computed tomography (CT) images were post-processed to create the 3D patient-specific anatomy of the implantation site. Balloon valvuloplasty and device deployment were simulated with finite element (FE) analysis. Valve leaflets and aortic root were modelled as linear elastic materials, while calcification as elastoplastic. Material properties were initially selected from literature; then, a statistical analysis was designed to investigate the effect of each implantation site material parameter on the implanted stent diameter and thus identify the combination of material parameters for TAVR patients. These numerical models were validated against clinical data. The comparison between stent diameters measured from post-procedural fluoroscopy images and final computational results showed a mean difference of 2.5 ± 3.9%. Moreover, the numerical model detected the presence of paravalvular leakage (PVL) in 79% of cases, as assessed by post-TAVR echocardiographic examination. The final aim was to increase accuracy and reliability of such computational tools for prospective clinical applications.
Collapse
Affiliation(s)
- Giorgia M Bosi
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK; Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, London, UK.
| | - Claudio Capelli
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| | - Mun Hong Cheang
- Barts Health NHS Trust, University College London Hospital, London, UK
| | - Nicola Delahunty
- Barts Health NHS Trust, University College London Hospital, London, UK
| | - Michael Mullen
- Barts Health NHS Trust, University College London Hospital, London, UK
| | - Andrew M Taylor
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| | - Silvia Schievano
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
9
|
Xuan Y, Krishnan K, Ye J, Dvir D, Guccione JM, Ge L, Tseng EE. Stent and Leaflet Stresses in 29-mm Second-Generation Balloon-Expandable Transcatheter Aortic Valve. Ann Thorac Surg 2017; 104:773-781. [PMID: 28410636 DOI: 10.1016/j.athoracsur.2017.01.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 11/27/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Equipoise of transcatheter aortic valve replacement with surgical aortic valve replacement in intermediate-risk patients has been demonstrated. As transcatheter aortic valve replacement usage expands, questions regarding long-term durability become paramount. Valve design impacts durability with regions of increased leaflet stress being vulnerable to early failure. However, transcatheter aortic valve (TAV) leaflet stresses are unknown. The objective of this study was to determine stent and leaflet stresses of second-generation balloon-expandable TAV. METHODS Commercial 29-mm Edwards Sapien XT (Edwards Lifesciences, Irvine, CA) valves underwent high-resolution microcomputed tomography scanning to develop precise three-dimensional geometric mesh. Compressed and uncompressed TAVs were modeled under systemic pressure using finite element software. Material properties of stent were based on cobalt-chromium, whereas those for leaflets were obtained from surgical bioprostheses. RESULTS Maximum and minimum principal stresses on uncompressed Sapien XT TAV were 1.63 MPa and -0.36 MPa on leaflets and 93.3 MPa and -105.6 MPa on stent at diastolic pressure. Peak leaflet stress was observed at commissural tips where leaflets connected to the stent. For compressed TAV to 26 mm, maximum and minimum principal stresses were 1.55 MPa and -0.63 MPa on leaflets and 526.1 MPa and -902.2 MPa on stent at diastolic pressure. Peak leaflet stress was located at similar position and also along the suture line with the Dacron (C. R. Bard, Haverhill, PA). CONCLUSIONS Stress analysis of two extreme deployed geometries of 29-mm Edwards Sapien XT using exact geometry from high-resolution scans demonstrated that peak stresses for TAV leaflets were present at commissural tips where leaflets were attached. These regions would be mostly likely to initiate degeneration.
Collapse
Affiliation(s)
- Yue Xuan
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, California
| | - Kapil Krishnan
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, California
| | - Jian Ye
- Division of Cardiovascular Surgery, St. Paul's Hospital and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Danny Dvir
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Julius M Guccione
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, California
| | - Liang Ge
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, California
| | - Elaine E Tseng
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, California.
| |
Collapse
|
10
|
Rahmani B, Tzamtzis S, Sheridan R, Mullen MJ, Yap J, Seifalian AM, Burriesci G. In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE). J Cardiovasc Transl Res 2016; 10:104-115. [PMID: 28028692 PMCID: PMC5437138 DOI: 10.1007/s12265-016-9722-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/21/2016] [Indexed: 11/01/2022]
Abstract
This study presents the in vitro hydrodynamic assessment of the TRISKELE, a new system suitable for transcatheter aortic valve implantation (TAVI), aiming to mitigate the procedural challenges experienced with current technologies. The TRISKELE valve comprises three polymeric leaflet and an adaptive sealing cuff, supported by a novel fully retrievable self-expanding nitinol wire frame. Valve prototypes were manufactured in three sizes of 23, 26, and 29 mm by automated dip-coating of a biostable polymer, and tested in a hydrodynamic bench setup in mock aortic roots of 21, 23, 25, and 27 mm annulus, and compared to two reference valves suitable for equivalent implantation ranges: Edwards SAPIEN XT and Medtronic CoreValve. The TRISKELE valves demonstrated a global hydrodynamic performance comparable or superior to the controls with significant reduction in paravalvular leakage. The TRISKELE valve exhibits enhanced anchoring and improved sealing. The valve is currently under preclinical investigation.
Collapse
Affiliation(s)
- Benyamin Rahmani
- Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Spyros Tzamtzis
- Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Rose Sheridan
- Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Michael J Mullen
- Barts Health NHS Trust, University College London Hospital, London, UK
| | - John Yap
- Barts Health NHS Trust, University College London Hospital, London, UK
| | | | - Gaetano Burriesci
- Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. .,Ri.MED Foundation, Bioengineering Group, Palermo, Italy.
| |
Collapse
|
11
|
Xuan Y, Krishnan K, Ye J, Dvir D, Guccione JM, Ge L, Tseng EE. Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve. J Thorac Cardiovasc Surg 2016; 153:1065-1073. [PMID: 28108064 DOI: 10.1016/j.jtcvs.2016.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Transcatheter aortic valve replacement is established therapy for high-risk and inoperable patients with severe aortic stenosis, but questions remain regarding long-term durability. Valve design influences durability. Increased leaflet stresses in surgical bioprostheses have been correlated with degeneration; however, transcatheter valve leaflet stresses are unknown. From 2007 to 2014, a majority of US patients received first-generation balloon-expandable transcatheter valves. Our goal was to determine stent and leaflet stresses in this valve design using finite element analyses. METHODS A 26-mm Sapien Transcatheter Heart Valve (Edwards Lifesciences, Inc, Irvine, Calif) underwent high-resolution microcomputed tomography scanning to develop precise 3-dimensional geometry of the leaflets, the stent, and the polyethylene terephthalate elements. The stent was modeled using 3-dimensional elements and the leaflets were modeled using shell elements. Stent material properties were based on stainless steel, whereas those for leaflets were obtained from surgical bioprostheses. Noncylindrical Sapien valve geometry was also simulated. Pressure loading to 80 mm Hg and 120 mm Hg was performed using ABAQUS finite element software (Dassault Systèmes, Waltham, Mass). RESULTS At 80 mm Hg, maximum principal stresses on Sapien leaflets were 1.31 megaspascals (MPa). Peak leaflet stress was observed at commissural tips where leaflets connected to the stent. Maximum principal stresses for the stent were 188.91 MPa and located at stent tips where leaflet commissures were attached. Noncylindrical geometry increased peak principal leaflet stresses by 16%. CONCLUSIONS Using exact geometry from high-resolution scans, the 26-mm Sapien Transcatheter Heart Valve showed that peak stresses for both stent and leaflets were present at commissural tips where leaflets were attached. These regions would be prone to leaflet degeneration. Understanding stresses in first-generation transcatheter valves allows comparison to future designs for relative durability.
Collapse
Affiliation(s)
- Yue Xuan
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, Calif
| | - Kapil Krishnan
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, Calif
| | - Jian Ye
- Division of Cardiovascular Surgery, St Paul's Hospital and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Danny Dvir
- Division of Cardiology, University of Washington, Seattle, Wash
| | - Julius M Guccione
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, Calif
| | - Liang Ge
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, Calif
| | - Elaine E Tseng
- Department of Surgery, University of California San Francisco and San Francisco VA Medical Centers, San Francisco, Calif.
| |
Collapse
|
12
|
Gunning PS, Saikrishnan N, Yoganathan AP, McNamara LM. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement. J R Soc Interface 2016; 12:20150737. [PMID: 26674192 DOI: 10.1098/rsif.2015.0737] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcatheter aortic valve replacements (TAVRs) are a percutaneous alternative to surgical aortic valve replacements and are used to treat patients with aortic valve stenosis. This minimally invasive procedure relies on expansion of the TAVR stent to radially displace calcified aortic valve leaflets against the aortic root wall. However, these calcium deposits can impede the expansion of the device causing distortion of the valve stent and pericardial tissue leaflets. The objective of this study was to elucidate the impact of eccentric TAVR stent distortion on the dynamic deformation of the tissue leaflets of the prosthesis in vitro. Dual-camera stereophotogrammetry was used to measure the regional variation in strain in a leaflet of a TAVR deployed in nominal circular and eccentric (eccentricity index = 28%) orifices, representative of deployed TAVRs in vivo. It was observed that (i) eccentric stent distortion caused incorrect coaptation of the leaflets at peak diastole resulting in a 'peel-back' leaflet geometry that was not present in the circular valve and (ii) adverse bending of the leaflet, arising in the eccentric valve at peak diastole, caused significantly higher commissure strains compared with the circular valve in both normotensive and hypertensive pressure conditions (normotension: eccentric = 13.76 ± 2.04% versus circular = 11.77 ± 1.61%, p = 0.0014, hypertension: eccentric = 15.07 ± 1.13% versus circular = 13.56 ± 0.87%, p = 0.0042). This study reveals that eccentric distortion of a TAVR stent can have a considerable impact on dynamic leaflet deformation, inducing deleterious bending of the leaflet and increasing commissures strains, which might expedite leaflet structural failure compared to leaflets in a circular deployed valve.
Collapse
Affiliation(s)
- Paul S Gunning
- Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Republic of Ireland
| | - Neelakantan Saikrishnan
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ajit P Yoganathan
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Laoise M McNamara
- Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Republic of Ireland
| |
Collapse
|
13
|
Gunning PS, Vaughan TJ, McNamara LM. Simulation of Self Expanding Transcatheter Aortic Valve in a Realistic Aortic Root: Implications of Deployment Geometry on Leaflet Deformation. Ann Biomed Eng 2014; 42:1989-2001. [DOI: 10.1007/s10439-014-1051-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/30/2014] [Indexed: 11/24/2022]
|