1
|
Yang J, Tian Z, Gao H, Xiong F, Cao C, Yu J, Shi W, Zhan Q, Yang C. Clinical significance and correlation of PD-L1, B7-H3, B7-H4, and TILs in pancreatic cancer. BMC Cancer 2022; 22:584. [PMID: 35624419 PMCID: PMC9137118 DOI: 10.1186/s12885-022-09639-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND B7 molecules play significant roles in regulating tumor immunity, but their expression patterns and immuno-biological correlations in pancreatic cancer (PaCa) have not been fully discussed. METHODS RNA-sequencing data of B7 molecules of PaCa samples in the Cancer Genome Atlas (TCGA) dataset was downloaded from the UCSC Xena to assess the expression, correlation, and mutation of the B7 family in PaCa. Next, two PaCa tissue microarrays (TMAs, Cat. HPanA150CS02 and HPanA120Su02) were obtained from Outdo BioTech (Shanghai, China). To detect the expression levels of PD-L1, B7-H3 and B7-H4, immunohistochemistry (IHC) staining was performed on these TMAs. RESULTS Most B7 molecules, including B7-1, B7-2, PD-L1, B7-DC, B7-H2, and B7-H5 exhibited similar expression patterns, but B7-H3, B7-H4, B7-H6, and B7-H7 showed outlier expression patterns compared with other B7 molecules. Besides, B7 molecules were genetically stable and exhibited low alteration frequency. IHC staining indicated PD-L1, B7-H3, and B7-H4 were up-regulated in PaCa tissues and showed uncorrelated expression patterns. Furthermore, high expression of PD-L1 and B7-H3 indicated poor-differentiated grades in PaCa. PD-L1 was positively, but B7-H4 was negatively correlated with CD8+ TILs infiltration in PaCa. Moreover, combined PD-L1 and B7-H4 expression was a novel subtyping strategy in PaCa, namely patients with both high PD-L1 and B7-H4 expression exhibited decreased CD8+ TILs infiltration in tumor tissues. CONCLUSION Overall, we systemically analyzed the expression patterns of B7 molecules and proposed a novel subtyping strategy in PaCa. Patients with both high PD-L1 and B7-H4 expression exhibited the immuno-cold phenotype, which may be not suitable for immunotherapy.
Collapse
Affiliation(s)
- Jiayue Yang
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Zhen Tian
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 China
| | - Fan Xiong
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Cuiping Cao
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Jiaojiao Yu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Wei Shi
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Qiang Zhan
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu Province, 214023 China
| | - Cheng Yang
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu Province, 214023 China
| |
Collapse
|
2
|
Liu X, Chen B, Chen J, Su Z, Sun S. Deubiquitinase ubiquitin-specific peptidase 10 maintains cysteine rich angiogenic inducer 61 expression via Yes1 associated transcriptional regulator to augment immune escape and metastasis of pancreatic adenocarcinoma. Cancer Sci 2022; 113:1868-1879. [PMID: 35271750 PMCID: PMC9128165 DOI: 10.1111/cas.15326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) remains an extremely fatal malignancy with a high mortality rate worldwide. This study focuses on the roles of ubiquitin-specific peptidase 10 (USP10) and cysteine rich angiogenic inducer 61 (Cyr61) in macrophage polarization, immune escape, and metastasis of PAAD. USP10 showed a positive correlation with Yes1 associated transcriptional regulator (YAP1), which, according to the TCGA-PAAD database, is highly expressed in PAAD and indicates poor patient prognosis. USP10 knockdown increased ubiquitination and degradation of YAP1, which further decreased the programmed cell death ligand 1 (PD-L1) and Galectin-9 expression, suppressed immune escape, and reduced the proliferation and metastasis of PAAD cells in vitro and in vivo. Cyr61, a downstream factor of YAP1, was overexpressed in PAAD cells after USP10 silencing for rescue experiments. Overexpression of Cyr61 restored the PD-L1 and Galectin-9 expression in cells and triggered M2 polarization of macrophages, which enhanced the immune escape and maintained the proliferation and metastasis ability of PAAD cells. In conclusion, this work demonstrates that USP10 inhibits YAP1 ubiquitination and degradation to promote Cyr61 expression, which induces immune escape and promotes growth and metastasis of PAAD.
Collapse
Affiliation(s)
- Xun Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Bobo Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Jiahui Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Zuoyuan Su
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shaolong Sun
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
3
|
Yang J, Zhang Q, Wang J, Lou Y, Hong Z, Wei S, Sun K, Wang J, Chen Y, Sheng J, Su W, Bai X, Liang T. Dynamic profiling of immune microenvironment during pancreatic cancer development suggests early intervention and combination strategy of immunotherapy. EBioMedicine 2022; 78:103958. [PMID: 35316682 PMCID: PMC8943259 DOI: 10.1016/j.ebiom.2022.103958] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has little response to immune checkpoint inhibitors. An in-depth understanding of the immune microenvironment from a comprehensive and dynamic perspective is critical to generate effective therapeutic strategies for PDAC. METHODS Using mass cytometry and immunohistochemistry, we explored the dynamic changes of tumor-infiltrating immune cells during the development of PDAC in a genetically engineered mouse model (KrasG12D/+; Trp53R172H/+; Pdx1-cre) and human specimens. PD-L1-/- mice were crossed with KrasG12D/+; TgfβR2flox/flox; Ptf1a-cre mice to achieve early depletion of PD-L1 in pancreatic cancer. Combination therapy of Arginase-1 (Arg-1) inhibitor and anti-PD-1 mAb was validated in syngeneic mouse models. FINDINGS Two different stages of immunosuppression with unique features were observed in both mouse model and human specimens. Early stage of immunosuppression featured highly abundant Tregs during acinar-to-ductal metaplasia, despite of a prominent and continuous presence of effector lymphocytes. The differentiation/activation branch of Ly-6C+ monocytes changed from a BST2+/MHC-II+ phenotype to an Arg-1+ phenotype over time during PDAC development. The late stage of immunosuppression thus featured the presence of a large number of myeloid suppressive cells together with a significant reduction of effector lymphocytes. Removal of PD-L1 from the beginning efficiently triggered anti-tumor immunity and significantly prolonged survival in PDAC-developing mice. Targeting Arg1+ macrophages with an Arg-1 inhibitor synergized with anti-PD-1 immunotherapy and led to PDAC-specific immune memory. INTERPRETATION By demonstrating the coevolution of histopathology and immunology in PDAC, this study highlights the necessity and value of early intervention and combinational approach in leveraging immunotherapy to treat pancreatic cancer. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Junli Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yu Lou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Sun
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058 China; Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianing Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Jianpeng Sheng
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058 China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058 China.
| |
Collapse
|
4
|
Imran KM, Nagai-Singer MA, Brock RM, Alinezhadbalalami N, Davalos RV, Allen IC. Exploration of Novel Pathways Underlying Irreversible Electroporation Induced Anti-Tumor Immunity in Pancreatic Cancer. Front Oncol 2022; 12:853779. [PMID: 35372046 PMCID: PMC8972192 DOI: 10.3389/fonc.2022.853779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Advancements in medical sciences and technologies have significantly improved the survival of many cancers; however, pancreatic cancer remains a deadly diagnosis. This malignancy is often diagnosed late in the disease when metastases have already occurred. Additionally, the location of the pancreas near vital organs limits surgical candidacy, the tumor's immunosuppressive environment limits immunotherapy success, and it is highly resistant to radiation and chemotherapy. Hence, clinicians and patients alike need a treatment paradigm that reduces primary tumor burden, activates systemic anti-tumor immunity, and reverses the local immunosuppressive microenvironment to eventually clear distant metastases. Irreversible electroporation (IRE), a novel non-thermal tumor ablation technique, applies high-voltage ultra-short pulses to permeabilize targeted cell membranes and induce cell death. Progression with IRE technology and an array of research studies have shown that beyond tumor debulking, IRE can induce anti-tumor immune responses possibly through tumor neo-antigen release. However, the success of IRE treatment (i.e. full ablation and tumor recurrence) is variable. We believe that IRE treatment induces IFNγ expression, which then modulates immune checkpoint molecules and thus leads to tumor recurrence. This indicates a co-therapeutic use of IRE and immune checkpoint inhibitors as a promising treatment for pancreatic cancer patients. Here, we review the well-defined and speculated pathways involved in the immunostimulatory effects of IRE treatment for pancreatic cancer, as well as the regulatory pathways that may negate these anti-tumor responses. By defining these underlying mechanisms, future studies may identify improvements to systemic immune system engagement following local tumor ablation with IRE and beyond.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Nastaran Alinezhadbalalami
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Yang C, Wang X, Qiu C, Zheng Z, Lin K, Tu M, Zhang K, Jiang K, Gao W. Identification of FEZ2 as a potential oncogene in pancreatic ductal adenocarcinoma. PeerJ 2022; 9:e12736. [PMID: 35036176 PMCID: PMC8742541 DOI: 10.7717/peerj.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the common malignant tumors with high lethal rate and poor prognosis. Dysregulation of many genes have been reported to be involved in the occurrence and development of PDAC. However, as a highly conserved gene in eukaryotes, the role of Fasciculation and Elongation protein Zeta 2 (FEZ2) in pancreatic cancer progression is not clear. In this study, we identified the oncogenic effect of FEZ2 on PDAC. By mining of The Cancer Genome Atlas (TCGA) database, we found that FEZ2 was upregulated in PDAC tissues and FEZ2 expression was negatively regulated by its methylation. Moreover, high expression and low methylation of FEZ2 correlated with poor prognosis in PDAC patients. Besides, we found that FEZ2 could promote PDAC cells proliferation, migration and 5-FU resistance in vitro. Furthermore, Gene pathway enrichment analysis demonstrated a positive correlation between Wnt signaling activation and FEZ2 expression in PDAC patients. Western blot showed that FEZ2 knockdown significantly suppressed β-catenin expression. Collectively, our finding revealed that FEZ2 functioned as a potential oncogene on PDAC progression and migration, and the expression of FEZ2 had guidance value for the treatment and chemotherapy program of PDAC patients.
Collapse
Affiliation(s)
- Chaozhi Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuebing Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chenjie Qiu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ziruo Zheng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kai Lin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Liu C, Yu H, Hou YH, Gao ZL, Zhang YJ. Clinical efficacy evaluation of Erlotinib Combined with Concurrent Chemoradiotherapy in the treatment of locally advanced Pancreatic Cancer. Pak J Med Sci 2022; 38:118-122. [PMID: 35035411 PMCID: PMC8713205 DOI: 10.12669/pjms.38.1.4150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Objective To evaluate the clinical effects of erlotinib combined with concurrent chemoradiotherapy in the treatment of locally advanced pancreatic cancer. Methods Eighty patients with locally advanced pancreatic cancer who attended Shijiazhuang People's Hospital or Anhui Cancer Hospital between January 2018 and January 2020 were randomly divided into two groups, with 40 cases in each group. Patients in the control group were treated with concurrent chemoradiotherapy, while those in the experimental group were treated with erlotinib tablets based on the treatment regimen of the control group. Anti-tumor efficacy evaluation was conducted for all patients in both groups, and the adverse drug reactions, improvement of performance status after treatment were compared and analyzed between the two groups. Results The overall response rate of the experimental group was 47.5%, which was significantly better than the 25% of the control group (p=0.03). The incidence of adverse drug reactions in the experimental group was 40%, while that in the control group was 30%. The incidence of adverse drug reactions in the experimental group was higher than that in the control group, but there was no statistical significance (p=0.34). Moreover, the improvement rate of performance status score in the experimental group was significantly higher than that in the control group (p=0.00). Conclusion Erlotinib combined with concurrent chemoradiotherapy has been preliminarily proved to be safe and effective in the treatment of locally advanced pancreatic cancer, which can improve the physical condition of patients to a certain extent without significantly increasing adverse reactions.
Collapse
Affiliation(s)
- Ci Liu
- Ci Liu, Department of Internal Medicine, Beijing Water Resources Hospital, Beijing, 100036, China
| | - Haobin Yu
- Haobin Yu, Dept. of Cancer Nutrition & Metabolic Therapy, No.3 Ward of Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei 230001, Anhui P.R. China
| | - Yue-Hong Hou
- Yue-hong Hou, Department of Oncology, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Zhen-Lin Gao
- Zhen-lin Gao, Department of Oncology, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Ya-Jing Zhang
- Ya-jing Zhang, Department of Oncology, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Hashimoto M, Konda JD, Perrino S, Celia Fernandez M, Lowy AM, Brodt P. Targeting the IGF-Axis Potentiates Immunotherapy for Pancreatic Ductal Adenocarcinoma Liver Metastases by Altering the Immunosuppressive Microenvironment. Mol Cancer Ther 2021; 20:2469-2482. [PMID: 34552012 PMCID: PMC8677570 DOI: 10.1158/1535-7163.mct-20-0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/13/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, resistant to chemotherapy and associated with high incidence of liver metastases and poor prognosis. Using murine models of aggressive PDAC, we show here that in mice bearing hepatic metastases, treatment with the IGF-Trap, an inhibitor of type I insulin-like growth factor receptor (IGF-IR) signaling, profoundly altered the local, immunosuppressive tumor microenvironment in the liver, curtailing the recruitment of myeloid-derived suppressor cells, reversing innate immune cell polarization and inhibiting metastatic expansion. Significantly, we found that immunotherapy with anti-PD-1 antibodies also reduced the growth of experimental PDAC liver metastases, and this effect was enhanced when combined with IGF-Trap treatment, resulting in further potentiation of a T-cell response. Our results show that a combinatorial immunotherapy based on dual targeting of the prometastatic immune microenvironment of the liver via IGF blockade, on one hand, and reversing T-cell exhaustion on the other, can provide a significant therapeutic benefit in the management of PDAC metastases.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - John David Konda
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Stephanie Perrino
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Celia Fernandez
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Centre at UC San Diego Health, La Jolla, California
| | - Pnina Brodt
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
- Department of Medicine, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Oncology, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Shafiekhani S, Dehghanbanadaki H, Fatemi AS, Rahbar S, Hadjati J, Jafari AH. Prediction of anti-CD25 and 5-FU treatments efficacy for pancreatic cancer using a mathematical model. BMC Cancer 2021; 21:1226. [PMID: 34781899 PMCID: PMC8594222 DOI: 10.1186/s12885-021-08770-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/09/2021] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with rising incidence and with 5-years overall survival of less than 8%. PDAC creates an immune-suppressive tumor microenvironment to escape immune-mediated eradication. Regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSC) are critical components of the immune-suppressive tumor microenvironment. Shifting from tumor escape or tolerance to elimination is the major challenge in the treatment of PDAC. RESULTS In a mathematical model, we combine distinct treatment modalities for PDAC, including 5-FU chemotherapy and anti- CD25 immunotherapy to improve clinical outcome and therapeutic efficacy. To address and optimize 5-FU and anti- CD25 treatment (to suppress MDSCs and Tregs, respectively) schedule in-silico and simultaneously unravel the processes driving therapeutic responses, we designed an in vivo calibrated mathematical model of tumor-immune system (TIS) interactions. We designed a user-friendly graphical user interface (GUI) unit which is configurable for treatment timings to implement an in-silico clinical trial to test different timings of both 5-FU and anti- CD25 therapies. By optimizing combination regimens, we improved treatment efficacy. In-silico assessment of 5-FU and anti- CD25 combination therapy for PDAC significantly showed better treatment outcomes when compared to 5-FU and anti- CD25 therapies separately. Due to imprecise, missing, or incomplete experimental data, the kinetic parameters of the TIS model are uncertain that this can be captured by the fuzzy theorem. We have predicted the uncertainty band of cell/cytokines dynamics based on the parametric uncertainty, and we have shown the effect of the treatments on the displacement of the uncertainty band of the cells/cytokines. We performed global sensitivity analysis methods to identify the most influential kinetic parameters and simulate the effect of the perturbation on kinetic parameters on the dynamics of cells/cytokines. CONCLUSION Our findings outline a rational approach to therapy optimization with meaningful consequences for how we effectively design treatment schedules (timing) to maximize their success, and how we treat PDAC with combined 5-FU and anti- CD25 therapies. Our data revealed that a synergistic combinatorial regimen targeting the Tregs and MDSCs in both crisp and fuzzy settings of model parameters can lead to tumor eradication.
Collapse
Affiliation(s)
- Sajad Shafiekhani
- Departments of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Biomedical Technologies and Robotics, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Dehghanbanadaki
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Sadat Fatemi
- Departments of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Biomedical Technologies and Robotics, Tehran, Iran
| | - Sara Rahbar
- Departments of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Biomedical Technologies and Robotics, Tehran, Iran
| | - Jamshid Hadjati
- Departments of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Homayoun Jafari
- Departments of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Biomedical Technologies and Robotics, Tehran, Iran.
| |
Collapse
|
9
|
Tang S, Huang X, Jiang H, Qin S. Identification of a Five-Gene Prognostic Signature Related to B Cells Infiltration in Pancreatic Adenocarcinoma. Int J Gen Med 2021; 14:5051-5068. [PMID: 34511988 PMCID: PMC8416334 DOI: 10.2147/ijgm.s324432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is an extremely malignant cancer. Immunotherapy is a promising avenue to increase the survival time of patients with PAAD. Methods RNA sequencing and clinical data for PAAD were downloaded from the TCGA database. The ssGSEA method and weighted gene co-expression network analysis were used to calculate the relative abundance of tumor-infiltrating immune cells and identify the related modules. Least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were used to construct a prognostic model. MCPcounter and EPIC were also used to assess immune cell components using gene expression profiles. Results The B cells closely related module was identified, and five genes, including ARID5A, CLEC2B, MICAL1, MZB1, and RAPGEF1, were ultimately selected to establish a prognostic signature to calculate the risk scores of PAAD patients. Kaplan–Meier curves showed worse survival in the high-risk patients (p < 0.05), and the area under the receiver operating characteristic (ROC) curves of risk score for 1-year and 3-year survival were 0.78 and 0.80, respectively, based on the training set. Similar results were verified using the validated and combined sets. Interestingly, the low-risk group presented significantly elevated immune and stromal scores, proportion of B cells, and associations between these five genes and B cells were identified using multiple methods including ssGSEA, MCPcounter, and EPIC. Conclusion This is the first attempt to study a B cells-related prognostic signature, which is instrumental in the exploration of novel prognostic biomarkers in PAAD.
Collapse
Affiliation(s)
- Shaomei Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiaoliang Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
10
|
Long noncoding RNA LINC00261 upregulates ITIH5 to impair tumorigenic ability of pancreatic cancer stem cells. Cell Death Discov 2021; 7:220. [PMID: 34446696 PMCID: PMC8390744 DOI: 10.1038/s41420-021-00575-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated tumor development in a range of different cancers, including pancreatic cancer (PC). Cancer stem cells (CSCs), a drug-resistant cancer cell subset, drive tumor progression in PC. In this work, we aimed to investigate the mechanism by which lncRNA LINC00261 affects the biological functions of CSCs during the progression of PC. Microarray analysis of differentially expressed genes and lncRNAs suggested that LINC00261 is downregulated in PC. Both LINC00261 and ITIH5 were confirmed to be downregulated in PC cells and PC stem cells. Gain-of-function and loss-of-function investigations were performed to analyze their effects on cell proliferation, drug resistance, cell cycle distribution, self-renewal, invasion, and ultimately overall tumorigenicity. These experiments revealed that the expression of stem cell markers was reduced, and cell proliferation, self-renewal ability, cell invasion, drug resistance, and tumorigenicity were all suppressed by upregulation of LINC00261 or ITIH5. The results of dual-luciferase reporter gene, ChIP, and RIP assays indicated that LINC00261 binds directly to GATA6, increasing its activity at the ITIH5 promoter. The presence of LINC00261 and GATA6 inhibited the self-renewal and tumorigenesis of PC stem cells, while silence of ITIH5 rescued those functions. Collectively, this study identifies the tumor suppressive activity of LINC00261 in PC, showing that this lncRNA limits the functions of PC stem through an ITIH5/GATA6 regulatory pathway.
Collapse
|
11
|
Olsson Hau S, Wahlin S, Cervin S, Falk V, Nodin B, Elebro J, Eberhard J, Moran B, Gallagher WM, Karnevi E, Jirström K. PRR11 unveiled as a top candidate biomarker within the RBM3-regulated transcriptome in pancreatic cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2021; 8:65-77. [PMID: 34379360 PMCID: PMC8682941 DOI: 10.1002/cjp2.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
The outlook for patients with pancreatic cancer remains dismal. Treatment options are limited and chemotherapy remains standard of care, leading to only modest survival benefits. Hence, there is a great need to further explore the mechanistic basis for the intrinsic therapeutic resistance of this disease, and to identify novel predictive biomarkers. RNA‐binding motif protein 3 (RBM3) has emerged as a promising biomarker of disease severity and chemotherapy response in several types of cancer, including pancreatic cancer. The aim of this study was to unearth RBM3‐regulated genes and proteins in pancreatic cancer cells in vitro, and to examine their expression and prognostic significance in human tumours. Next‐generation RNA sequencing was applied to compare transcriptomes of MIAPaCa‐2 cells with and without RBM3 knockdown. The prognostic value of differentially expressed genes (DEGs) was examined in The Cancer Genome Atlas (TCGA). Top deregulated genes were selected for further studies in vitro and for immunohistochemical analysis of corresponding protein expression in tumours from a clinically well‐annotated consecutive cohort of 46 patients with resected pancreatic cancer. In total, 19 DEGs (p < 0.01) were revealed, among which some with functions in cell cycle and cell division stood out; PDS5A (PDS cohesin associated factor A) as the top downregulated gene, CCND3 (cyclin D3) as the top upregulated gene, and PRR11 (proline rich 11) as being highly prognostic in TCGA. Silencing of RBM3 in MiaPaCa‐2 cells led to congruent alterations of PDS5A, cyclin D3, and PRR11 levels. High protein expression of PRR11 was associated with adverse clinicopathological features and shorter overall survival. Neither PDS5A nor cyclin D3 protein expression was prognostic. This study unveils several RBM3‐regulated genes with potential clinical relevance in pancreatic cancer, among which PRR11 shows the most consistent association with disease severity, at both transcriptome and protein levels.
Collapse
Affiliation(s)
- Sofie Olsson Hau
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sara Wahlin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sophie Cervin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Vilgot Falk
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jacob Elebro
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jakob Eberhard
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Bruce Moran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Emelie Karnevi
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Kemper M, Schiecke A, Maar H, Nikulin S, Poloznikov A, Galatenko V, Tachezy M, Gebauer F, Lange T, Riecken K, Tonevitsky A, Aigner A, Izbicki J, Schumacher U, Wicklein D. Integrin alpha-V is an important driver in pancreatic adenocarcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:214. [PMID: 34174926 PMCID: PMC8235815 DOI: 10.1186/s13046-021-01946-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/13/2021] [Indexed: 01/10/2023]
Abstract
Background Mesothelial E- and P-selectins substantially mediate the intraperitoneal spread of Pancreatic ductal adenocarcinoma (PDA) cells in xenograft models. In the absence of selectins in the host, the integrin subunit alpha-V (ITGAV, CD51) was upregulated in the remaining metastatic deposits. Here we present the first experimental study to investigate if ITGAV plays a functional role in PDA tumor growth and progression with a particular focus on intraperitoneal carcinomatosis. Methods Knockdown of ITGAV was generated using an RNA interference-mediated approach in two PDA cell lines. Tumor growth, intraperitoneal and distant metastasis were analyzed in a xenograft model. Cell lines were characterized in vitro. Gene expression of the xenograft tumors was analyzed. Patient samples were histologically classified and associations to survival were evaluated. Results The knockdown of ITGAV in PDA cells strongly reduces primary tumor growth, peritoneal carcinomatosis and spontaneous pulmonary metastasis. ITGAV activates latent TGF-β and thereby drives epithelial-mesenchymal transition. Combined depletion of ITGAV on the tumor cells and E- and P-selectins in the tumor-host synergistically almost abolishes intraperitoneal spread. Accordingly, high expression of ITGAV in PDA cells was associated with reduced survival in patients. Conclusion Combined depletion of ITGAV in PDA cells and E- and P-selectins in host mice massively suppresses intraperitoneal carcinomatosis of PDA cells xenografted into immunodeficient mice, confirming the hypothesis of a partly redundant adhesion cascade of metastasizing cancer cells. Our data strongly encourage developing novel therapeutic approaches for the combined targeting of E- and P-selectins and ITGAV in PDA. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01946-2.
Collapse
Affiliation(s)
- Marius Kemper
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,Institute of Anatomy and Experimental Morphology, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Alina Schiecke
- Institute of Anatomy and Experimental Morphology, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergey Nikulin
- Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Andrey Poloznikov
- Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Florian Gebauer
- Department of General, Visceral and Tumor Surgery, University Hospital Cologne, Köln, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, Higher School of Economics University, Moscow, Russia
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jakob Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Ma D, Chen S, Wang H, Wei J, Wu H, Gao H, Cheng X, Liu T, Luo SH, Zhao Y, Song G. Baicalein Induces Apoptosis of Pancreatic Cancer Cells by Regulating the Expression of miR-139-3p and miR-196b-5p. Front Oncol 2021; 11:653061. [PMID: 33996574 PMCID: PMC8120266 DOI: 10.3389/fonc.2021.653061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is a common malignant tumor with a high incidence and mortality rate. The prognosis of patients with pancreatic cancer is considerably poor due to the lack of effective treatment in clinically. Despite numerous studies have revealed that baicalein, a natural product, is responsible for suppressing multiple cancer cells proliferation, motility and invasion. The mechanism by which baicalein restraining pancreatic cancer progression remains unclear. In this study, we firstly verified that baicalein plays a critical role in inhibiting pancreatic tumorigenesis in vitro and in vivo. Then we analyzed the alteration of microRNAs (miRNAs) expression levels in Panc-1 cells incubated with DMSO, 50 and 100 μM baicalein by High-Throughput sequencing. Intriguingly, we observed that 20 and 39 miRNAs were accordingly up- and down-regulated through comparing Panc-1 cells exposed to 100 μM baicalein with the control group. Quantitative PCR analysis confirmed that miR-139-3p was the most up-regulated miRNA after baicalein treatment, while miR-196b-5p was the most down-regulated miRNA. Further studies showed that miR-139-3p induced, miR-196b-5p inhibited the apoptosis of Panc-1 cells via targeting NOB1 and ING5 respectively. In conclusion, we demonstrated that baicalein is a potent inhibitor against pancreatic cancer by modulating the expression of miR-139-3p or miR-196b-5p.
Collapse
Affiliation(s)
- Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Hong Gao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shi-Hua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| |
Collapse
|
14
|
Mei S, Ma H, Chen X. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem Toxicol 2021; 149:111997. [DOI: 10.1016/j.fct.2021.111997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
|
15
|
Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:72. [PMID: 33608497 PMCID: PMC7896069 DOI: 10.1038/s41392-020-00449-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/31/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Despite great success in cancer immunotherapy, immune checkpoint-targeting drugs are not the most popular weapon in the armory of cancer therapy. Accumulating evidence suggests that the tumor immune microenvironment plays a critical role in anti-cancer immunity, which may result in immune checkpoint blockade therapy being ineffective, in addition to other novel immunotherapies in cancer patients. In the present review, we discuss the deficiencies of current cancer immunotherapies. More importantly, we highlight the critical role of tumor immune microenvironment regulators in tumor immune surveillance, immunological evasion, and the potential for their further translation into clinical practice. Based on their general targetability in clinical therapy, we believe that tumor immune microenvironment regulators are promising cancer immunotherapeutic targets. Targeting the tumor immune microenvironment, alone or in combination with immune checkpoint-targeting drugs, might benefit cancer patients in the future.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Zhengtao Hong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Pacheco-Torres J, Penet MF, Mironchik Y, Krishnamachary B, Bhujwalla ZM. The PD-L1 metabolic interactome intersects with choline metabolism and inflammation. Cancer Metab 2021; 9:10. [PMID: 33608051 PMCID: PMC7893974 DOI: 10.1186/s40170-021-00245-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance. An expanded understanding of how cancer metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1. Methods We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines (Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic levels. The findings were compared with the results obtained by the analysis of public data from The Cancer Genome Atlas Program. Results We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth factor beta (TGF-β) play an important role in this relationship. We independently confirmed this relationship in human cancers by analyzing data from The Cancer Genome Atlas Program. Conclusions Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1 regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-β. The observations provide new insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and cancer metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00245-w.
Collapse
Affiliation(s)
- Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA. .,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Rizzo A, Brandi G. First-line Chemotherapy in Advanced Biliary Tract Cancer Ten Years After the ABC-02 Trial: "And Yet It Moves!". Cancer Treat Res Commun 2021; 27:100335. [PMID: 33592561 DOI: 10.1016/j.ctarc.2021.100335] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Biliary tract cancers (BTCs) include a heterogeneous group of highly aggressive hepatobiliary malignancies, representing the 3% of all gastrointestinal cancers and the second most frequent type of primary liver cancer after hepatocellular carcinoma. Ten years after the publication of the phase III, randomized, ABC-02 trial, the combination of cisplatin plus gemcitabine remains the standard first-line treatment for patients with advanced BTC. In the last decade, a large number of attempts has been made to improve the efficacy of the reference doublet by using novel drugs or adding a third agent to cisplatin-gemcitabine. Unfortunately, despite the addition of different cytotoxic drugs failed to improve clinical outcomes in several studies, recently published clinical trials have provided interesting results, and other first-line chemotherapy options are currently under investigation in randomized phase III studies. Moreover, recent years have witnessed the parallel emergence of molecularly targeted therapies and immune checkpoint inhibitors, with these novel agents having the potential to revolutionize the therapeutic algorithm of advanced BTC. In this review, we will provide an overview on first-line therapeutic opportunities currently available in the management of advanced BTCs, especially focusing on recently published data and ongoing clinical trials in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 15 Bologna, Italy.
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 15 Bologna, Italy
| |
Collapse
|
18
|
Abstract
Pancreatic cancer is a tumor with a high degree of malignancy, morbidity, and mortality. Immunotherapy is another important treatment for pancreatic cancer in addition to surgery and chemotherapy, but its application in pancreatic cancer is very limited, which is related to the unique biological behavior of pancreatic cancer and the tumor microenvironment. The immunosuppressive microenvironment of pancreatic cancer is highly heterogeneous and presents challenges for immunotherapy. The transformation of tumor immunosuppressive microenvironment contributes to the response to tumor immunotherapy, such that the tumor undergoes functional reprogramming to change from immunologically "cold" to immunologically "hot." In this review, we summarized the research and progress in immunotherapy for pancreatic cancer, including immune checkpoint inhibitors, vaccines, adoptive T cell therapy, oncolytic viruses, and immunomodulators, and suggest that individualized, combination, and precise therapy should be the main direction of future immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Jia Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
19
|
Huang X, Tang T, Zhang G, Hong Z, Xu J, Yadav DK, Bai X, Liang T. Genomic investigation of co-targeting tumor immune microenvironment and immune checkpoints in pan-cancer immunotherapy. NPJ Precis Oncol 2020; 4:29. [PMID: 33299118 PMCID: PMC7666137 DOI: 10.1038/s41698-020-00136-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Drugs that target immune checkpoints (ICPs) have become the most popular weapons in cancer immunotherapy; however, they are only beneficial for a small fraction of patients. Accumulating evidence suggests that the tumor immune microenvironment (TIME) plays a critical role in anti-cancer immunity. This study aimed to assess the potential merits and feasibility of combinational targeting ICPs and TIME in cancer immunotherapy. A total of 31 cancer type-specific datasets in TCGA were individually collected by the publicly available web servers for multiple bioinformatic analyses of ICPs and TIME factors. GEPIA was used to calculate the prognostic indexes, STRING was used to construct protein-protein interactions, cBioPortal was used for visualization and comparison of genetic alterations, and TISIDB was used to explore the correlation to tumor-infiltrating lymphocytes (TILs). Intriguingly, TIME factors were identified to have more global coverage and prognostic significance across multiple cancer types compared with ICPs, thus offering more general targetability in clinical therapy. Moreover, TIME factors showed interactive potential with ICPs, and genomic alteration of TIME factors coupled with that of ICPs, at least in pancreatic cancer. Furthermore, TIME factors were found to be significantly associated with TILs, including but not limited to pancreatic cancer. Finally, the clinical significance and translational potential of further combination therapies that incorporate both ICP inhibitors and TIME factor-targeted treatments were discussed. Together, TIME factors are promising immunotherapeutic targets, and a combination strategy of TIME factors-targeted therapies with ICP inhibitors may benefit more cancer patients in the future.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, 310003, Zhejiang, China.
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Zhengtao Hong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Jian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Dipesh Kumar Yadav
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, 310003, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
20
|
The Pancreatic Microbiome is Associated with Carcinogenesis and Worse Prognosis in Males and Smokers. Cancers (Basel) 2020; 12:cancers12092672. [PMID: 32962112 PMCID: PMC7565819 DOI: 10.3390/cancers12092672] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The cancer microbiome has been suggested to be closely involved in the immune dysregulation that leads to carcinogenesis. Given that pancreatic adenocarcinoma (PAAD) is one of the most lethal cancers, it is important to identify features of the microbiome that may contribute to more deadly PAAD tumors. In this study, we analyzed PAAD patient RNA-sequencing data from The Cancer Genome Atlas (TCGA) to correlate abundance of intra-pancreatic microbes to dysregulation of immune and cancer-associated genes and pathways. We discovered that the presence of several bacteria species within PAAD tumors is linked to metastasis and immune suppression. Furthermore, we found that the increased prevalence and poorer prognosis of PAAD in males and smokers are linked to the presence of potentially cancer-promoting or immune-inhibiting microbes. Further study into the roles of these microbes in PAAD is imperative for understanding how a pro-tumor microenvironment may be treated to limit cancer progression. Abstract An intra-pancreatic microbiota was recently discovered in several prominent studies. Since pancreatic adenocarcinoma (PAAD) is one of the most lethal cancers worldwide, and the intratumor microbiome was found to be a significant contributor to carcinogenesis in other cancers, this study aims to characterize the PAAD microbiome and elucidate how it may be associated with PAAD prognosis. We further explored the association between the intra-pancreatic microbiome and smoking and gender, which are both risk factors for PAAD. RNA-sequencing data from The Cancer Genome Atlas (TCGA) were used to infer microbial abundance, which was correlated to clinical variables and to cancer and immune-associated gene expression, to determine how microbes may contribute to cancer progression. We discovered that the presence of several bacteria species within PAAD tumors is linked to metastasis and immune suppression. This is the first large-scale study to report microbiome-immune correlations in human pancreatic cancer samples. Furthermore, we found that the increased prevalence and poorer prognosis of PAAD in males and smokers are linked to the presence of potentially cancer-promoting or immune-inhibiting microbes. Further study into the roles of these microbes in PAAD is imperative for understanding how a pro-tumor microenvironment may be treated to limit cancer progression.
Collapse
|
21
|
Chen Y, Wang L, Luo S, Hu J, Huang X, Li PW, Zhang Y, Wu C, Tian BL. Enhancement of Antitumor Efficacy of Paclitaxel-Loaded PEGylated Liposomes by N,N-Dimethyl Tertiary Amino Moiety in Pancreatic Cancer. Drug Des Devel Ther 2020; 14:2945-2957. [PMID: 32801636 PMCID: PMC7398872 DOI: 10.2147/dddt.s261017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction Pancreatic cancer, or pancreatic duct adenocarcinoma (PDAC), remains one of the most lethal cancers and features insidious onset, highly aggressive behavior and early distant metastasis. The dense fibrotic stroma surrounding tumor cells is thought to be a shield to resist the permeation of chemotherapy drugs in the treatment of PDAC. Thus, we synthesized a pancreas-targeting paclitaxel-loaded PEGylated liposome and investigated its antitumor efficacy in the patient-derived orthotopic xenograft (PDOX) nude mouse models of PDAC. Methods The PTX-loaded PEGylated liposomes were prepared by film dispersion-ultrasonic method and modified by an N,N-dimethyl tertiary amino residue. Morphology characteristics of the PTX-loaded liposomes were observed by transmission electron microscope (TEM). The PDOX models of PDAC were established by orthotopic implantation and imaged by a micro positron emission tomography/computed tomography (PET/CT) imaging system. The in vivo distribution and antitumor study were then carried out to observe the pancreas-targeting accumulation and the antitumor efficacy of the proposed PTX liposomes. Results PTX loaded well into both modified (PTX-Lip2N) and unmodified (PTX-Lip) PEGylated liposomes with spherical shapes and suitable parameters for the endocytosis process. The PDOX nude mouse models were successfully created in which high 18F-FDG intaking regions were observed by micro-PET/CT. In addition to higher cellular uptakes of PTX-Lip2N by the BxPC-3 cells, the proposed nanoparticle had a notable penetrating ability towards PDAC tumor tissues, and consequently, the antitumor ability of PTX-Lip2N was significantly superior to the unmodified PTX-Lip in vivo PDOX models and even more effective than nab-PTX in restraining tumor growth. Conclusion The modified pancreas-targeting PTX-loaded PEGylated liposomes provide a promising platform for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Li Wang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Shi Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jun Hu
- Laboratory of Basic Scientific Research, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Pei-Wen Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Zhang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Chao Wu
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Bo-Le Tian
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| |
Collapse
|
22
|
Chen YM, Qi S, Perrino S, Hashimoto M, Brodt P. Targeting the IGF-Axis for Cancer Therapy: Development and Validation of an IGF-Trap as a Potential Drug. Cells 2020; 9:cells9051098. [PMID: 32365498 PMCID: PMC7290707 DOI: 10.3390/cells9051098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF)-axis was implicated in cancer progression and identified as a clinically important therapeutic target. Several IGF-I receptor (IGF-IR) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signaling and compensatory signaling by the insulin receptor (IR) isoform A that can bind IGF-II and initiate mitogenic signaling. Here we briefly review the current state of IGF-targeting biologicals, discuss some factors that may be responsible for their poor performance in the clinic and outline the stepwise bioengineering and validation of an IGF-Trap—a novel anti-cancer therapeutic that could bypass these limitations. The IGF-Trap is a heterotetramer, consisting of the entire extracellular domain of the IGF-IR fused to the Fc portion of human IgG1. It binds human IGF-I and IGF-II with a three-log higher affinity than insulin and could inhibit IGF-IR driven cellular functions such as survival, proliferation and invasion in multiple carcinoma cell models in vitro. In vivo, the IGF-Trap has favorable pharmacokinetic properties and could markedly reduce metastatic outgrowth of colon and lung carcinoma cells in the liver, outperforming IGF-IR and ligand-binding monoclonal antibodies. Moreover, IGF-Trap dose-response profiles correlate with their bio-availability profiles, as measured by the IGF kinase receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. Our studies identify the IGF-Trap as a potent, safe, anti-cancer therapeutic that could overcome some of the obstacles encountered by IGF-targeting biologicals that have already been evaluated in clinical settings.
Collapse
Affiliation(s)
- Yinhsuan Michely Chen
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Shu Qi
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Stephanie Perrino
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Masakazu Hashimoto
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Pnina Brodt
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence: ; Tel.: +1-514-934-1934
| |
Collapse
|
23
|
Abstract
The current therapies against cancer showed limited success. Nanotechnology is a promising strategy for cancer tracking, diagnosis, and therapy. The hybrid nanotechnology assembled several materials in a multimodal system to develop multifunctional approaches to cancer treatment. The quantum dot and polymer are some of these hybrid nanoparticle platforms. The quantum dot hybrid system possesses photonic and magnetic properties, allowing photothermal therapy and live multimodal imaging of cancer. These quantum dots were used to convey medicines to cancer cells. Hybrid polymer nanoparticles were utilized for the systemic delivery of small interfering RNA to malignant tumors and metastasis. They allowed non-invasive imaging to track in real-time the biodistribution of small interfering RNA in the whole body. They offer an opportunity to treat cancers by specifically silencing target genes. This review highlights the major nanotechnology approaches to effectively treat cancer and metastasis.
Collapse
|
24
|
Köstek O, Demir T. Sarcopenia and Inflammation with Immunotherapy. Oncologist 2020; 25:e875. [PMID: 32191391 DOI: 10.1634/theoncologist.2019-1005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Osman Köstek
- Edirne Sultan I. Murat State Hospital, Clinic of Medical Oncology, Edirne, Turkey
| | - Tarık Demir
- Haydarpaşa Numune Training and Research Hospital, Clinic of Medical Oncology, İstanbul, Turkey
| |
Collapse
|
25
|
Yamazaki T, Buqué A, Ames TD, Galluzzi L. PT-112 induces immunogenic cell death and synergizes with immune checkpoint blockers in mouse tumor models. Oncoimmunology 2020; 9:1721810. [PMID: 32117585 PMCID: PMC7028345 DOI: 10.1080/2162402x.2020.1721810] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
PT-112 is a novel platinum-pyrophosphate conjugate under clinical development for cancer therapy. PT-112 mediates cytostatic and cytotoxic effects against a variety of human and mouse cancer cell lines in vitro. The cytotoxic response to PT-112 is associated with the emission of danger signals underpinning the initiation of anticancer immunity, including calreticulin exposure on the surface of dying cells, as well as ATP and HMGB1 secretion. Consistently, mouse cancer cells succumbing to PT-112 in vitro can be used to provide syngeneic, immunocompetent mice with immunological protection against a subsequent challenge with living tumor cells of the same type. Moreover, PT-112 administration synergizes with PD-1 or PD-L1 blockade in the control of mouse cancers in immunologically competent settings, as it simultaneously recruits immune effector cells and depletes immunosuppressive cells in the tumor microenvironment. Finally, PT-112 employed intratumorally in the context of immune checkpoint inhibition initiates a robust immune response that has systemic outreach and limits the growth of untreated, distant lesions. Thus, PT-112 induces the immunogenic demise of cancer cells, and hence stands out as a promising combinatorial partner of immune checkpoint blockers, especially for the treatment of otherwise immunologically cold tumors.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| |
Collapse
|
26
|
Hu C, Xu Z, Chen S, Lv H, Wang Y, Wang X, Mo S, Shi C, Wei S, Hu L, Chen W, Cheng X. Overexpression of B7H5/CD28H is associated with worse survival in human gastric cancer. J Cell Mol Med 2020; 24:1360-1369. [PMID: 31883303 PMCID: PMC6991633 DOI: 10.1111/jcmm.14812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is a common malignancy with low 5-year overall survival (OS). Recently, immune therapy has been used to treat cancer. B7H5 and CD28H are novel immune checkpoint molecules. However, the prognostic value of B7H5/CD28H expression in patients with GC remains unclear. In this study, seventy-one patients diagnosed with GC were included in this study. Patients' GC tissues and matched adjacent tissue constructed a tissue microarray. The expression levels of B7H5 and CD28H were examined using immunohistochemistry. Correlations between the expression of B7H5 and CD28H and the clinical data were evaluated. We found that the expression of B7H5 and CD28H (both P = .001) were higher in GC tumour tissues than in adjacent noncancerous tissues. B7H5/CD28H expression acted as an independent predictive factor in the OS of patients with GC. High expression of B7H5 and CD28H predicted poor outcome. Patients in the B7H5+CD28H+ group had a lower 5-year OS compared with patients in the B7H5-CD28- group (4.5% vs 55.6%, P = .001). A significant difference was found in the 5-year OS between patients in the B7H5+CD28H- and B7H5+CD28H+ groups (33.5% vs 4.5%, P = .006). However, there was no correlation between B7H5 and CD28H expression (P = .844). Therefore, B7H5 and CD28H expression are up-regulated in GC and are independent prognostic factors for overall survival in patients with GC. Although there was no correlation between B7H5 and CD28H expression, high expression of B7H5 and CD28H predicts poor prognosis, especially when both are highly expressed.
Collapse
Affiliation(s)
- Can Hu
- First Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyuan Xu
- Department of Abdominal SurgeryZhejiang Cancer HospitalHangzhouZhejiangChina
| | - Shangqi Chen
- First Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Hang Lv
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System TumorHangzhouZhejiangChina
| | - Yiping Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System TumorHangzhouZhejiangChina
| | - Xiaofeng Wang
- First Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Shaowei Mo
- First Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Chengwei Shi
- First Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Shenyu Wei
- First Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Liqiang Hu
- Cancer Institute of Integrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Xiangdong Cheng
- Department of Abdominal SurgeryZhejiang Cancer HospitalHangzhouZhejiangChina
| |
Collapse
|
27
|
Zang HL, Huang GM, Ju HY, Tian XF. Integrative analysis of the inverse expression patterns in pancreas development and cancer progression. World J Gastroenterol 2019; 25:4727-4738. [PMID: 31528097 PMCID: PMC6718033 DOI: 10.3748/wjg.v25.i32.4727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As the malignant tumor, pancreatic cancer with a meager 5-years survival rate has been widely concerning. However, the molecular mechanisms that result in malignant transformation of pancreatic cells remain elusive.
AIM To investigate the gene expression profiles in normal or malignant transformed pancreas development.
METHODS MaSigPro and ANOVA were performed on two pancreas development datasets downloaded from the Gene Expression Omnibus database. Six pancreatic cancer datasets collected from TCGA database were used to establish differentially expressed genes related to pancreas development and pancreatic cancer. Moreover, gene clusters with highly similar interpretation patterns between pancreas development and pancreatic cancer progression were established by self-organizing map and singular value decomposition. Additionally, the hypergeometric test was performed to compare the corresponding interpretation patterns. Abnormal regions of metabolic pathway were analyzed using the Sub-pathway-GM method.
RESULTS This study established the continuously upregulated and downregulated genes at different stages in pancreas development and progression of pancreatic cancer. Through analysis of the differentially expressed genes, we established the inverse and consistent direction development-cancer pattern associations. Based on the application of the Subpathway-GM analysis, we established 17 significant metabolic sub-pathways that were closely associated with pancreatic cancer. Of note, the most significant metabolites sub-pathway was related to glycerophospholipid metabolism.
CONCLUSION The inverse and consistent direction development-cancer pattern associations were established. There was a significant correlation in the inverse patterns, but not consistent direction patterns.
Collapse
Affiliation(s)
- Hong-Liang Zang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guo-Min Huang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Hai-Ying Ju
- Department of Hematology, Jilin Province Blood Center, Changchun 130000, Jilin Province, China
| | - Xiao-Feng Tian
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
28
|
Yan H, Qiu W, Koehne de Gonzalez AK, Wei JS, Tu M, Xi CH, Yang YR, Peng YP, Tsai WY, Remotti HE, Miao Y, Su GH. HHLA2 is a novel immune checkpoint protein in pancreatic ductal adenocarcinoma and predicts post-surgical survival. Cancer Lett 2018; 442:333-340. [PMID: 30447255 DOI: 10.1016/j.canlet.2018.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
HHLA2 is a newly identified member of the B7 immune checkpoint family, but its function and crosstalk with immune cells is not fully understood. To gain insights into the HHLA2 expression profile and to determine the clinical significance and function of HHLA2 in pancreatic cancer, we performed immunohistochemistry (IHC) analyses on tissue microarrays (TMAs) of pancreatic ductal adenocarcinoma (PDAC, n = 92) with matched peritumoral tissues as well as in cohorts of precancerous lesions: pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN). We found that HHLA2 was rarely detected in normal acinar, islet, and ductal cells but widely expressed from early pancreatic precancerous lesions to invasive PDAC. The overall HHLA2 positivity was 95% (19/20) in low grade PanIN and 70.73% (29/41) in IPMN. HHLA2 expression was detected in 77.17% (71/92) of the PDAC cases and was significantly associated with better prognosis in this cohort. Our findings suggest that HHLA2 may behave as a costimulatory ligand in pancreatic cancer, which differs from other B7 family members that are largely characterized as checkpoint inhibitors. Further investigation of the HHLA2 signaling pathway and its receptors is warranted by our data and may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Han Yan
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA; Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wanglong Qiu
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anne K Koehne de Gonzalez
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ji-Shu Wei
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Min Tu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Chun-Hua Xi
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA; Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ye-Ran Yang
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Yun-Peng Peng
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wei-Yann Tsai
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helen E Remotti
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA; Pancreas Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Gloria H Su
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA; Department of Otolaryngology and Head & Neck Surgery, Columbia University Medical Center, New York, NY, 10032, USA; Pancreas Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
29
|
Pu N, Zhao G, Yin H, Li JA, Nuerxiati A, Wang D, Xu X, Kuang T, Jin D, Lou W, Wu W. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer. J Transl Med 2018; 16:294. [PMID: 30359281 PMCID: PMC6203282 DOI: 10.1186/s12967-018-1673-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The prognosis of pancreatic ductal adenocarcinoma (PDAC) remains poor due to the difficulty of disease diagnosis and therapy. Immunotherapy has had robust performance against several malignancies, including PDAC. In this study, we aim to analyze the expression of CD8 and FoxP3 on T lymphocytes and TGF-β expression in tumor tissues, and then analyze the possible clinical significance of these finding in order to find a novel effective immunotherapy target in PDAC using a murine model. METHODS A tissue microarray using patient PDAC samples was stained and analyzed for associations with clinicopathological characteristics. A preclinical murine model administrated with various immunotherapies were analyzed by growth inhibitor, flow cytometry, enzyme-linked immuno sorbent assay and immunohistochemistry. RESULTS The infiltrating FoxP3+ regulatory T cells (Tregs) in tumor tissues were associated with survival, while CD8+ tumor infiltrating lymphocytes (TILs) were not. Considering the drawbacks of these measure alone, the number of CD8+ and FoxP3+ T cells were combined to create a new estimated value-integrated immune ratio (IIR), which showed excellent validity in survival risk stratification. IIR was further verified as an independent prognostic factor according to multivariate analysis as well as TGF-β expression. Association between TGF-β expression and infiltrating Tregs was also verified. Then, in our preclinical murine model, CD25 and TGF-β combination blockade had a higher tumor growth inhibitor value. This combination therapy significantly depleted periphery and intra-tumor FoxP3+ Tregs while increasing intra-tumor CD8+ TILs levels compared to controls or anti-TGF-β monotherapy (p < 0.05). Anti-CD25 monotherapy alone also had the ability to deplete periphery and intra-tumor Tregs (p < 0.05). The excretion of intra-tumor IL-10, TGF-β was notably lower but higher IFN-γ excretion in this combination immunotherapy. Such combination immunotherapy was further confirmed to synergize with anti-PD-1 monotherapy to improve tumor growth inhibition and cure rates. CONCLUSIONS The combination of CD25, TGF-β and PD-1 blockade plays a potentially effective role in inhibiting tumor formation and progression. Our results also provide a strong rational strategy for use of IIR in future immunotherapy clinical trials.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian-Ang Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Abulimiti Nuerxiati
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
30
|
An Extremely Rapid Case of Pneumonitis with the Use of Nivolumab for Pancreatic Adenocarcinoma. Case Rep Oncol Med 2018; 2018:6314392. [PMID: 29808141 PMCID: PMC5902098 DOI: 10.1155/2018/6314392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is the fourth most common cancer death in the United States despite comprising a small percentage of the total number of cancer cases. The estimated 5-year overall survival (OS) for patients with distant metastatic disease is approximately 3%. New treatment options are an unmet need and remain an area of active investigation. A 53-year-old male with metastatic pancreatic cancer presented to the hospital with acute-on-chronic respiratory failure approximately 24 hours after receiving a novel therapeutic combination. Chest imaging showed marked changes as concerning for pneumonitis. Infectious workup was negative. The patient had initial clinical improvement after receiving initial intravenous steroids and oxygen support but eventually deteriorated later opting for supportive measures only. With infection ruled out, drug-induced pneumonitis was felt to be the likely cause of the radiologic and clinical changes. The rapidity of onset of symptoms is the aspect being highlighted in this case.
Collapse
|
31
|
Guo W, Zhong K, Wei H, Nie C, Yuan Z. Long non-coding RNA SPRY4-IT1 promotes cell proliferation and invasion by regulation of Cdc20 in pancreatic cancer cells. PLoS One 2018; 13:e0193483. [PMID: 29489909 PMCID: PMC5831108 DOI: 10.1371/journal.pone.0193483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/12/2018] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) play a critical role in the development of human cancers including pancreatic cancer. Long non-coding RNA SPRY4-IT1 (sprouty4-intron transcript 1) has been reported to play an oncogenic role in various types of human carcinomas. However, the role of SPRY4-IT1 in pancreatic cancer is unclear. The objective of this study was to determine the function of SPRY4-IT1 on proliferation and invasion in pancreatic cancer. In the current study, we dissected the function and mechanism of SPRY4-IT1 by multiple approaches including Real-time RT-PCR, Western blotting analysis, MTT assay, Wound healing assay, Transwell assay, and transfection. We found that down-regulation of SPRY4-IT1 inhibited cell growth and induced cell apoptosis in pancreatic cancer cells. Moreover, SPRY4-IT1 knockdown induced cell cycle arrest at G0/G1 phase. Furthermore, inhibition of SPRY4-IT1 retarded cell migration and invasion in pancreatic cancer cells. Overexpression of SPRY4-IT1 enhanced cell growth and invasion, and inhibited cell apoptosis in pancreatic cancer cells. Mechanistically, suppression of SPRY4-IT1 inhibited the expression of Cdc20 in pancreatic cancer cells. Our findings demonstrated that inhibition of SPRY4-IT1 could be a potential therapeutic approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenhao Guo
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Kunhong Zhong
- Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Heng Wei
- Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Chunlai Nie
- Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhu Yuan
- Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
32
|
Zhang J, Wang Y, Wu B, Zhong Z, Wang K, Yang L, Wang Y, Li Y, Gao J, Li Z. Intraepithelial Attack Rather than Intratumorally Infiltration of CD8+T Lymphocytes is a Favorable Prognostic Indicator in Pancreatic Ductal Adenocarcinoma. Curr Mol Med 2017; 17:689-698. [PMID: 29521231 PMCID: PMC6416191 DOI: 10.2174/1566524018666180308115705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) are one of the major participants in the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of interaction between TILs and tumors is complex and remains unclear. OBJECTIVE To evaluate the state of immunoreactions in PDAC tissues, and explore the prognostic value of these markers in a large sample, to provide a new theoretical basis for PDAC immunotherapy. METHOD Immunohistochemical staining of CD4+ and CD8+T cells was performed in a tissue microarray (TMA) of 143 cases of PDAC. Two major variables for the spatial distributions of CD4+T and CD8+T cells in PDAC tissues, intraepithelial attack and intratumoral infiltration, were used to evaluate the state of immunoreactions, and the interrelationships with the clinicopathological variables were analyzed. RESULTS Our data showed that both the intraepithelial CD4+T and CD8+T attack were less frequent than the intratumoral infiltration. CD8+T intraepithelial attack and intratumoral infiltration were more intense than CD4+T. CD8+T intraepithelial attack was an independent favorable prognostic factor for overall survival, correlating negatively with vascular invasion and positively with CD4+T and CD8+T high intratumoral infiltration. CD8+T high intratumoral infiltration without CD8+T intraepithelial attack was a poor prognostic factor. CD8+T high intratumoral infiltration was accompanied by T stage progression. Conclusively, in PDAC progression, imbalances of T cells occurred in CD4+ and CD8+ immunoreactions. The CD8+T intraepithelial attack was an independent favorable prognostic indicator, however the intraepithelial attack of CD4+T and the both intratumoral infiltration of CD8+T and CD4+T played an ambiguous role. CONCLUSION Our data suggested that it is a potential approach to increasing the number of intraepithelial attacking CD8+T cells for tumor immunotherapy, and exploring a new mechanism for immunosuppression in a tumor microenvironment with high T cell infiltration without attack.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - J. Gao
- Address correspondence to these authors at the Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; Tel: +8613816012151; E-mails: (J. Gao) , (Z.S. Li)
| | - Z.S. Li
- Address correspondence to these authors at the Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; Tel: +8613816012151; E-mails: (J. Gao) , (Z.S. Li)
| |
Collapse
|