2
|
Oh JM, Baek SH, Gangadaran P, Hong CM, Rajendran RL, Lee HW, Zhu L, Gopal A, Kalimuthu S, Jeong SY, Lee SW, Lee J, Ahn BC. A Novel Tyrosine Kinase Inhibitor Can Augment Radioactive Iodine Uptake Through Endogenous Sodium/Iodide Symporter Expression in Anaplastic Thyroid Cancer. Thyroid 2020; 30:501-518. [PMID: 31928162 DOI: 10.1089/thy.2018.0626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Radioactive iodine (RAI) therapy is an important strategy in the treatment of thyroid cancer. However, anaplastic thyroid cancer (ATC), a rare malignancy, exhibits severe dedifferentiation characteristics along with a lack of sodium iodide symporter (NIS) expression and function. Therefore, RAI therapy is ineffective and contributes toward poor prognosis of these patients. Recently, small-molecule tyrosine kinase inhibitors (TKIs) have been used to treat thyroid cancer patients for restoring NIS expression and function and RAI uptake capacity. However, most results reported thus far are associated with differentiated thyroid cancer. In this study, we identified a new TKI and investigated its effects on cell redifferentiation, NIS function, and RAI therapy in ATC. Methods: We identified a new TKI, "5-(5-{4H, 5H,6H-cyclopenta[b]thiophen-2-yl}-1,3,4-oxadiazol-2-yl)-1-methyl-1,2-dihydropyridin-2-one" (CTOM-DHP), using a high-throughput screening system. CTOM-DHP was exposed to 8505C ATC cells at different concentrations and time points. Concentrations of 12.5 and 25 μM and an incubation time of 72 hours were chosen as the conditions for subsequent NIS promoter assays and NIS mRNA and protein expression experiments. In addition, we examined factors related to iodide metabolism after CTOM-DHP treatment as well as the signaling pathways mediating the effects of CTOM-DHP on endogenous NIS expression. RAI uptake and 131I cytotoxicity effects caused by CTOM-DHP pretreatment were also evaluated in vitro and in vivo. Results: Promoter assays as well as mRNA and protein expression analyses confirmed that NIS expression was augmented by treatment of 8505C ATC cells with CTOM-DHP. Moreover, CTOM-DHP treatment robustly increased the expression of other thyroid-specific proteins and thyroid transcription factors related to iodide metabolism. Enhancement of NIS function was demonstrated by an increase in 125I uptake and 131I cytotoxicity. Increased endogenous NIS expression was associated with the inhibition of PI3K/Akt and MAPK signaling pathways. In vivo results also demonstrated an increase in NIS promoter activity and RAI avidity in response to CTOM-DHP treatment. Furthermore, 131I-mediated therapeutic effects preferentially improved in a tumor xenograft mice model. Conclusions: CTOM-DHP, a new TKI identified in this study, enhances endogenous NIS expression and thereby is a promising compound for restoring RAI avidity in ATC.
Collapse
Affiliation(s)
- Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Saini S, Maker AV, Burman KD, Prabhakar BS. Molecular aberrations and signaling cascades implicated in the pathogenesis of anaplastic thyroid cancer. Biochim Biophys Acta Rev Cancer 2018; 1872:188262. [PMID: 30605717 DOI: 10.1016/j.bbcan.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Anaplastic Thyroid Cancer (ATC) accounts for >40% thyroid cancer-related deaths and has a dismal prognosis. In the past decade, significant efforts have been made towards understanding the pathogenesis of this disease and developing novel therapeutics. Unfortunately, effective treatment is still lacking and a more thorough understanding of ATC pathogenesis may provide new opportunities to improve ATC therapeutics. This review provides insights into ATC clinical presentation and pathology, and the putative role of genetic aberrations and alterations in molecular signaling pathways in ATC pathogenesis. We reviewed prevalent mutations, chromosomal abnormalities and fusions, epigenetic alterations and dysregulations in ATC, and highlighted several signaling cascades which appeared to be integral to ATC pathogenesis. Moreover, these features offer insights into de-differentiated, aggressive and drug-resistant phenotype of ATC, and thus may help in exploring potential new molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States
| | - Ajay V Maker
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL, United States
| | - Kenneth D Burman
- Medstar Washington Hospital Medical Center, Washington, DC, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States.
| |
Collapse
|
4
|
Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol Cancer 2018; 17:154. [PMID: 30352606 PMCID: PMC6198524 DOI: 10.1186/s12943-018-0903-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. In 2017, it was the fifth most common cancer in women. Although the majority of thyroid tumors are curable, about 2-3% of thyroid cancers are refractory to standard treatments. These undifferentiated, highly aggressive and mostly chemo-resistant tumors are phenotypically-termed anaplastic thyroid cancer (ATC). ATCs are resistant to standard therapies and are extremely difficult to manage. In this review, we provide the information related to current and recently emerged first-line systemic therapy (Dabrafenib and Trametinib) along with promising therapeutics which are in clinical trials and may be incorporated into clinical practice in the future. Different categories of promising therapeutics such as Aurora kinase inhibitors, multi-kinase inhibitors, epigenetic modulators, gene therapy using oncolytic viruses, apoptosis-inducing agents, and immunotherapy are reviewed. Combination treatment options that showed synergistic and antagonistic effects are also discussed. We highlight ongoing clinical trials in ATC and discuss how personalized medicine is crucial to design the second line of treatment. Besides using conventional combination therapy, embracing a personalized approach based on advanced genomics and proteomics assessment will be crucial to developing a tailored treatment plan to improve the chances of clinical success.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Kiara Tulla
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Ajay V. Maker
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | | | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| |
Collapse
|
5
|
Fallahi P, Ruffilli I, Elia G, Ragusa F, Ulisse S, Baldini E, Miccoli M, Materazzi G, Antonelli A, Ferrari SM. Novel treatment options for anaplastic thyroid cancer. Expert Rev Endocrinol Metab 2017; 12:279-288. [PMID: 30058884 DOI: 10.1080/17446651.2017.1340155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several genetic alterations have been identified in different molecular pathways ofanaplastic thyroid cancer (ATC) and associated with tumor aggressiveness and progression (BRAF, p53,RAS, EGFR, VEGFR-1, VEGFR-2, etc). New drugs targeting these molecular pathways have beenrecently evaluated in ATC. Areas covered: We review the new targeted therapies of ATC. Interesting results have been reported with molecules targeting different pathways, as: a-BRAF (dabrafenib/trametinib, vemurafenib); b-angiogenesis (sorafenib, combretastatin, vandetanib, sunitinib, lenvatinib, CLM3, etc); c-EGFR (gefitinib); d- PPARγ agonists (rosiglitazone, pioglitazone, efatutazone). In patients with ATC treated with lenvatinib, a median overall survival of 10.6 (3.8-19.8) months was reported. In order to bypass the resistance to the single drug, the capability of targeted drugs to synergize with radiation, or chemotherapy, or other targeted drugs is explored. Expert commentary: New, affordable and individual genomic analysis combined with the opportunity to test these new treatments in primary cell cultures from every ATC patient in vitro, may permit the personalization of therapy. Increasing the therapeutic effectiveness and avoiding the use of ineffective drugs. The identification of new treatments is necessary, to extend life duration guaranteing a good quality of life. To bypass the resistance to asingle drug, the capability of targeted drugs to synergize with radiation, or chemotherapy, or othertargeted drugs is explored. Moreover, new affordable individual genomic analysis and the opportunity totest these novel treatments in primary cell cultures from every ATC patient in vitro, might permit topersonalize the therapy, increasing the therapeutic effectiveness and avoiding the use of ineffectivedrugs.
Collapse
Affiliation(s)
- Poupak Fallahi
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Ilaria Ruffilli
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Giusy Elia
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Francesca Ragusa
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Salvatore Ulisse
- b Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - Enke Baldini
- b Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - Mario Miccoli
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Gabriele Materazzi
- c Department of Surgical, Medical, Molecular Pathology and Critical Area , University of Pisa , Pisa , Italy
| | - Alessandro Antonelli
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | | |
Collapse
|
6
|
Cabanillas ME, Busaidy NL, Khan SA, Gunn GB, Dadu R, Rao SN, Waguespack SG. Molecular diagnostics and anaplastic thyroid carcinoma: the time has come to harvest the high hanging fruit. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2016-0007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Targeted therapies have played a major role in cancer therapeutics, starting with the discovery of a drug against BCR–ABL rearrangements in chronic myelogenous leukemia. This led to the first approval of a targeted agent in cancer and since, many others have followed. Anaplastic thyroid cancer (ATC) is an aggressive carcinoma with few curative options. Although previous cytotoxic chemotherapy and kinase inhibitor therapies have not proven efficacious in ATC, some of the newer drugs appear to be promising. A case report and a comprehensive review of the current standard of care, genetics, modern therapeutic drugs and clinical trials are presented, in order to outline where we currently stand and where the future lies in the quest for a cure for ATC.
Collapse
Affiliation(s)
- Maria E Cabanillas
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Saad A Khan
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Ramona Dadu
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Sarika N Rao
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Steven G Waguespack
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| |
Collapse
|