1
|
Zhao H. Progress of the application of spatially fractionated radiation therapy in palliative treatment of tumors. Discov Oncol 2025; 16:678. [PMID: 40329010 PMCID: PMC12055688 DOI: 10.1007/s12672-025-02487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
INTRODUCTION/BACKGROUND Malignant tumors pose a serious threat to human health. As tumor volume increases, conventional external beam radiation therapy (cEBRT) faces challenges in tumor control and normal tissue toxicity. Spatially fractionated radiation therapy (SFRT) has emerged as an alternative approach. MATERIALS AND METHODS This article reviews the history of SFRT, including kilovolt X-ray based GRID, megavolt X-ray based GRID, MLC-shaped GRID, LATTICE radiation therapy (LRT), Bragg-peak based SFRT, microbeam, minibeam, SBRT-PATHY, and ISPART. It also explores its radiobiological mechanisms, such as immunomodulation, bystander and abscopal effects, and vascular response. Clinical studies of SFRT in palliative tumor treatment are summarized, and its limitations and future directions are discussed. RESULTS SFRT has shown high symptom remission rates, significant target volume reduction, and even tumor control and long-term survival in some cases across various tumor types. However, it has limitations like lack of standardized dosimetric parameters, complex implementation, small-scale clinical studies, and uncertain immunomodulatory potential. CONCLUSION Despite limitations, SFRT shows promise as a palliative radiation therapy technique. Future large-scale, multi-center clinical trials are needed to standardize dosimetric parameters, clarify immunomodulatory mechanisms, and simplify the technology for wider application.
Collapse
Affiliation(s)
- Hongfu Zhao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
2
|
Snider JW, Mayr NA, Molitoris J, Chhabra AM, Mossahebi S, Griffin R, Mohiuddin M, Zhang H, Amendola B, Tubin S, Kang M, Limoli C, Marter K, Perez N, Rustin GO, Mahadevan A, Coleman CN, Ahmed M, Simone CB. The Radiosurgery Society Working Groups on GRID, LATTICE, Microbeam, and FLASH Radiotherapies: Advancements Symposium and Subsequent Progress Made. Pract Radiat Oncol 2025; 15:300-307. [PMID: 39447865 DOI: 10.1016/j.prro.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE Since the inaugural workshop "Understanding High-Dose, Ultra-High Dose Rate and Spatially Fractionated Radiotherapy." hosted by the National Cancer Institute and sponsored by the Radiosurgery Society (RSS), growing collaborations and investigations have ensued among experts, practitioners, and researchers. The RSS GRID, LATTICE, Microbeam and FLASH (GLMF) Working Groups were formed as a framework for these efforts and have focused on advancing the understanding of the biology, technical/physical parameters, trial design, and clinical practice of these new radiation therapy modalities. METHODS AND MATERIALS In view of the steadily increasing clinical interest in Spatially Fractionated Radiotherapy (SFRT) and FLASH, a full-day symposium entitled "Advancements in GRID, LATTICE, and FLASH Radiotherapy Symposium" was established in 2022 that immediately preceded the RSS scientific meeting. This well-attended symposium focused on clinical, technical, and physics approaches for SFRT, and closely examining relevant radiobiological underpinnings. Practical clinical trial development was a highlighted discussion. An additional section reviewed proton therapy and other particle-based techniques for the delivery of GRID and LATTICE therapy. A treatment planning and delivery tutorial for GRID, LATTICE, and proton GRID/LATTICE was directed toward the real-world considerations for the development of new clinical GRID or LATTICE programs. An overall similar approach was applied to the discussion of FLASH. This report summarizes the content of the first GLMF Symposium and related work of the RSS GLMF Working Groups in the field of heterogeneous and ultrahigh dose rate irradiation, over approximately 2 years. RESULTS The GLMF Working Groups have continued to expand in membership and attendance, and several resultant trial concepts, research efforts, academic discussions, and peer-reviewed publications have followed as the number of institutions and practitioners using SFRT and FLASH continues to grow. CONCLUSIONS The GLMF Working Groups and the RSS continue to demonstrate excellent progress in proliferating use of and improving understanding of SFRT and ultrahigh dose rate radiation therapy techniques.
Collapse
Affiliation(s)
| | - Nina A Mayr
- Michigan State University, East Lansing, Michigan
| | - Jason Molitoris
- University of Maryland School of Medicine, Department of Radiation Oncology, Baltimore, Maryland
| | | | - Sina Mossahebi
- University of Maryland School of Medicine, Department of Radiation Oncology, Baltimore, Maryland
| | - Robert Griffin
- University of Arkansas for Medical Sciences, Department of Radiation Oncology, Little Rock, Arkansas
| | | | - Hualin Zhang
- University of Southern California, Department of Radiation Oncology, Los Angeles, California
| | | | | | | | - Charles Limoli
- University of California, Irvine, Department of Radiation Oncology, Irvine, California
| | - Kimberly Marter
- University of Maryland Medical Center, Department of Radiation Oncology, Baltimore, Maryland
| | | | | | - Anand Mahadevan
- New York University, Langone Health, Department of Radiation Oncology, New York, New York
| | | | | | | |
Collapse
|
3
|
Ahmed MM, Wu X, Mohiuddin M, Perez NC, Zhang H, Amendola BE, Malachowska B, Mohiuddin M, Guha C. Optimizing GRID and Lattice Spatially Fractionated Radiation Therapy: Innovative Strategies for Radioresistant and Bulky Tumor Management. Semin Radiat Oncol 2024; 34:310-322. [PMID: 38880540 DOI: 10.1016/j.semradonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Treating radioresistant and bulky tumors is challenging due to their inherent resistance to standard therapies and their large size. GRID and lattice spatially fractionated radiation therapy (simply referred to GRID RT and LRT) offer promising techniques to tackle these issues. Both approaches deliver radiation in a grid-like or lattice pattern, creating high-dose peaks surrounded by low-dose valleys. This pattern enables the destruction of significant portions of the tumor while sparing healthy tissue. GRID RT uses a 2-dimensional pattern of high-dose peaks (15-20 Gy), while LRT delivers a three-dimensional array of high-dose vertices (10-20 Gy) spaced 2-5 cm apart. These techniques are beneficial for treating a variety of cancers, including soft tissue sarcomas, osteosarcomas, renal cell carcinoma, melanoma, gastrointestinal stromal tumors (GISTs), pancreatic cancer, glioblastoma, and hepatocellular carcinoma. The specific grid and lattice patterns must be carefully tailored for each cancer type to maximize the peak-to-valley dose ratio while protecting critical organs and minimizing collateral damage. For gynecologic cancers, the treatment plan should align with the international consensus guidelines, incorporating concurrent chemotherapy for optimal outcomes. Despite the challenges of precise dosimetry and patient selection, GRID RT and LRT can be cost-effective using existing radiation equipment, including particle therapy systems, to deliver targeted high-dose radiation peaks. This phased approach of partial high-dose induction radiation therapy with standard fractionated radiation therapy maximizes immune modulation and tumor control while reducing toxicity. Comprehensive treatment plans using these advanced techniques offer a valuable framework for radiation oncologists, ensuring safe and effective delivery of therapy for radioresistant and bulky tumors. Further clinical trials data and standardized guidelines will refine these strategies, helping expand access to innovative cancer treatments.
Collapse
Affiliation(s)
- Mansoor M Ahmed
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY.
| | - Xiaodong Wu
- Executive Medical Physics Associates, Miami, FL
| | - Majid Mohiuddin
- Radiation Oncology Consultants and Northwestern Proton Center, Warrenville, IL
| | | | - Hualin Zhang
- Department of Radiation Oncology, University of Southern California, Los Angeles, CA
| | | | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY
| |
Collapse
|
4
|
Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol 2024; 44:100691. [PMID: 38033759 PMCID: PMC10684810 DOI: 10.1016/j.ctro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Spatially Fractionated Radiation Therapy (SFRT) is a form of radiotherapy that delivers a single large dose of radiation within the target volume in a heterogeneous pattern with regions of peak dosage and regions of under dosage. SFRT types can be defined by how the heterogeneous pattern of radiation is obtained. Immune checkpoint inhibitors (ICIs) have been approved for various malignant tumors and are widely used to treat patients with metastatic cancer. The efficacy of ICI monotherapy is limited due to the "cold" tumor microenvironment. Fractionated radiotherapy can achieve higher doses per fraction to the target tumor, and induce immune activation (immodulate tumor immunogenicity and microenvironment). Therefore, coupling ICI therapy and fractionated radiation therapy could significantly improve the outcome of metastatic cancer. This review focuses on both preclinical and clinical studies that use a combination of radiotherapy and ICI therapy in cancer.
Collapse
Affiliation(s)
- Qiuxia Lu
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| | - Weisi Yan
- Baptist Health System, Lexington, KY, United States
- Junxin Precision Oncology Group, P.R. China
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Slavisa Tubin
- Albert Einstein Collage of Medicine New York, Center for Ion Therapy, Medaustron, Austria
| | - Waleed F. Mourad
- Department of Radiation Medicine Markey Cancer Center, University of Kentucky - College of Medicine, United States
| | - Jun Yang
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| |
Collapse
|
5
|
Lukas L, Zhang H, Cheng K, Epstein A. Immune Priming with Spatially Fractionated Radiation Therapy. Curr Oncol Rep 2023; 25:1483-1496. [PMID: 37979032 PMCID: PMC10728252 DOI: 10.1007/s11912-023-01473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current preclinical and clinical evidence of nontargeted immune effects of spatially fractionated radiation therapy (SFRT). We then highlight strategies to augment the immunomodulatory potential of SFRT in combination with immunotherapy (IT). RECENT FINDINGS The response of cancer to IT is limited by primary and acquired immune resistance, and strategies are needed to prime the immune system to increase the efficacy of IT. Radiation therapy can induce immunologic effects and can potentially be used to synergize the effects of IT, although the optimal combination of radiation and IT is largely unknown. SFRT is a novel radiation technique that limits ablative doses to tumor subvolumes, and this highly heterogeneous dose deposition may increase the immune-rich infiltrate within the targeted tumor with enhanced antigen presentation and activated T cells in nonirradiated tumors. The understanding of nontargeted effects of SFRT can contribute to future translational strategies to combine SFRT and IT. Integration of SFRT and IT is an innovative approach to address immune resistance to IT with the overall goal of improving the therapeutic ratio of radiation therapy and increasing the efficacy of IT.
Collapse
Affiliation(s)
- Lauren Lukas
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hualin Zhang
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Karen Cheng
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Iori F, Bruni A, Cozzi S, Ciammella P, Di Pressa F, Boldrini L, Greco C, Nardone V, Salvestrini V, Desideri I, De Felice F, Iotti C. Can Radiotherapy Empower the Host Immune System to Counterattack Neoplastic Cells? A Systematic Review on Tumor Microenvironment Radiomodulation. Curr Oncol 2022; 29:4612-4624. [PMID: 35877226 PMCID: PMC9319790 DOI: 10.3390/curroncol29070366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the rising evidence in favor of immunotherapy (IT), the treatment of oncological patients affected by so-called "cold tumors" still represents an open issue. Cold tumors are characterized by an immunosuppressive (so-called cold) tumor microenvironment (TME), which favors host immune system suppression, cancer immune-escape, and a worse response to IT. However, the TME is not a static element, but dynamically mutates and can be changed. Radiotherapy (RT) can modulate a cold microenvironment, rendering it better at tumor killing by priming the quiescent host immune system, with a consequent increase in immunotherapy response. The combination of TME radiomodulation and IT could therefore be a strategy for those patients affected by cold tumors, with limited or no response to IT. Thus, this review aims to provide an easy, rapid, and practical overview of how RT could convert the cold TME and why cold tumor radiomodulation could represent an interesting strategy in combination with IT.
Collapse
Affiliation(s)
- Federico Iori
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy; (S.C.); (P.C.); (C.I.)
| | - Alessio Bruni
- Radiotherapy Unit, Oncology and Hematology Department, University Hospital of Modena, 41121 Modena, Italy; (A.B.); (F.D.P.)
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy; (S.C.); (P.C.); (C.I.)
| | - Patrizia Ciammella
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy; (S.C.); (P.C.); (C.I.)
| | - Francesca Di Pressa
- Radiotherapy Unit, Oncology and Hematology Department, University Hospital of Modena, 41121 Modena, Italy; (A.B.); (F.D.P.)
| | - Luca Boldrini
- Radiation Oncology Unit, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Carlo Greco
- Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy;
| | | | - Viola Salvestrini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50134 Florence, Italy; (V.S.); (I.D.)
| | - Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50134 Florence, Italy; (V.S.); (I.D.)
| | - Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Cinzia Iotti
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy; (S.C.); (P.C.); (C.I.)
| |
Collapse
|