1
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Unlocking Immunity: Innovative prostate cancer vaccine strategies. Int Immunopharmacol 2024; 142:113137. [PMID: 39276448 DOI: 10.1016/j.intimp.2024.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Prostate Cancer (PCa) is a leading cause of cancer-related mortality in men, especially in Western societies. The objective of this research is to address the unmet need for effective treatments in advanced or recurrent PCa, where current strategies fall short of offering a cure. The focus is on leveraging immunotherapy and cancer vaccines to target the tumor's unique immunological microenvironment. MAIN RESULTS Despite immunotherapy's success in other cancers, its effectiveness in PCa has been limited by the tumor's immunosuppressive characteristics. However, cancer vaccines that engage Tumor-Specific Antigens (TSA) and Tumor-Associated Antigens (TAA) have emerged as a promising approach. Preclinical and clinical investigations of Dendritic Cell (DC) vaccines, DNA vaccines, mRNA vaccines, peptide vaccines, and viral vectors have shown their potential to elicit anti-tumor immune responses. The exploration of combination therapies with immune checkpoint inhibitors and the advent of novel adjuvants and oral microparticle vaccines present innovative strategies to improve efficacy and compliance. CONCLUSION The development of cancer vaccines for PCa holds significant potential. Future directions include optimizing vaccine design, refining combination therapy strategies, and creating patient-friendly administration methods. The integration of interdisciplinary knowledge and innovative clinical trial designs is essential for advancing personalized and precision immunotherapy for PCa.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing 211500, Jiangsu, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211198, Jiangsu Province, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, 211103, Jiangsu Province, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Chavda VP, Patel AB, Vora LK, Apostolopoulos V, Uhal BD. Dendritic cell-based vaccine: the state-of-the-art vaccine platform for COVID-19 management. Expert Rev Vaccines 2022; 21:1395-1403. [PMID: 35929957 DOI: 10.1080/14760584.2022.2110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A correlation between new coronaviruses and host immunity, as well as the role of defective immune function in host response, would be extremely helpful in understanding coronavirus disease (COVID-19) pathogenicity, and a coherent structure of treatments and vaccines. As existing vaccines may be inadequate for new viral variants emerging in various regions of the world, it is a vital requirement for fresh and effective therapeutic alternatives. AREA COVERED Immunotherapy may give a viable protective option for COVID-19, a disease that is currently a big burden on global health and economic systems. Herein, we have outlined three dendritic cell (DC)-based vaccines for COVID-19 which are in human clinical trials and have shown encouraging outcomes. EXPERT OPINION With existing knowledge of the virus, and the nature of DC, DC-based vaccines may be proven to be effective in inducing long-lasting protective immunity, especially T cell responses.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Aayushi B Patel
- Pharmacy Section, LM College of Pharmacy, Ahmedabad - 380058, Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Guo L, Kang Y, Xia D, Ren Y, Yang X, Xiang Y, Tang L, Ren D, Yu J, Wang J, Liang T. Characterization of Immune-Based Molecular Subtypes and Prognostic Model in Prostate Adenocarcinoma. Genes (Basel) 2022; 13:1087. [PMID: 35741849 PMCID: PMC9223199 DOI: 10.3390/genes13061087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Prostate adenocarcinoma (PRAD), also named prostate cancer, the most common visceral malignancy, is diagnosed in male individuals. Herein, in order to obtain immune-based subtypes, we performed an integrative analysis to characterize molecular subtypes based on immune-related genes, and further discuss the potential features and differences between identified subtypes. Simultaneously, we also construct an immune-based risk model to assess cancer prognosis. Our findings showed that the two subtypes, C1 and C2, could be characterized, and the two subtypes showed different characteristics that could clearly describe the heterogeneity of immune microenvironments. The C2 subtype presented a better survival rate than that in the C1 subtype. Further, we constructed an immune-based prognostic model based on four screened abnormally expressed genes, and they were selected as predictors of the robust prognostic model (AUC = 0.968). Our studies provide reference for characterization of molecular subtypes and immunotherapeutic agents against prostate cancer, and the developed robust and useful immune-based prognostic model can contribute to cancer prognosis and provide reference for the individualized treatment plan and health resource utilization. These findings further promote the development and application of precision medicine in prostate cancer.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Yihao Kang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Daoliang Xia
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Yujie Ren
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Yangyang Xiang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Lihua Tang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Dekang Ren
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Jun Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.K.); (D.X.); (Y.R.); (X.Y.); (Y.X.); (L.T.); (D.R.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Luan JC, Zhang QJ, Zhao K, Zhou X, Yao LY, Zhang TT, Zeng TY, Xia JD, Song NH. A Novel Set of Immune-associated Gene Signature predicts Biochemical Recurrence in Localized Prostate Cancer Patients after Radical Prostatectomy. J Cancer 2021; 12:3715-3725. [PMID: 33995646 PMCID: PMC8120173 DOI: 10.7150/jca.51059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Decision-making regarding biochemical recurrence (BCR) in localized prostate cancer (PCa) patients after radical prostatectomy (RP) mainly relies on clinicopathological parameters with a low predictive accuracy. Currently, accumulating evidence suggests that immune-associated genes (IAGs) play irreplaceable roles in tumorigenesis, progression and metastasis. Considering the critical role of immune in PCa, we therefore attempted to identify the novel IAGs signature and validate its prognostic value that can better forecast the risk for BCR and guide clinical treatment. Methods: RNA-sequencing and corresponding clinicopathological data were downloaded from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Weighted gene co-expression network analysis (WGCNA) was utilized to screen out the candidate module closely related to BCR, and univariate and LASSO Cox regression analyses were performed to build the gene signature. Kaplan-Meier (KM) survival analysis, time-dependent receiver operating curve (ROC), independent prognostic analysis and nomogram were also applied to evaluate the prognostic value of the signature. Besides, Gene ontology analysis (GO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA) were used to explore potential biological pathways. Results: A total of six IAGs (SSTR1, NFATC3, NRP1, TUBB3, IL1R1, GDF15) were eventually identified and used to establish a novel IAGs signature. The Kaplan-Meier analysis revealed that patients with low-risk scores had longer recurrence-free survival (RFS) than those with high-risk scores in both GSE70769 and TCGA cohorts. Further, our signature was also proven to be a valuable independent prognostic factor for BCR. We also constructed a nomogram based on the gene signature and related clinicopathologic features, which excellently predict 1-year, 3-year and 5-year prognosis of localized PCa patients after RP. Moreover, functional enrichment analysis demonstrated the vital biological processes, and stratified GSEA revealed that a crucial immune-related pathway (T cell receptor signaling pathway) was notably enriched in the high-risk group. Conclusions: We successfully developed a novel robust IAGs signature that is powerful in BCR prediction in localized PCa patients after RP, and created a prognostic nomogram. In addition, the signature might help clinicians in selecting high-risk subpopulation, predicting survival status of patients and promoting more individualized therapies than traditional clinical factors.
Collapse
Affiliation(s)
- Jiao-Chen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang-Yu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong-Tong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Teng-Yue Zeng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, Xinjiang, China
| |
Collapse
|
5
|
Zhou Y, Bastian IN, Long MD, Dow M, Li W, Liu T, Ngu RK, Antonucci L, Huang JY, Phung QT, Zhao XH, Banerjee S, Lin XJ, Wang H, Dang B, Choi S, Karin D, Su H, Ellisman MH, Jamieson C, Bosenberg M, Cheng Z, Haybaeck J, Kenner L, Fisch KM, Bourgon R, Hernandez G, Lill JR, Liu S, Carter H, Mellman I, Karin M, Shalapour S. Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation. Proc Natl Acad Sci U S A 2021; 118:e2025840118. [PMID: 33602823 PMCID: PMC7923353 DOI: 10.1073/pnas.2025840118] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many cancers evade immune rejection by suppressing major histocompatibility class I (MHC-I) antigen processing and presentation (AgPP). Such cancers do not respond to immune checkpoint inhibitor therapies (ICIT) such as PD-1/PD-L1 [PD-(L)1] blockade. Certain chemotherapeutic drugs augment tumor control by PD-(L)1 inhibitors through potentiation of T-cell priming but whether and how chemotherapy enhances MHC-I-dependent cancer cell recognition by cytotoxic T cells (CTLs) is not entirely clear. We now show that the lysine acetyl transferases p300/CREB binding protein (CBP) control MHC-I AgPPM expression and neoantigen amounts in human cancers. Moreover, we found that two distinct DNA damaging drugs, the platinoid oxaliplatin and the topoisomerase inhibitor mitoxantrone, strongly up-regulate MHC-I AgPP in a manner dependent on activation of nuclear factor kappa B (NF-κB), p300/CBP, and other transcription factors, but independently of autocrine IFNγ signaling. Accordingly, NF-κB and p300 ablations prevent chemotherapy-induced MHC-I AgPP and abrogate rejection of low MHC-I-expressing tumors by reinvigorated CD8+ CTLs. Drugs like oxaliplatin and mitoxantrone may be used to overcome resistance to PD-(L)1 inhibitors in tumors that had "epigenetically down-regulated," but had not permanently lost MHC-I AgPP activity.
Collapse
Affiliation(s)
- Yixuan Zhou
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
| | - Ingmar Niels Bastian
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Michelle Dow
- Division of Medical Genetics, Health Sciences, Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Weihua Li
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Rachael Katie Ngu
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
| | - Laura Antonucci
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jian Yu Huang
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Qui T Phung
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA 94080
| | - Xi-He Zhao
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
- Oncology Department, China Medical University Shengjing Hospital, 110004 Shenyang City, China
| | - Sourav Banerjee
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Department of Cellular Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Xue-Jia Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
- Biomedical Translational Research Institute and the First Affiliated Hospital, Jinan University, 510632 Guangzhou, Guangdong, China
| | - Hongxia Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850 Beijing, China
| | - Brian Dang
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sylvia Choi
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
| | - Hua Su
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Christina Jamieson
- Department of Urology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Marcus Bosenberg
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| | - Zhang Cheng
- Center for Epigenomics, Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Lukas Kenner
- Department of Pathology, Christian Doppler Laboratory, Medical University of Vienna, 1090 Vienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Richard Bourgon
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Genevive Hernandez
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Jennie R Lill
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA 94080
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Hannah Carter
- Division of Medical Genetics, Health Sciences, Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Ira Mellman
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093;
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Shabnam Shalapour
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093;
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054
| |
Collapse
|
6
|
Liao Y, Wu N, Wang K, Wang M, Wang Y, Gao J, Zhong B, Ma F, Wu Y, Jiang N. OTUB1 Promotes Progression and Proliferation of Prostate Cancer via Deubiquitinating and Stabling Cyclin E1. Front Cell Dev Biol 2021; 8:617758. [PMID: 33537306 PMCID: PMC7848094 DOI: 10.3389/fcell.2020.617758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Prostate cancer (PCa) is currently the most common cancer among males worldwide. It has been reported that OTUB1 plays a critical role in a variety of tumors and is strongly related to tumor proliferation, migration, and clinical prognosis. The aim of this research is to investigate the regulatory effect of OTUB1 on PCa proliferation and the underlying mechanism. Methods: Using the TCGA database, we identified that OTUB1 was up-regulated in PCa, and observed severe functional changes in PC3 and C4-2 cells through overexpression or knock down OTUB1. Heterotopic tumors were implanted subcutaneously in nude mice and IHC staining was performed on tumor tissues. The relationship between OTUB1 and cyclin E1 was identified via Western blotting and immunoprecipitations assays. Results: We found that the expression of OTUB1 in PCa was significantly higher than that in Benign Prostatic Hyperplasia (BPH). Overexpression OTUB1 obviously promoted the proliferation and migration of PC3 and C4-2 cells via mediating the deubiquitinated Cyclin E1, while OTUB1 knockout has the opposite effect. The nude mice experiment further explained the above conclusions. We finally determined that OTUB1 promotes the proliferation and progression of PCa via deubiquitinating and stabling Cyclin E1. Conclusions: Our findings reveal the critical role of OTUB1 in PCa, and OTUB1 promotes the proliferation and progression of PCa via deubiquitinating and stabilizing Cyclin E1. Blocking OTUB1/Cyclin E1 axis or applying RO-3306 could significantly repress the occurrence and development of PCa. OTUB1/Cyclin E1 axis might provide a new and potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Yihao Liao
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ning Wu
- Key Laboratory of Breast Cancer Prevention and Therapy, State Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China
| | - Keke Wang
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Miaomiao Wang
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Youzhi Wang
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jie Gao
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Boqiang Zhong
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Fuling Ma
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yudong Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Jiang
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Silva D, Abreu-Mendes P, Mourato C, Martins D, Cruz R, Mendes F. Prostate cancer, new treatment advances - immunotherapy. Actas Urol Esp 2020; 44:458-468. [PMID: 32473820 DOI: 10.1016/j.acuro.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is the fourth most common cancer in the world and treatment is currently based on surgical removal and/or radiotherapy and/or hormone therapy. In the last few years' immunotherapy has become an important cancer treatment option. While the principles of immunotherapy evolved, only sipuleucel-T was approved by the Food and Drug Administration (FDA) which lead to further studies with other agents, starting a new era in immuno-oncology. A number of vaccines are under clinical investigation as well as checkpoint inhibitors. Despite the current enthusiasm, it is unlikely that any of the approaches alone can dramatically change PCa outcomes, but strategies combination is more promising and provide a reason for optimism. The goal of immunotherapy in PCa does not have to be the complete eradication of advanced disease, but rather the return to an immunologic equilibrium with an indolent disease state. With such concerted efforts, the future of immunotherapy in PCa looks brighter than ever, with many clinical trial results being published soon.
Collapse
|
8
|
Xu H, Tan P, Zheng X, Huang Y, Lin T, Wei Q, Ai J, Yang L. Immune-related adverse events following administration of anti-cytotoxic T-lymphocyte-associated protein-4 drugs: a comprehensive systematic review and meta-analysis. Drug Des Devel Ther 2019; 13:2215-2234. [PMID: 31308633 PMCID: PMC6613615 DOI: 10.2147/dddt.s196316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/16/2019] [Indexed: 02/05/2023] Open
Abstract
Objective: Administration of drugs targeting anti-cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) is often associated with serious immune-related adverse events (irAEs). Here, we performed a comprehensive analysis of organ-specific irAEs and treatment-related hematologic abnormalities and musculoskeletal disorders resulting from anti-CTLA-4 treatment. Materials and methods: PubMed, the Cochrane library, Web of Science, and ClinicalTrials.gov were searched for studies between January 1990 and March 2018 reporting AEs associated with anti-CTLA-4 therapies. Results: A total of 11 clinical trials with 7,088 patients were included; of these, data were accessible for 10 on ClinicalTrials.gov. Compared with control therapies (placebo, chemotherapy, radiation therapy, or vaccine), anti-CTLA-4 therapies (ipilimumab and tremelimumab) were associated with an increased risk of serious irAEs, predominantly dermatologic (rash: odds ratio [OR] 3.39, P<0.01), gastrointestinal (diarrhea and colitis: OR 6.57 and 14.01, respectively; both P<0.001), endocrine (hypophysitis, hypothyroidism, adrenal insufficiency, and hypopituitarism: OR 4.22, 3.72, 3.77, and 4.73, respectively; all P<0.05), and hepatic (hepatitis, elevated alanine aminotransferase, and elevated aspartate aminotransferase: OR 4.44, 3.28, and 3.12, respectively; all P<0.05). The most common serious organ-specific irAEs were gastrointestinal (diarrhea 9.8% and colitis 5.3%). Although the incidence of selected events was higher in anti-CTLA-4-treated patients, no significant differences were found between anti-CTLA-4 and the control therapies in treatment-related hematologic abnormalities or severe musculoskeletal disorders. Conclusion: Anti-CTLA-4 therapies are associated with an increased risk of serious organ-specific irAEs, most frequently involving the gastrointestinal system; however, no increased risk of hematologic abnormalities or severe musculoskeletal disorders was detected compared with other therapies. These results underscore the need for clinical awareness and prompt and effective management of multi-organ irAEs related to anti-CTLA-4 drugs.
Collapse
Affiliation(s)
- Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaonan Zheng
- West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yu Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|