1
|
Adebayo G, Ayanda OI, Rottmann M, Ajibaye OS, Oduselu G, Mulindwa J, Ajani OO, Aina O, Mäser P, Adebiyi E. The Importance of Murine Models in Determining In Vivo Pharmacokinetics, Safety, and Efficacy in Antimalarial Drug Discovery. Pharmaceuticals (Basel) 2025; 18:424. [PMID: 40143200 PMCID: PMC11944934 DOI: 10.3390/ph18030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
New chemical entities are constantly being investigated towards antimalarial drug discovery, and they require animal models for toxicity and efficacy testing. Murine models show physiological similarities to humans and are therefore indispensable in the search for novel antimalarial drugs. They provide a preclinical basis (following in vitro assessments of newly identified lead compounds) for further assessment in the drug development pipeline. Specific mouse strains, non-humanized and humanized, have successfully been infected with rodent Plasmodium species and the human Plasmodium species, respectively. Infected mice provide a platform for the assessment of treatment options being sought. In vivo pharmacokinetic evaluations are necessary when determining the fate of potential antimalarials in addition to the efficacy assessment of these chemical entities. This review describes the role of murine models in the drug development pipeline. It also explains some in vivo pharmacokinetic, safety, and efficacy parameters necessary for making appropriate choices of lead compounds in antimalarial drug discovery. Despite the advantages of murine models in antimalarial drug discovery, certain limitations are also highlighted.
Collapse
Affiliation(s)
- Glory Adebayo
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Opeyemi I. Ayanda
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Olusola S. Ajibaye
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Gbolahan Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Julius Mulindwa
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Oluwagbemiga Aina
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- African Centre of Excellence in Bioinformatics & Data Intensive Science (ACE), Kampala P.O. Box 7062, Uganda
- Infectious Diseases Institute, Makerere University, Kampala P.O. Box 22418, Uganda
| |
Collapse
|
2
|
Devi S, Negi S, Tandel N, Dalai SK, Tyagi RK. Oleuropein: a viable therapeutic option for malaria and cancer. Drug Discov Today 2025; 30:104254. [PMID: 39608487 DOI: 10.1016/j.drudis.2024.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Oleuropein (OLP) holds promise as a therapeutic candidate for both Plasmodium falciparum infection and cancer. It modulates the phosphoinositide 3-kinase (PI3K)-Akt1 signaling pathway to regulate inflammation and restore immune homeostasis. Moreover, it influences the cell death/autophagy axis, along with increasing the antimalarial efficacy of artemisinin. Our findings indicate that the anti-breast-cancer effect of OLP could be mediated by regulating the balance of T helper 17 and regulatory T cells. Additionally, we discuss the use of hematopoietic-stem-cell-transplanted immunodeficient mice with a humanized immune system for validating the antimalarial activity, autophagy and anticancer activity of OLP.
Collapse
Affiliation(s)
- Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Nikunj Tandel
- CSIR-Centre For Cellular & Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, SG Highway, Gujarat 382481, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Sharma P, Chaudhary NR, Devi S, Negi S, Tandel N, Tyagi RK. Oleuropein mediated autophagy begets antimalarial drug resistance. Front Microbiol 2024; 15:1453998. [PMID: 39228384 PMCID: PMC11369837 DOI: 10.3389/fmicb.2024.1453998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Drug resistance in Plasmodium falciparum presents a formidable challenge to the humanity. And, unavailability of an effective vaccine worsens the situation further. Autophagy is one of the mechanisms employed by parasite to evade drug pressure to survive. Autophagy induced by the P. falciparum in response to the oleuropein pressure may answer many questions related to the parasite survival as well as evolving drug tolerance. The survival/autophagy axis could be an important avenue to explore in order to address certain questions related to the evolution of drug resistance. In addition, humanized mouse model of P. falciparum infection could serve as an important preclinical tool to investigate the oleuropein-induced autophagy, potentially helping to dissect the mechanisms underlying the development of antimalarial drug resistance.
Collapse
Affiliation(s)
- Prakriti Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Neil Roy Chaudhary
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Jiménez-Díaz MB, Möhrle JJ, Angulo-Barturen I, Demarta-Gatsi C. Using Cryopreserved Plasmodium falciparum Sporozoites in a Humanized Mouse Model to Study Early Malaria Infection Processes and Test Prophylactic Treatments. Microorganisms 2023; 11:2209. [PMID: 37764054 PMCID: PMC10536749 DOI: 10.3390/microorganisms11092209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
In addition to vector control, long-lasting insecticidal nets and case management, the prevention of infection through vaccination and/or chemoprevention are playing an increasing role in the drive to eradicate malaria. These preventative approaches represent opportunities for improvement: new drugs may be discovered that target the early infectious stages of the Plasmodium parasite in the liver (rather than the symptomatic, abundant blood stage), and new, exciting vaccination technologies have recently been validated (using mRNA or novel adjuvants). Exploiting these possibilities requires the availability of humanized mouse models that support P. falciparum infection yet avoid the hazardous use of infectious mosquitoes. Here, we show that commercially available P. falciparum sporozoites and FRG mice carrying human hepatocytes and red blood cells faithfully recapitulate the early human malaria disease process, presenting an opportunity to use this model for the evaluation of prophylactic treatments with a novel mode of action.
Collapse
|
5
|
Negi S, Tandel N, Sharma P, Kumar R, Tyagi RK. Aceclofenac and methotrexate combination therapy could influence Th1/Th17 axis to modulate rheumatoid-arthritis-induced inflammation. Drug Discov Today 2023; 28:103671. [PMID: 37330038 DOI: 10.1016/j.drudis.2023.103671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/14/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory, autoimmune and connective-tissue arthropathy. The methotrexate (MTX) and aceclofenac (ACL) combination drug regimen is known to regulate the immunological pathways. Also, RA-elicited inflammation is decreased by the combination drug treatment. ACL and MTX combination treatment has been shown to regulate the signaling pathway controlled by NF-κB and FOXO1. The present manuscript reviews the importance of the combination drug regimen to treat and/or manage RA. The combination drug regimen could affect the Th1/Th17 axis to switch the balance toward the immunoregulatory (Th1) phenotype for establishing immune homeostasis. In conclusion, we propose the study of the immunological signaling pathways in experimental humanized RA mice.
Collapse
Affiliation(s)
- Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh-160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad-382481, India
| | - Prakriti Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh-160036, India
| | - Rajinder Kumar
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh-160036, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh-160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
7
|
Parasite Viability as a Measure of In Vivo Drug Activity in Preclinical and Early Clinical Antimalarial Drug Assessment. Antimicrob Agents Chemother 2022; 66:e0011422. [PMID: 35727057 PMCID: PMC9295577 DOI: 10.1128/aac.00114-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.)
Collapse
|