1
|
Sachinidis A, Trachana M, Taparkou A, Gavriilidis G, Vasileiou V, Keisaris S, Verginis P, Adamichou C, Boumpas D, Psomopoulos F, Garyfallos A. Characterization of T-bet expressing B cells in lupus patients indicates a putative prognostic and therapeutic value of these cells for the disease. Clin Exp Immunol 2025; 219:uxaf008. [PMID: 39918986 PMCID: PMC12062963 DOI: 10.1093/cei/uxaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE To investigate whether T-bet+ B cells, as well as age-associated B cells/ABCs (CD19 + CD21-CD11c + T-bet+) and double-negative B cells/DN (CD19 + IgD-CD27- CXCR5-T-bet+), serve as prognostic and/or therapeutic tools for systemic lupus erythematosus (SLE) in humans. METHODS Flow cytometry was used for enumerating T-bet+ B cells and ABCs/DN subsets, found in the peripheral blood of 10 healthy donors and 22 active SLE patients. Whole blood assay cultures, combined with in vitro pharmacological treatments, were performed to evaluate the effects of hydroxychloroquine, anifrolumab, and fasudil (a ROCK kinase inhibitor) on T-bet+ B cells' percentage. Moreover, previously published single-cell RNA sequencing (scRNA-seq) data were used in a meta-analysis to allow characterization of genes and pathways associated with the biology of T-bet in B cells. RESULTS T-bet+ B cells displayed an expansion in SLE patients [1.47 (1.9-0.7) vs 10.85 (37.4-3.6)]. Similarly, both ABCs and DN were found to be expanded. Interestingly, percentages of T-bet+ B cells positively correlated with patients' SLEDAI scores (rs = 0.55, P = 0.007). Cell culture experiments conducted revealed that all three agents tested can deplete T-bet + B cells (without affecting the cell viability of lymphocytes, T cells, and B cells). According to bioinformatics analyses, T-bet is highly expressed in two B-cell clusters with pathogenic characteristics for SLE (designated as atypical memory B cells and activated naïve B cells). These clusters can be targeted for therapeutic interventions. CONCLUSIONS T-bet+ B cells can serve as a putative prognostic biomarker of lupus severity. Circumstantial data suggest that these cells may promote disease pathogenesis and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Trachana
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Taparkou
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Gavriilidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Vasileios Vasileiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Sofoklis Keisaris
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Christina Adamichou
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, that mainly affects skin, joints and kidneys but can affect any organ in the body. It is characterized by presence of multiple autoantibodies like ANA, antibodies to dsDNA and RNA associated proteins. The major mechanism leading to tissue damage includes immune complex mediated complement activation, interferon alpha release by plasmacytoid dendritic cells, NETosis by neutrophils as well as defects in monocytes leading to poor clearance of cellular debris and direct cellular dysfunction mediated by antibodies. A child can present with pyrexia of unknown origin, immune mediated cytopenias, malar rash, oral ulcers, serositis, glomerulonephritis or nervous system dysfunction. As renal disease has a bearing on the long term impact, all children should have urine exam and blood pressure measurement done to rule out renal disease. The treatment varies depending on the severity and organs involved. In life or organ threatening situations, pulse methylprednisolone is used. Hydroxychloroquine, Mycophenolate mofetil, Azathioprine and Cyclophosphamide are the commonly used drugs in SLE. Over the years the prognosis of SLE has improved probably due to early diagnosis and better use of immunosuppressive treatment, regular follow up and treatment of co-morbidities. The 10-year survival now approaches 90% and with advent of new and targeted therapy it is hoped that the morbidity and organ damage can also be minimized.
Collapse
Affiliation(s)
- Kunal Chandwar
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
3
|
Cingireddy AR, Ramini N, Cingireddy AR. Evaluation of the Efficacy and Safety of Anifrolumab in Moderate-to-Severe Systemic Lupus Erythematosus. Cureus 2024; 16:e63966. [PMID: 39104974 PMCID: PMC11299632 DOI: 10.7759/cureus.63966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, which poses significant challenges due to its chronic nature and complex clinical manifestations. For patients with moderate-to-severe SLE, anifrolumab, a monoclonal antibody that targets the type 1 interferon receptor (IFNAR), has emerged as a cutting-edge treatment option that can reduce disease activity, prevent organ damage from the illness or side effects resulting from medications, and enhance the quality of life for those living with SLE. Consequently, this drug has received approval from major regulatory agencies. Anifrolumab's safety, effectiveness, and long-term results are assessed in this systematic review using information from clinical trials, real-world research, and retrospective analysis. In particular, clinical investigations, such as the MUSE Phase II and TULIP Phase III trials, showed that anifrolumab significantly improved important outcomes compared to placebo, including the SLE Responder Index, major clinical response, and disease activity ratings. During extended use, anifrolumab demonstrated significant sustained efficacy and a tolerable safety profile, with controllable side events mostly associated with viral infections. Moreover, subgroup analyses, demonstrating that Asian patients and individuals with a strong interferon gene profile are particularly responsive to anifrolumab, underscore the importance of customized treatment methods. Anifrolumab's safety and effectiveness were further validated by real-world data, particularly in patients who reached the Lupus Low Disease Activity State (LLDAS), where the drug decreased glucocorticoid consumption and disease activity. Overall, anifrolumab shows great promise as a treatment for moderate-to-severe SLE, providing significant efficacy together with a manageable safety profile. To fully explore its therapeutic potential and optimize therapy approaches for the management of SLE, further research is necessary, especially in lupus nephritis and other disease subsets.
Collapse
Affiliation(s)
| | - Navya Ramini
- Anesthesiology and Critical Care, All India Institute of Medical Sciences, Raipur, IND
| | | |
Collapse
|
4
|
Li X, Li B, Wang M, Fang M, Lou J, Liu J, Chen H, Ding Y. Safety, Tolerability, Pharmacokinetics, and Immunogenicity of the Anti-IFNAR1 Monoclonal Antibody QX006N: A First-in-Human Single Ascending Dose Study in Healthy Chinese Volunteers. BioDrugs 2024; 38:313-321. [PMID: 38148466 DOI: 10.1007/s40259-023-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND AND OBJECTIVE QX006N is a novel, humanized, IgG4κ monoclonal antibody targeting IFNAR1, developed for the treatment of systemic lupus erythematosus. This study aims to investigate the pharmacokinetics, safety, tolerability, and immunogenicity of QX006N when administered intravenously to healthy Chinese individuals. METHODS A double-blind, randomized, placebo-controlled, single-ascending-dose, phase I clinical trial was conducted comprising five cohorts (n = 10 per cohort, except n = 5 for the first cohort). Subjects in each cohort were randomly assigned in a 4:1 ratio to receive a single intravenous infusion of QX006N (0.3 mg/kg, 1.0 mg/kg, 3.0 mg/kg, 6.0 mg/kg, or 10.0 mg/kg) or placebo for 30 minutes. Tolerability assessments included adverse events, vital signs, 12-lead electrocardiogram, physical examination, and clinical laboratory tests. The serum concentration of QX006N was measured using the enzyme-linked immunosorbent assay method, and the anti-drug antibodies were detected using the electrochemiluminescence assay method. RESULTS QX006N demonstrated a favorable safety and tolerability profile throughout the study. All treatment-emergent adverse events were of Grade 1-2 (CTCAE Version 5.0), and no serious adverse events, deaths, or drug discontinuations because of treatment-emergent adverse events were observed. All drug-related treatment-emergent adverse events showed no clear dose-related trends. Following an intravenous infusion of QX006N at doses that ranged from 0.3 mg/kg to 10 mg/kg, the half-life increased from 24.7 to 208 hours in a dose-dependent manner, while clearance decreased from 0.0828 to 0.0065 L/h. The maximum concentration exhibited nearly dose-proportional increases, and the area under the curve displayed a more than dose-proportional increment with non-linear pharmacokinetic characteristics. The incidence of anti-drug antibodies was observed to increase over time for doses that ranged from 1.0 mg/kg to 10.0 mg/kg of QX006N, reaching its peak at day 57 (range 62.50-87.50%). Conversely, the incidence of anti-drug antibodies in the QX006N 0.3-mg/kg and placebo cohorts remained low. CONCLUSIONS QX006N demonstrated acceptable safety, tolerability, and pharmacokinetic characteristics in healthy subjects when administered as a single intravenous infusion at doses that ranged from 0.3 mg/kg to 10.0 mg/kg. Based on the pharmacokinetic and safety outcomes, a recommended effective dose of 300 mg is proposed for future phase Ib studies. CLINICAL TRIAL REGISTRATION This study has been registered at http://www.chinadrugtrials.org.cn/ under identifier CTR20212834.
Collapse
Affiliation(s)
- Xiaojiao Li
- Phase I Clinical Trial Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Bing Li
- Phase I Clinical Trial Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Meng Wang
- Phase I Clinical Trial Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Min Fang
- Qyuns Therapeutics Co., Ltd., Jiangsu, China
| | - Jinfeng Lou
- Phase I Clinical Trial Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Jingrui Liu
- Phase I Clinical Trial Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Hong Chen
- Phase I Clinical Trial Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Yanhua Ding
- Phase I Clinical Trial Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
5
|
Steiger S, Ehreiser L, Anders J, Anders HJ. Biological drugs for systemic lupus erythematosus or active lupus nephritis and rates of infectious complications. Evidence from large clinical trials. Front Immunol 2022; 13:999704. [PMID: 36211360 PMCID: PMC9538665 DOI: 10.3389/fimmu.2022.999704] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease that frequently affects the kidneys, known as lupus nephritis (LN). Such patients are treated with antimalarials, corticosteroids or immunosuppressive drugs, and more recently, target-specific biological drugs. Although efficacy of these therapies improved SLE-related outcomes, SLE remains associated with higher rates of infections. Here, we performed a comprehensive systemic review of infectious complications in clinical trials covering drug interventions for SLE or specifically for active LN. Our search in 15 online registries yielded a total of 1477 studies of which 14 matched our prespecified criteria. These covered the biological drugs anifrolumab, belimumab, and rituximab that were tested in patients with non-renal SLE and active LN.The available safety data from the SLE trials indicated that infectious complications such as herpes zoster, upper respiratory tract infection, nasopharyngitis, bronchitis, and urinary tract infection in patients receiving placebo were quite prevalent especially in the EXPLORER (rituximab) trial. Infections occurred mostly during the first year of LN therapy. Serious adverse events and infectious complications occurred more frequently in placebo-treated patients with active LN, especially in the BLISS-LN (belimumab) and LUNAR (rituximab) trials. Anifrolumab and rituximab increased the number of clinically relevant episodes of herpes zoster compared to belimumab in patients with active LN. Anifrolumab displayed a similar trend for influenza infections, which is consistent with the specific mechanisms-of-action of anifrolumab; highlighting drug-specific effects on infectious complications. In addition, standard-of-care therapy, e.g., MMF and immunosuppressants, as well as a longer SLE duration may also affect the incidence of serious adverse events and certain infectious complications in SLE patients with active LN.Infectious complications are common in SLE but even more common in patients with active LN, especially herpes zoster is strongly associated with active LN and anifrolumab therapy (OR 2.8, 95% CI 1.18 to 6.66, p = 0.018). Immunotherapy seems to impose unspecific and specific risks for infections. The latter may imply specific precautions such as preemptive vaccination and individual risk-benefit assessments.
Collapse
Affiliation(s)
| | | | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
6
|
Ahmed AA, Osman N, Furie R. An evaluation of anifrolumab for use in adults with systemic lupus erythematosus. Expert Rev Clin Immunol 2022; 18:1095-1106. [PMID: 36083692 DOI: 10.1080/1744666x.2022.2123793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Type 1 interferons play a key role in the pathogenesis of systemic lupus erythematosus (SLE). An important clinical question is whether inhibiting the type 1 interferon pathway reduce the disease activity in SLE patients. This review evaluates the safety and efficacy of the monoclonal antibody against the type 1 interferon alpha receptor, anifrolumab, in patients with SLE. AREAS COVERED Key terms (SLE, type 1 interferon, anifrolumab) were used to query the PubMed database for phase 1, 2 and 3 clinical trials of anifrolumab for SLE patients. Phase 1 studies showed anifrolumab has non-linear pharmacokinetics and the optimal safe dose is 300 mg given intravenously every four weeks. The MUSE (phase 2) and the TULIP-2 (phase 3) trials showed that anifrolumab when added to standard therapy significantly reduced disease activity in SLE patients. Common adverse events associated with anifrolumab were upper respiratory and urinary infections as well as shingles. EXPERT OPINION Anifrolumab is an exciting new therapeutic for SLE patients. Additional analyses of the combined TULIP-1 and TULIP-2 datasets as well as future studies with anifrolumab will generate yet more data in SLE. No doubt anifrolumab will be studied in other diseases where type I interferons play an important role.
Collapse
Affiliation(s)
- Abdullah Ali Ahmed
- Rheumatology, Stony Brook University The State University of New York101 Nicolls Road, Stony Brook, New York 11794-0701, United States
| | - Naureen Osman
- Rheumatology, Northwell Health865 Northern Boulevard, Great Neck, New York 11021, United States
| | - Richard Furie
- Rheumatology, Northwell Health865 Northern Boulevard, Great Neck, New York 11021, United States
| |
Collapse
|
7
|
Li Z, Wang Z, Sun T, Liu S, Ding S, Sun L. Identifying key genes in CD4+ T cells of systemic lupus erythematosus by integrated bioinformatics analysis. Front Genet 2022; 13:941221. [PMID: 36046235 PMCID: PMC9420982 DOI: 10.3389/fgene.2022.941221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excessive activation of T and B lymphocytes and breakdown of immune tolerance to autoantigens. Despite several mechanisms including the genetic alterations and inflammatory responses have been reported, the overall signature genes in CD4+ T cells and how they affect the pathological process of SLE remain to be elucidated. This study aimed to identify the crucial genes, potential biological processes and pathways underlying SLE pathogenesis by integrated bioinformatics. The gene expression profiles of isolated peripheral CD4+ T cells from SLE patients with different disease activity and healthy controls (GSE97263) were analyzed, and 14 co-expression modules were identified using weighted gene co-expression network analysis (WGCNA). Some of these modules showed significantly positive or negative correlations with SLE disease activity, and primarily enriched in the regulation of type I interferon and immune responses. Next, combining time course sequencing (TCseq) with differentially expressed gene (DEG) analysis, crucial genes in lupus CD4+ T cells were revealed, including some interferon signature genes (ISGs). Among these genes, we identified 4 upregulated genes (PLSCR1, IFI35, BATF2 and CLDN5) and 2 downregulated genes (GDF7 and DERL3) as newfound key genes. The elevated genes showed close relationship with the SLE disease activity. In general, our study identified 6 novel biomarkers in CD4+ T cells that might contribute to the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Zutong Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhilong Wang
- Department of Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tian Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuai Ding
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Shuai Ding,
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Shuai Ding,
| |
Collapse
|
8
|
Ka NL, Lim GY, Kim SS, Hwang S, Han J, Lee YH, Lee MO. Type I IFN stimulates IFI16-mediated aromatase expression in adipocytes that promotes E 2-dependent growth of ER-positive breast cancer. Cell Mol Life Sci 2022; 79:306. [PMID: 35593921 PMCID: PMC9122892 DOI: 10.1007/s00018-022-04333-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Although type I interferons (IFNs) play multifaceted roles during tumorigenesis and cancer treatment, the interplay between type I IFNs and estrogen signaling in breast cancer (BC) microenvironment is not well understood. Here, we report a novel function of type I IFNs in inducing aromatase expression in adipose tissues surrounding BC, which potentiates the E2-dependent growth of estrogen receptor (ER)-positive BC. First, we found that expression levels of type I IFNs correlate negatively with clinical outcome but positively with tumor grade in patients with ER-positive BC. Levels of type I IFNs were elevated in cocultured media of immune cells and BC cells, which increased aromatase expression and E2 production in Simpson-Golabi-Behmel syndrome preadipocytes. The type I IFN-induced aromatase expression was dependent on IFN-γ-inducible protein 16 (IFI16), which is encoded by an interferon-stimulated gene. At the molecular level, type I IFNs led to recruitment of HIF1α-IFI16-PRMT2 complex to the hypoxia-response element located in the aromatase PI.3/PII promoter. Next, we generated an adipocyte-specific Ifi204, which is a mouse ortholog of human IFI16, knockout mouse (Ifi204-AKO). IFNβ induced E2 production in the preadipocytes isolated from the control mice, but such E2 production was far lower in the Ifi204-AKO preadipocytes. Importantly, the growth of orthotopically inoculated E0771 ER-positive mammary tumors was reduced significantly in the Ifi204-AKO mice. Taken together, our findings provide novel insights into the crosstalk between type I IFNs and estrogen signaling in the progression of ER-positive BC.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Juhyeong Han
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Yun-Hee Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
9
|
Proportion of B cell subsets and Nrf2 mediated redox regulation in systemic lupus erythematosus patients. Immunobiology 2022; 227:152180. [PMID: 35032759 DOI: 10.1016/j.imbio.2022.152180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by expansion of autoreactive lymphocytes and impaired management of oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a significant role in maintaining the redox homeostasis of cell. The present study aims to investigate the frequency of peripheral B cell subsets and the redox regulation by Nrf2 in SLE patients with variable disease activity. For this, a total of forty (40) SLE patients and twenty (20) age and gender-matched healthy controls (HCs) were recruited where patients with SLEDAI < 6 were grouped as Inactive SLE (n = 20) and patients with SLEDAI ≥ 6 were grouped as Active SLE (n = 20). A proportion of peripheral B cell subsets, level of ROS and expression of Nrf2 and Keap1 were studied with the help of flow cytometry and multiplex cytokine bead assay was exploited to estimate the serological concentration of cytokines. The frequency of B cell subsets was significantly altered and correlated with SLEDAI score. Concentration of IFNα2, IFN-β, BAFF, APRIL and IL-6 was also raised in active SLE patients. Moreover, the level of cytosolic ROS was universally decreased while mitochondrial ROS was increased in B cell subsets. The expression of Nrf2 and Keap1 (a negative regulator of Nrf2) was significantly increased in B cell subsets of SLE patients. Here, it has been demonstrated that the frequency of peripheral B cell subsets varies with modification in the SLE disease activity. The given data also demonstrated that the expression of Nrf2 is significantly heightened in B cell subsets to deal with free radical stress.
Collapse
|
10
|
Islabão AG, Trindade VC, da Mota LMH, Andrade DCO, Silva CA. Managing Antiphospholipid Syndrome in Children and Adolescents: Current and Future Prospects. Paediatr Drugs 2022; 24:13-27. [PMID: 34904182 PMCID: PMC8667978 DOI: 10.1007/s40272-021-00484-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
Pediatric antiphospholipid syndrome (APS) is a rare acquired multisystem autoimmune thromboinflammatory condition characterized by thrombotic and non-thrombotic clinical manifestations. APS in children and adolescents typically presents with large-vessel thrombosis, thrombotic microangiopathy, and, rarely, obstetric morbidity. Non-thrombotic clinical manifestations are frequently seen in pediatric APS and may be present even before the vascular thrombotic events occur. We review insights into the pathogenesis of APS and discuss potential targets for therapy. The identification of multiple immunologic abnormalities in patients with APS reveals molecular targets for current or future treatment. Management strategies, especially for APS in adolescents, require screening for additional prothrombotic risk factors and consideration of counseling regarding contraceptive strategies, lifestyle recommendations, treatment adherence, and mental health issues associated with this autoimmune thrombophilia. The main goal of therapy in pediatric APS is the prevention of thrombosis. The management of acute thrombosis events in children and adolescents is the same as for primary APS, which involves isolated occurrences, and secondary APS, which is seen in association with another autoimmune disease, e.g., systemic lupus erythematosus. A pediatric hematologist should be consulted so other differential thrombophilic conditions can be eliminated. Therapy includes unfractionated heparin or low-molecular-weight heparin followed by vitamin K antagonists. Treatment of catastrophic APS involves triple therapy (anticoagulation, intravenous corticosteroid pulse therapy, and plasma exchange) and may include intravenous immunoglobulin for children and adolescents with this condition. New drugs such as eculizumab and sirolimus seem to be promising drugs for APS.
Collapse
Affiliation(s)
- Aline Garcia Islabão
- Pediatric Rheumatology Unit, Hospital da Criança de Brasília Jose Alencar, Brasília, DF Brazil ,Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, DF Brazil
| | - Vitor Cavalcanti Trindade
- Faculdade de Medicina, Children and Adolescent Institute, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647-Cerqueira César, São Paulo, SP 05403-000 Brazil
| | - Licia Maria Henrique da Mota
- Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, DF Brazil ,Rheumatology Unit, Hospital Universitário de Brasília, Universidade de Brasília, Brasília, Brazil
| | | | - Clovis Artur Silva
- Faculdade de Medicina, Children and Adolescent Institute, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647-Cerqueira César, São Paulo, SP, 05403-000, Brazil. .,Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Mollah F, Varamini P. Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts. Biomedicines 2021; 9:1921. [PMID: 34944738 PMCID: PMC8698629 DOI: 10.3390/biomedicines9121921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most diagnosed cancer and is the leading cause of cancer mortality in women. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer. Often, TNBC is not effectively treated due to the lack of specificity of conventional therapies and results in relapse and metastasis. Breast cancer-associated fibroblasts (BCAFs) are the predominant cells that reside in the tumor microenvironment (TME) and regulate tumorigenesis, progression and metastasis, and therapy resistance. BCAFs secrete a wide range of factors, including growth factors, chemokines, and cytokines, some of which have been proved to lead to a poor prognosis and clinical outcomes. This TME component has been emerging as a promising target due to its crucial role in cancer progression and chemotherapy resistance. A number of therapeutic candidates are designed to effectively target BCAFs with a focus on their tumor-promoting properties and tumor immune response. This review explores various agents targeting BCAFs in TNBC, including small molecules, nucleic acid-based agents, antibodies, proteins, and finally, nanoparticles.
Collapse
Affiliation(s)
- Farhana Mollah
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
| | - Pegah Varamini
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Calabrese LH, Winthrop K, Strand V, Yazdany J, Walter JE. Type I interferon, anti-interferon antibodies, and COVID-19. THE LANCET. RHEUMATOLOGY 2021; 3:e246-e247. [PMID: 33655222 PMCID: PMC7906736 DOI: 10.1016/s2665-9913(21)00034-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Kevin Winthrop
- Oregon Health and Science University School of Medicine, Portland, OR, USA
| | | | - Jinoos Yazdany
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
- Division of Pediatric Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA
| |
Collapse
|
13
|
Inhibition of interferon-signalling halts cancer-associated fibroblast-dependent protection of breast cancer cells from chemotherapy. Br J Cancer 2021; 124:1110-1120. [PMID: 33398063 PMCID: PMC7960738 DOI: 10.1038/s41416-020-01226-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Triple negative breast cancers (TNBC) have poor prognoses despite aggressive treatment with cytotoxic chemotherapy. Cancer-associated fibroblasts (CAFs) are prominent in tumour stroma. Our hypothesis was that CAFs modulate chemotherapy sensitivity. METHODS TNBC cells and breast fibroblasts were cultured; survival after chemotherapeutics was assessed using luciferase or clonogenic assays. Signalling was investigated using transcriptomics, reporters, recombinant proteins and blocking antibodies. Clinical relevance was investigated using immunohistochemistry. RESULTS Breast CAFs dose-dependently protected TNBC cell lines MDA-MB-231 and MDA-MB-157, but not MDA-MB-468s, from chemotherapy. CAF-induced protection was associated with interferon (IFN) activation. CAFs were induced to express IFNβ1 by chemotherapy and TNBC co-culture, leading to paracrine activation in cancer cells. Recombinant IFNs were sufficient to protect MDA-MB-231 and MDA-MB-157 but not MDA-MB-468 cells. In TNBC patients, IFNβ1 expression in CAFs correlated with cancer cell expression of MX1, a marker of activated IFN signalling. High expression of IFNβ1 (CAFs) or MX1 (tumour cells) correlated with reduced survival after chemotherapy, especially in claudin-low tumours (which MDA-MB-231 and MDA-MB-157 cells represent). Antibodies that block IFN receptors reduced CAF-dependent chemoprotection. CONCLUSIONS CAF-induced activation of IFN signalling in claudin-low TNBCs results in chemoresistance. Inhibition of this pathway represents a novel method to improve breast cancer outcomes.
Collapse
|
14
|
Akita K, Yasaka K, Shirai T, Ishii T, Harigae H, Fujii H. Interferon α Enhances B Cell Activation Associated With FOXM1 Induction: Potential Novel Therapeutic Strategy for Targeting the Plasmablasts of Systemic Lupus Erythematosus. Front Immunol 2021; 11:498703. [PMID: 33633721 PMCID: PMC7902015 DOI: 10.3389/fimmu.2020.498703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease. It is characterized by the production of various pathogenic autoantibodies and is suggested to be triggered by increased type I interferon (IFN) signature. Previous studies have identified increased plasmablasts in the peripheral blood of SLE patients. The biological characteristics of SLE plasmablasts remain unknown, and few treatments that target SLE plasmablasts have been applied despite the unique cellular properties of plasmablasts compared with other B cell subsets and plasma cells. We conducted microarray analysis of naïve and memory B cells and plasmablasts (CD38+CD43+ B cells) that were freshly isolated from healthy controls and active SLE (n = 4, each) to clarify the unique biological properties of SLE plasmablasts. The results revealed that all B cell subsets of SLE expressed more type I IFN-stimulated genes. In addition, SLE plasmablasts upregulated the expression of cell cycle-related genes associated with higher FOXM1 and FOXM1-regulated gene expression levels than that in healthy controls. This suggests that a causative relationship exists between type I IFN priming and enhanced proliferative capacity through FOXM1. The effects of pretreatment of IFNα on B cell activation and FOXM1 inhibitor FDI-6 on B cell proliferation and survival were investigated. Pretreatment with IFNα promoted B cell activation after stimulation with anti-IgG/IgM antibody. Flow cytometry revealed that pretreatment with IFNα preferentially enhanced the Atk and p38 pathways after triggering B cell receptors. FDI-6 inhibited cell division and induced apoptosis in activated B cells. These effects were pronounced in activated B cells pretreated with interferon α. This study can provide better understanding of the pathogenic mechanism of interferon-stimulated genes on SLE B cells and an insight into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kanae Akita
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ken Yasaka
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsuyoshi Shirai
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomonori Ishii
- Department of Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Fujii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Yang B, Zhao M, Wu H, Lu Q. A Comprehensive Review of Biological Agents for Lupus: Beyond Single Target. Front Immunol 2020; 11:539797. [PMID: 33123125 PMCID: PMC7573553 DOI: 10.3389/fimmu.2020.539797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple immune cells. Due to its complex pathogenesis, the effectiveness of traditional treatment methods is limited. Many patients have developed resistance to conventional treatment or are not sensitive to steroid and immunosuppressant therapy, and so emerging therapeutic antibodies have become an alternative and have been shown to work well in many patients with moderate and severe SLE. This review summarizes the biological agents that are in the preclinical and clinical trial study of SLE. In addition to the various monoclonal antibodies that have been studied for a long time, such as belimumab and rituximab, we focused on another treatment for SLE, bispecific antibodies (BsAbs) such as tibulizumab, which simultaneously targets multiple pathogenic cytokines or pathways. Although the application of BsAbs in cancer has been intensively studied, their application in autoimmune diseases is still in the infant stage. This unique combined mechanism of action may provide a novel therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Bingyi Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
16
|
Paredes JL, Niewold TB. Type I interferon antagonists in clinical development for lupus. Expert Opin Investig Drugs 2020; 29:1025-1041. [PMID: 32700979 PMCID: PMC7924012 DOI: 10.1080/13543784.2020.1797677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a severe chronic and incurable autoimmune disease. Treatment includes glucocorticoids and immunosuppressants which typically result in partial responses, and hence there is a great need for new therapies. The type I interferon (IFN) pathway is activated in more than 50% of SLE patients, and it is strongly implicated as a pathogenic factor in SLE. AREAS COVERED We searched the literature using 'SLE and interferon antagonists' as search terms. This identified a number of therapeutics that have entered clinical development targeting type I IFN in SLE. These include monoclonal antibodies against type I IFN cytokines and a kinoid vaccination strategy to induce anti-IFN antibodies. EXPERT OPINION Type I IFN antagonists have had some success, but many molecules have not progressed to phase III. These varied results are likely attributed to the multiple concurrent cytokine abnormalities present in SLE, the imprecise nature of the IFN signature as a readout for type I IFN and difficulties with clinical trials such as background medication use and diffuse composite disease activity measures. Despite these challenges, it seems likely that a type I IFN antagonist will come to clinical utility for SLE given the large unmet need and the recent phase III success with anifrolumab.
Collapse
Affiliation(s)
- Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine , New York, NY, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine , New York, NY, USA
| |
Collapse
|
17
|
Oftedal BE, Wolff ASB. New era of therapy for endocrine autoimmune disorders. Scand J Immunol 2020; 92:e12961. [PMID: 32853446 DOI: 10.1111/sji.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
The new era of immune and reconstitution therapy of autoimmune disorders is ongoing. However, endocrine autoimmune diseases comprise a group of elaborating pathologies where the development of new treatment strategies remains slow. Substitution of the missing hormones is still standard practice, taking care of the devastating symptoms but not the cause of disease. As our knowledge of the genetic contribution to the aetiology of endocrine disorders increases and early diagnostic tools are available, it is now possible to identify persons at risk before they acquire full-blown disease. This review summarizes current knowledge and treatment of endocrine autoimmune disorders, focusing on type 1 diabetes, Addison's disease, autoimmune thyroid diseases and primary ovarian insufficiency. We explore which new therapies might be used in the different stages of the disease, focus on legalized therapy and elaborate on the ongoing clinical studies for these diseases and the research front, before hypothesizing on the way ahead.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|