1
|
Wang X, Wang Y, Antony V, Sun H, Liang G. Metabolism-Associated Molecular Patterns (MAMPs). Trends Endocrinol Metab 2020; 31:712-724. [PMID: 32807598 DOI: 10.1016/j.tem.2020.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Metabolic diseases pose a tremendous health threat in both developed and developing countries. The pathophysiology of metabolic diseases is complex but has been shown to be closely associated with sterile inflammation, which is initiated by various danger molecules derived from metabolic overload, such as oxidized low-density lipoproteins (OxLDLs), free fatty acids (FFAs), glucose, advanced glycation end products (AGEs), and cholesterol. These danger signals are sensed by pattern recognition receptors (PRRs) to activate proinflammatory signaling pathways and promote the release of proinflammatory mediators, leading to chronic low-grade inflammation. Although these harmful metabolic stimuli are generally regarded as damage-associated molecular patterns (DAMPs), a more specific definition and accurate classification for these DAMPs is still missing. In this opinion, we classify the harmful metabolic stimuli that can incite inflammatory responses and tissue damage via instigating PRRs as metabolism-associated molecular patterns (MAMPs), and we summarize their roles in metaflammation-mediated metabolic diseases.
Collapse
Affiliation(s)
- Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Victor Antony
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhuji Biomedical Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|
2
|
Tenesaca S, Vasquez M, Fernandez-Sendin M, Di Trani CA, Ardaiz N, Gomar C, Cuculescu D, Alvarez M, Otano I, Melero I, Berraondo P. Scavenger Receptor Class B Type I is Required for 25-Hydroxycholecalciferol Cellular Uptake and Signaling in Myeloid Cells. Mol Nutr Food Res 2020; 64:e1901213. [PMID: 32583974 DOI: 10.1002/mnfr.201901213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/01/2020] [Indexed: 11/12/2022]
Abstract
SCOPE Vitamin D3 is a critical molecule for the properly controlled activity of the immune system. In myeloid-derived cells, vitamin D3 induces the production of the antimicrobial and antitumor peptide cathelicidin. In this study, the mechanism of the entry of 25-hydroxycholecalciferol (25(OH)D) in myeloid-derived cells is explored. METHODS AND RESULTS Here, a novel regulatory pathway of vitamin D3 biology is described. Using a polyclonal antibody, two different chemical inhibitors, and a high-density lipoprotein as a competing ligand, it is demonstrated here that the 25(OH)D signaling pathway in myeloid cells depends on scavenger receptor class B type I (SR-B1). This effect is observed in the THP-1 monocytic cell line and in human primary monocytes. SR-B1 blockade abrogates the cellular uptake of 25(OH)D leading to a general shut down of the gene transcription program modulated by 25(OH)D. The results obtained at the transcriptional level are confirmed at the protein and functional level for CD14 in the THP-1 cell line. CONCLUSION In conclusion, SR-B1 plays a critical role in vitamin D3 biology, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Shirley Tenesaca
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Doina Cuculescu
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Itziar Otano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, 31008, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, 31008, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, 31008, Spain
| |
Collapse
|
3
|
Ochoa MC, Minute L, López A, Pérez-Ruiz E, Gomar C, Vasquez M, Inoges S, Etxeberria I, Rodriguez I, Garasa S, Mayer JPA, Wirtz P, Melero I, Berraondo P. Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15. Oncoimmunology 2017; 7:e1393597. [PMID: 29308327 DOI: 10.1080/2162402x.2017.1393597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022] Open
Abstract
Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8+ T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8+ T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo. The EGFR+ human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2-/-γc-/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1-/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.
Collapse
Affiliation(s)
- Maria Carmen Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Luna Minute
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ascensión López
- Servicio de Inmunología e Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain.,Hematología y Área de Terapia Celular, Clínica Universidad de Navarra, Pamplona, Spain
| | - Elisabeth Pérez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Susana Inoges
- Servicio de Inmunología e Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain.,Hematología y Área de Terapia Celular, Clínica Universidad de Navarra, Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inmaculada Rodriguez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Servicio de Inmunología e Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
4
|
Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD. Maillard reaction in food allergy: Pros and cons. Crit Rev Food Sci Nutr 2017; 58:208-226. [PMID: 26980434 DOI: 10.1080/10408398.2016.1152949] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food allergens have a notable potential to induce various health concerns in susceptible individuals. The majority of allergenic foods are usually subjected to thermal processing prior to their consumption. However, during thermal processing and long storage of foods, Maillard reaction (MR) often takes place. The MR is a non-enzymatic glycation reaction between the carbonyl group of reducing sugars and compounds having free amino groups. MR may sometimes be beneficial by damaging epitope of allergens and reducing allergenic potential, while exacerbation in allergic reactions may also occur due to changes in the motifs of epitopes or neoallergen generation. Apart from these modulations, non-enzymatic glycation can also modify the food protein(s) with various type of advance glycation end products (AGEs) such as Nϵ-(carboxymethyl-)lysine (CML), pentosidine, pyrraline, and methylglyoxal-H1 derived from MR. These Maillard products may act as immunogen by inducing the activation and proliferation of various immune cells. Literature is available to understand pathogenesis of glycation in the context of various diseases but there is hardly any review that can provide a thorough insight on the impact of glycation in food allergy. Therefore, present review explores the pathogenesis with special reference to food allergy caused by non-enzymatic glycation as well as AGEs.
Collapse
Affiliation(s)
- Rinkesh Kumar Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,b Department of Biosciences , Integral University , Lucknow , India
| | - Kriti Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | - Akanksha Sharma
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,c Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Capmus , Lucknow , India
| | - Mukul Das
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | | | | |
Collapse
|
5
|
Nikiforov NG, Elizova NV, Bukrinsky M, Dubrovsky L, Makeev VJ, Wakabayashi Y, Liu P, Foxx KK, Kruth HS, Jin X, Zakiev ER, Orekhov AN. Use of Primary Macrophages for Searching Novel Immunocorrectors. Curr Pharm Des 2017; 23:915-920. [PMID: 28124601 DOI: 10.2174/1381612823666170125110128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/11/2017] [Indexed: 11/22/2022]
Abstract
In this mini-review, the role of macrophage phenotypes in atherogenesis is considered. Recent studies on distribution of M1 and M2 macrophages in different types of atherosclerotic lesions indicate that macrophages exhibit a high degree of plasticity of phenotype in response to various conditions in microenvironment. The effect of the accumulation of cholesterol, a key event in atherogenesis, on the macrophage phenotype is also discussed. The article presents the results of transcriptome analysis of cholesterol-loaded macrophages revealing genes involved in immune response whose expression rate has changed the most. It turned out that the interaction of macrophages with modified LDL leads to higher expression levels of pro-inflammatory marker TNF-α and antiinflammatory marker CCL18. Phenotypic profile of macrophage activation could be a good target for testing of novel anti-atherogenic immunocorrectors. A number of anti-atherogenic drugs were tested as potential immunocorrectors using primary macrophage-based model.
Collapse
Affiliation(s)
- Nikita G Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Natalia V Elizova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Michael Bukrinsky
- GW School of Medicine and Health Sciences, George Washington University, 20037 Washington, DC, United States
| | - Larisa Dubrovsky
- GW School of Medicine and Health Sciences, George Washington University, 20037 Washington, DC, United States
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russian Federation
| | - Yoshiyuki Wakabayashi
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, 20892 Bethesda, MD, United States
| | - Poching Liu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, 20892 Bethesda, MD, United States
| | - Kathy K Foxx
- Kalen Biomedical, LLC, 20886 Montgomery Village, MD, United States
| | - Howard S Kruth
- Experimental Atherosclerosis Section, Center for Molecular, National Heart, Lung, and Blood Institute , National Institutes of Health, 20892 Bethesda, MD, United States
| | - Xueting Jin
- Experimental Atherosclerosis Section, Center for Molecular, National Heart, Lung, and Blood Institute , National Institutes of Health, 20892 Bethesda, MD, United States
| | - Emile R Zakiev
- INSERM UMR_S 1166, Faculte de Medecine Pitie-Salpetriere, University of Pierre and Marie Curie - Paris 6, 75013 Paris, France
| | - Alexander N Orekhov
- Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
6
|
Vasquez M, Fioravanti J, Aranda F, Paredes V, Gomar C, Ardaiz N, Fernandez-Ruiz V, Méndez M, Nistal-Villan E, Larrea E, Gao Q, Gonzalez-Aseguinolaza G, Prieto J, Berraondo P. Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function. Oncoimmunology 2016; 5:e1196309. [PMID: 27622065 PMCID: PMC5007953 DOI: 10.1080/2162402x.2016.1196309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor class B type I (SR-B1) binds pathogen-associated molecular patterns participating in the regulation of the inflammatory reaction but there is no information regarding potential interactions between SR-B1 and the interferon system. Herein, we report that SR-B1 ligands strongly regulate the transcriptional response to interferon α (IFNα) and enhance its antiviral and antitumor activity. This effect was mediated by the activation of TLR2 and TLR4 as it was annulled by the addition of anti-TLR2 or anti-TLR4 blocking antibodies. In vivo, we maximized the antitumor activity of IFNα co-expressing in the liver a SR-B1 ligand and IFNα by adeno-associated viruses. This gene therapy strategy eradicated liver metastases from colon cancer with reduced toxicity. On the other hand, genetic and pharmacological inhibition of SR-B1 blocks the clathrin-dependent interferon receptor recycling pathway with a concomitant reduction in IFNα signaling and bioactivity. This effect can be applied to enhance cancer immunotherapy with oncolytic viruses. Indeed, SR-B1 antagonists facilitate replication of oncolytic viruses amplifying their tumoricidal potential. In conclusion, SR-B1 agonists behave as IFNα enhancers while SR-B1 inhibitors dampen IFNα activity. These results demonstrate that SR-B1 is a suitable pharmacology target to enhance cancer immunotherapy based on IFNα and oncolytic viruses.
Collapse
Affiliation(s)
- Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Jessica Fioravanti
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Vladimir Paredes
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain; Centro Médico Nacional La Raza, IMSS, México DF, Mexico
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Veronica Fernandez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Miriam Méndez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Estanislao Nistal-Villan
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Esther Larrea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain; Instituto de Salud Tropical, University of Navarra, Pamplona, Navarra, Spain
| | - Qinshan Gao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Gloria Gonzalez-Aseguinolaza
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Jesus Prieto
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| |
Collapse
|
7
|
Sparks SM, Zhou H, Generaux C, Harston L, Moncol D, Jayawickreme C, Parham J, Condreay P, Rimele T. Identification of nonabsorbable inhibitors of the scavenger receptor-BI (SR-BI) for tissue-specific administration. Bioorg Med Chem Lett 2016; 26:1901-4. [PMID: 26988301 DOI: 10.1016/j.bmcl.2016.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The identification of a low-permeability scavenger receptor BI (SR-BI) inhibitor starting from the ITX-5061 template is described. Structure-activity and structure-permeability relationships were assessed for analogs leading to the identification of compound 8 as a potent and nonabsorbable SR-BI inhibitor.
Collapse
Affiliation(s)
- Steven M Sparks
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States.
| | - Huiqiang Zhou
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Claudia Generaux
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Lindsey Harston
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - David Moncol
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Channa Jayawickreme
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Janet Parham
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Patrick Condreay
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Thomas Rimele
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| |
Collapse
|
8
|
Medina-Echeverz J, Vasquez M, Gomar C, Ardaiz N, Berraondo P. Overexpression of apolipoprotein A-I fused to an anti-transforming growth factor beta peptide modulates the tumorigenicity and immunogenicity of mouse colon cancer cells. Cancer Immunol Immunother 2015; 64:717-25. [PMID: 25795134 PMCID: PMC11028610 DOI: 10.1007/s00262-015-1681-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/06/2015] [Indexed: 02/01/2023]
Abstract
Transforming growth factor beta (TGF-β) promotes tumor growth, invasion and metastasis in established tumors. In this study, we analyzed the effect of overexpressing an anti-TGF-β peptide fused to apolipoprotein A-I (ApoA-I) as a scaffold molecule. We generated and characterized stable MC38 colon carcinoma clones expressing ApoA-I fused to the anti-TGF-β peptide P144 and ApoA-I as control cells. We evaluated in vitro the gene expression profile, cell cycle and anchorage-independent growth. The in vivo tumorigenic potential and immunogenicity were analyzed inoculating the MC38 clones into C57BL/6 mice, recombination-activating gene 1 knockout mice or mice deficient in NK cells either subcutaneously or intrasplenically to generate hepatic metastases. While overexpression of ApoA-I had no effect on the parameters analyzed, ApoA-I fused to P144 markedly diminished the tumorigenic capacity and metastatic potential of MC38 in vitro and in vivo, thus generating a highly immunogenic cell line. MC38 cells transfected with ApoA-I fused to P144 triggered memory T cell responses able to eliminate the parental cell line upon re-challenge. In summary, expression of ApoA-I fused to P144 is a novel strategy to modulate TGF-β in tumor cells. These results highlight the potential of TGF-β as a target in the development of new antitumor treatments.
Collapse
Affiliation(s)
- José Medina-Echeverz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avda. Pio XII 55, 31008 Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avda. Pio XII 55, 31008 Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avda. Pio XII 55, 31008 Pamplona, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avda. Pio XII 55, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avda. Pio XII 55, 31008 Pamplona, Spain
| |
Collapse
|
9
|
Dockendorff C, Faloon PW, Germain A, Yu M, Youngsaye W, Nag PP, Bennion M, Penman M, Nieland TJF, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Discovery of bisamide-heterocycles as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorg Med Chem Lett 2015; 25:2594-8. [PMID: 25958245 DOI: 10.1016/j.bmcl.2015.03.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/01/2022]
Abstract
A new series of potent inhibitors of cellular lipid uptake from HDL particles mediated by scavenger receptor, class B, type I (SR-BI) was identified. The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR) that measured the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is characterized by a linear peptidomimetic scaffold with two adjacent amide groups, as well as an aryl-substituted heterocycle. Analogs of the initial hit were rapidly prepared via Ugi 4-component reaction, and select enantiopure compounds were prepared via a stepwise sequence. Structure-activity relationship (SAR) studies suggest an oxygenated arene is preferred at the western end of the molecule, as well as highly lipophilic substituents on the central and eastern nitrogens. Compound 5e, with (R)-stereochemistry at the central carbon, was designated as probe ML279. Mechanistic studies indicate that ML279 stabilizes the interaction of HDL particles with SR-BI, and its effect is reversible. It shows good potency (IC50=17 nM), is non-toxic, plasma stable, and has improved solubility over our alternative probe ML278.
Collapse
Affiliation(s)
- Chris Dockendorff
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| | - Patrick W Faloon
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Andrew Germain
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Willmen Youngsaye
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Partha P Nag
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Melissa Bennion
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Marsha Penman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sivaraman Dandapani
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - José R Perez
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle A Palmer
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Dockendorff C, Faloon PW, Yu M, Youngsaye W, Penman M, Nieland TJF, Nag PP, Lewis TA, Pu J, Bennion M, Negri J, Paterson C, Lam G, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Indolinyl-Thiazole Based Inhibitors of Scavenger Receptor-BI (SR-BI)-Mediated Lipid Transport. ACS Med Chem Lett 2015; 6:375-380. [PMID: 26478787 PMCID: PMC4599563 DOI: 10.1021/ml500154q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 02/02/2015] [Indexed: 01/14/2023] Open
Abstract
![]()
A potent class of indolinyl-thiazole
based inhibitors of cellular
lipid uptake mediated by scavenger receptor, class B, type I (SR-BI)
was identified via a high-throughput screen of the National Institutes
of Health Molecular Libraries Small Molecule Repository (NIH MLSMR)
in an assay measuring the uptake of the fluorescent lipid DiI from
HDL particles. This class of compounds is represented by ML278 (17–11), a potent (average IC50 = 6 nM) and reversible inhibitor of lipid uptake via SR-BI. ML278
is a plasma-stable, noncytotoxic probe that exhibits moderate metabolic
stability, thus displaying improved properties for in vitro and in
vivo studies. Strikingly, ML278 and previously described inhibitors
of lipid transport share the property of increasing the binding of
HDL to SR-BI, rather than blocking it, suggesting there may be similarities
in their mechanisms of action.
Collapse
Affiliation(s)
- Chris Dockendorff
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Patrick W. Faloon
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Willmen Youngsaye
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Marsha Penman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thomas J. F. Nieland
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Partha P. Nag
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Timothy A. Lewis
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Jun Pu
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Melissa Bennion
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Joseph Negri
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Conor Paterson
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Garrett Lam
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Sivaraman Dandapani
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - José R. Perez
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Michelle A. Palmer
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Stuart L. Schreiber
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
- Howard Hughes Medical Institute, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Dockendorff C, Faloon PW, Pu J, Yu M, Johnston S, Bennion M, Penman M, Nieland TJF, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Benzo-fused lactams from a diversity-oriented synthesis (DOS) library as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorg Med Chem Lett 2015; 25:2100-5. [PMID: 25900219 DOI: 10.1016/j.bmcl.2015.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023]
Abstract
We report a new series of 8-membered benzo-fused lactams that inhibit cellular lipid uptake from HDL particles mediated by Scavenger Receptor, Class B, Type I (SR-BI). The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR), measuring the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is part of a previously reported diversity-oriented synthesis (DOS) library prepared via a build-couple-pair approach. Detailed structure-activity relationship (SAR) studies were performed with a selection of the original library, as well as additional analogs prepared via solution phase synthesis. These studies demonstrate that the orientation of the substituents on the aliphatic ring have a critical effect on activity. Additionally, a lipophilic group is required at the western end of the molecule, and a northern hydroxyl group and a southern sulfonamide substituent also proved to be optimal. Compound 2p was found to possess a superior combination of potency (av IC50=0.10μM) and solubility (79μM in PBS), and it was designated as probe ML312.
Collapse
Affiliation(s)
- Chris Dockendorff
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| | - Patrick W Faloon
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jun Pu
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stephen Johnston
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Melissa Bennion
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Marsha Penman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sivaraman Dandapani
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - José R Perez
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle A Palmer
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Van Crombruggen K, Jacob F, Zhang N, Bachert C. Damage-associated molecular patterns and their receptors in upper airway pathologies. Cell Mol Life Sci 2013; 70:4307-21. [PMID: 23673984 PMCID: PMC11113492 DOI: 10.1007/s00018-013-1356-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022]
Abstract
Inflammation of the nasal (rhinitis) and sinus mucosa (sinusitis) are prevalent medical conditions of the upper airways that are concurrent in many patients; hence the terminology "rhinosinusitis". The disease status is further defined to be "chronic" in case symptoms persist for more than 12 weeks without resolution. A diverse spectrum of external factors including viral and bacterial insults together with epithelial barrier malfunctions could be implicated in the chronicity of the inflammatory responses in chronic rhinosinusitis (CRS). However, despite massive research efforts in an attempt to unveil the pathophysiology, the exact reason for a lack of resolution still remains poorly understood. A novel set of molecules that could be implicated in sustaining the inflammatory reaction may be found within the host itself. Indeed, besides mediators of inflammation originating from outside, some endogenous intracellular and/or extracellular matrix (ECM) components from the host can be released into the extracellular space upon damage induced during the initial inflammatory reaction where they gain functions distinct from those during normal physiology. These "host-self" molecules are known to modulate inflammatory responses under pathological conditions, potentially preventing resolution and contributing to the development of chronic inflammation. These molecules are collectively classified as damage-associated molecular patterns (DAMPs). This review summarizes the current knowledge regarding DAMPs in upper airway pathologies, also covering those that were previously investigated for their intracellular and/or ECM functions often acting as an antimicrobial agent or implicated in tissue/cell homeostasis, and for which their function as a danger signaling molecule was not assessed. It is, however, of importance to assess these molecules again from a point of view as a DAMP in order to further unravel the pathogenesis of CRS.
Collapse
Affiliation(s)
- Koen Van Crombruggen
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium,
| | | | | | | |
Collapse
|