1
|
Wischnewski S, Rausch HW, Ikenaga C, Leipe J, Lloyd TE, Schirmer L. Emerging mechanisms and therapeutics in inflammatory muscle diseases. Trends Pharmacol Sci 2025; 46:249-263. [PMID: 39939222 DOI: 10.1016/j.tips.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Idiopathic inflammatory myopathies (IIMs), or myositis, are rare diseases marked by immune-driven muscle damage and complications like skin lesions and interstitial lung disease (ILD). Despite advances, challenges in diagnosis and treatment persist, particularly in inclusion body myositis (IBM), where no effective therapy exists. Recent breakthroughs, including transcriptomics and insights into antibody-mediated immunity and interferon (IFN) signaling, have clarified IIM pathophysiology and spurred the development of new therapies, such as chimeric antigen receptor (CAR) T cells and Janus kinase (JAK) inhibitors. We explore the latest findings on the mechanisms underlying adult-onset IIMs, emphasizing IBM pathobiology and its unique immune and degenerative pathways, such as a selective type 2 myofiber damage and severe cell stress. Finally, we highlight the recent advances in transcriptomics, single-cell analysis, and machine learning in transforming IIM research by improving diagnostic accuracy, uncovering therapeutic targets, and supporting the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Sven Wischnewski
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Werner Rausch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Kitasato University Hospital, Tokyo, Japan
| | - Jan Leipe
- Division of Rheumatology, Department of Medicine V, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Division of Rheumatology, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Zhang G, Yan S, Liu Y, Du Z, Min Q, Qin S. PROTACs coupled with oligonucleotides to tackle the undruggable. Bioanalysis 2025; 17:261-276. [PMID: 39895280 PMCID: PMC11864318 DOI: 10.1080/17576180.2025.2459528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Undruggable targets account for roughly 85% of human disease-related targets and represent a category of therapeutic targets that are difficult to tackle with traditional methods, but their considerable clinical importance. These targets are generally defined by planar functional interfaces and the absence of efficient ligand-binding pockets, making them unattainable for conventional pharmaceutical strategies. The advent of oligonucleotide-based proteolysis-targeting chimeras (PROTACs) has instilled renewed optimism in addressing these challenges. These PROTACs facilitate the targeted degradation of undruggable entities, including transcription factors (TFs) and RNA-binding proteins (RBPs), via proteasome-dependent mechanisms, thereby presenting novel therapeutic approaches for diseases linked to these targets. This review offers an in-depth examination of recent progress in the integration of PROTAC technology with oligonucleotides to target traditionally undruggable proteins, emphasizing the design principles and mechanisms of action of these innovative PROTACs.
Collapse
Affiliation(s)
- Guangshuai Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Si Yan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Yan Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Ziwei Du
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Qin Min
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
3
|
Silva JDM, Alves CEDC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 2024; 15:1297994. [PMID: 38384471 PMCID: PMC10879370 DOI: 10.3389/fimmu.2024.1297994] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human pathogen linked to various diseases, including infectious mononucleosis and multiple types of cancer. To control and eliminate EBV, the host's immune system deploys its most potent defenses, including pattern recognition receptors, Natural Killer cells, CD8+ and CD4+ T cells, among others. The interaction between EBV and the human immune system is complex and multifaceted. EBV employs a variety of strategies to evade detection and elimination by both the innate and adaptive immune systems. This demonstrates EBV's mastery of navigating the complexities of the immunological landscape. Further investigation into these complex mechanisms is imperative to advance the development of enhanced therapeutic approaches with heightened efficacy. This review provides a comprehensive overview of various mechanisms known to date, employed by the EBV to elude the immune response, while establishing enduring latent infections or instigate its lytic replication.
Collapse
Affiliation(s)
- Jean de Melo Silva
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
4
|
He H, Yang M, Li S, Zhang G, Ding Z, Zhang L, Shi G, Li Y. Mechanisms and biotechnological applications of transcription factors. Synth Syst Biotechnol 2023; 8:565-577. [PMID: 37691767 PMCID: PMC10482752 DOI: 10.1016/j.synbio.2023.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks. These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites. Recent advancements have brought innovative insights into the understanding of transcription factors. In this review, we comprehensively summarize the mechanisms by which transcription factors carry out their functions, along with calculation and experimental-based methods employed in their identification. Additionally, we highlight recent achievements in the application of transcription factors in various biotechnological fields, including cell engineering, human health, and biomanufacturing. Finally, the current limitations of research and provide prospects for future investigations are discussed. This review will provide enlightening theoretical guidance for transcription factors engineering.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Mingfei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Gaoyang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| |
Collapse
|
5
|
Shan J, Li L, Du L, Yang P. Association of TBX21 gene polymorphisms and acute anterior uveitis risk in a Chinese population: A case-control study. Exp Eye Res 2023; 229:109417. [PMID: 36796535 DOI: 10.1016/j.exer.2023.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Copy number variations (CNVs) in TBX21 gene have been reported to be significantly and positively correlated with acute anterior uveitis (AAU). Our study was performed to further determine whether single nucleotide polymorphisms (SNPs) in TBX21 gene confer susceptibility to AAU in a Chinese population. In our case-control study, 420 AAU patients and 918 healthy controls were included. SNP genotyping was conducted via the MassARRAY™ iPLEX Gold platform. Association and haplotype analyses were performed via SPSS 23.0 and SHEsis software. No significant association was observed between two candidate SNPs of TBX21 gene (rs4794067, rs11657479) and susceptibility to AAU (Pc > 0.05). In stratification analysis, the result also showed no significant difference between the HLA-B27 positive AAU patients and non-typed healthy controls. Additionally, no association was detected between TBX21 haplotypes and AAU risk. In conclusion, the polymorphisms rs4794067 and rs11657479 in TBX21 gene did not confer disease susceptibility to AAU in a Chinese population.
Collapse
Affiliation(s)
- Jiankang Shan
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China; Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China.
| | - Peizeng Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipal Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Mormile R. Myocarditis and pericarditis following mRNA COVID-19 vaccination in younger patients: is there a shared thread? Expert Rev Cardiovasc Ther 2022; 20:87-90. [PMID: 35180029 DOI: 10.1080/14779072.2022.2044305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, San G Moscati Hospital, Aversa, Italy
| |
Collapse
|
8
|
Ghosh R, Mitra P, Kumar PVSNK, Goyal T, Sharma P. T helper cells in depression: central role of Th17 cells. Crit Rev Clin Lab Sci 2021; 59:19-39. [PMID: 34592888 DOI: 10.1080/10408363.2021.1965535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is one of the most common neuropsychiatric disorders in the world. While conventional pharmaceutical therapy targets monoaminergic pathway dysfunction, it has not been totally successful in terms of positive outcomes, remission, and preventing relapses. There is an increasing amount of evidence that neuroinflammation may play a significant part in the pathophysiology of depression. Among the key components of the neuroinflammatory pathways already known to be active are the T helper (Th) cells, especially Th17 cells. While various preclinical and clinical studies have reported increased levels of Th17 cells in both serum and brain tissue of laboratory model animals, contradictory results have argued against a pertinent role of Th17 cells in depression. Recent studies have also revealed a role for more pathogenic and inflammatory subsets of Th17 in depression, as well as IL-17A and Th17 cells in non-responsiveness to conventional antidepressant therapy. Despite recent advances, there is still a significant knowledge gap concerning the exact mechanism by which Th17 cells influence neuroinflammation in depression. This review first provides a short introduction to the major findings that led to the discovery of the role of Th cells in depression. The major subsets of Th cells known to be involved in neuroimmunology of depression, such as Th1, Th17, and T regulatory cells, are subsequently described, with an in-depth discussion on current knowledge about Th17 cells in depression.
Collapse
Affiliation(s)
- Raghumoy Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
9
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Abstract
B cells serve as a key weapon against infectious diseases. They also contribute to multiple autoimmune diseases, including multiple sclerosis (MS) where depletion of B cells is a highly effective therapy. We describe a comprehensive profile of central nervous system (CNS)-specific transcriptional B cell phenotypes in MS at single-cell resolution with paired immune repertoires. We reveal a polyclonal immunoglobulin M (IgM) and IgG1 cerebrospinal fluid B cell expansion polarized toward an inflammatory, memory and plasmablast/plasma cell phenotype, with differential up-regulation of specific proinflammatory pathways. We did not find evidence that CNS B cells harbor a neurotropic virus. These data support the targeting of activated resident B cells in the CNS as a potentially effective strategy for control of treatment-resistant chronic disease. Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood–brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein–Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype.
Collapse
|
11
|
Brune Z, Rice MR, Barnes BJ. Potential T Cell-Intrinsic Regulatory Roles for IRF5 via Cytokine Modulation in T Helper Subset Differentiation and Function. Front Immunol 2020; 11:1143. [PMID: 32582209 PMCID: PMC7283537 DOI: 10.3389/fimmu.2020.01143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Regulatory Factor 5 (IRF5) is one of nine members of the IRF family of transcription factors. Although initially discovered as a key regulator of the type I interferon and pro-inflammatory cytokine arm of the innate immune response, IRF5 has now been found to also mediate pathways involved in cell growth and differentiation, apoptosis, metabolic homeostasis and tumor suppression. Hyperactivation of IRF5 has been implicated in numerous autoimmune diseases, chief among them systemic lupus erythematosus (SLE). SLE is a heterogeneous autoimmune disease in which patients often share similar characteristics in terms of autoantibody production and strong genetic risk factors, yet also possess unique disease signatures. IRF5 pathogenic alleles contribute one of the strongest risk factors for SLE disease development. Multiple models of murine lupus have shown that loss of Irf5 is protective against disease development. In an attempt to elucidate the regulatory role(s) of IRF5 in driving SLE pathogenesis, labs have begun to examine the function of IRF5 in several immune cell types, including B cells, macrophages, and dendritic cells. A somewhat untouched area of research on IRF5 is in T cells, even though Irf5 knockout mice were reported to have skewing of T cell subsets from T helper 1 (Th1) and T helper 17 (Th17) toward T helper 2 (Th2), indicating a potential role for IRF5 in T cell regulation. However, most studies attributed this T cell phenotype in Irf5 knockout mice to dysregulation of antigen presenting cell function rather than an intrinsic role for IRF5 in T cells. In this review, we offer a different interpretation of the literature. The role of IRF5 in T cells, specifically its control of T cell effector polarization and the resultant T cell-mediated cytokine production, has yet to be elucidated. A strong understanding of the regulatory role(s) of this key transcription factor in T cells is necessary for us to grasp the full picture of the complex pathogenesis of autoimmune diseases like SLE.
Collapse
Affiliation(s)
- Zarina Brune
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew R. Rice
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
12
|
Jiang J, Yan L, Shi Z, Wang L, Shan L, Efferth T. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153082. [PMID: 31541796 DOI: 10.1016/j.phymed.2019.153082] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Citrus flavonoids, consisting of naringin, narirutin, neohesperidine, etc., have therapeutic activities for the treatment of lipometabolic disorders. The peel of Citrus changshan-huyou (Qu Zhi Ke, QZK) is a new source of flavonoids, but attracted little attention so far. HYPOTHESIS QZK should possess therapeutic effects against lipometabolic disorders due to the flavonoids it contains. STUDY DESIGN In this study, we extracted and purified the flavonoids of QZK (TFCH) and established an obesity-induced non-alcoholic fatty liver disease (NAFLD) model of rats. TFCH was given orally for 8 weeks, and its anti-NAFLD effects and potential mechanism were evaluated. METHODS The flavonoid chemoprofile of TFCH was determined by using HPLC. High-fat diet was employed to induce NAFLD model in rats, and six groups were set up: negative control group, reference treatment group, model group, low-dose TFCH (25 mg/kg), intermediate-dose TFCH (50 mg/kg), and high-dose TFCH (100 mg/kg). Serum and liver levels of inflammatory cytokines and NAFLD markers were measured biochemically. The relative mRNA expressions of liver T-bet, GATA3, and TNF-α were tested by real time PCR (qPCR) analysis. The protein expression of p38 and the phosphorylation of NF-κB, ERK1/2, and p38 in liver were tested by Western blot analysis. RESULTS The histopathological observation showed that TFCH attenuated hepatic lesions with significantly decreased NAFLD activity scores. The biochemical data showed that TFCH significantly suppressed both systemic and intrahepatic inflammation by inhibiting IL-1β, IL-6, IL-12, TNF-α, and IFN-γ, and the qPCR analysis revealed a Th1/Th2 related anti-inflammatory mechanism of TFCH. Western blot results clarified that TFCH exerted hepatoprotective and anti-inflammatory effects by suppression of phosphorylated NF-κB and MAPKs, indicating a mechanism associated with NF-κB and MAPK signaling pathways. CONCLUSION QZK is a new source of Citrus flavonoids for therapeutic use, and TFCH is a promising representative of Citrus flavonoids for anti-NAFLD therapy.
Collapse
Affiliation(s)
- Jianping Jiang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China; Zhejiang You-du Biotech Limited Company, Quzhou, China
| | - Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Shi
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lixia Wang
- Citrus changshan-huyou Research Institute of Changshan City, Quzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
13
|
Increased expression of microRNAs, miR-20a and miR-326 in PBMCs of patients with type 1 diabetes. Mol Biol Rep 2018; 45:1973-1980. [PMID: 30194557 DOI: 10.1007/s11033-018-4352-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder which is characterized by autoimmune attack on β cells of pancreas and lack of insulin. The involvement of microRNAs (miRNAs) in the development of immune system and their differential expression in various autoimmune diseases including T1D have been well established. In this study, the association between expression levels of miR-20a, miR-326 and T1D were evaluated. The expression levels of miR-20a and miR-326 were measured in the PBMCs of 21 T1D patients and 16 healthy controls using qPCR method. In silico analysis was also performed on targetome of miR-20a and miR-326. Both miR-20a (p value: 0.015) and miR-326 (p value: 0.005) were upregulated in the PBMCs of T1D patients compared to healthy controls. Furthermore, different dysregulated miR326-mRNA and miR20a-mRNA interactions were also suggested using integrative computational analysis. The expression level of miR-20a and miR-326 indicates significant association with T1D which suggests the possible regulatory effects of these non-coding RNAs in T1D.
Collapse
|
14
|
Akbarian F, Ataei M, Salehi Z, Nabavi M, Sanati MH. The protective role of TBX21-1514T>C polymorphism in susceptibility to multiple sclerosis. IRANIAN JOURNAL OF NEUROLOGY 2018; 17:111-116. [PMID: 30886677 PMCID: PMC6420692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background: As a T-cell mediated disease, multiple sclerosis (MS) pathogenesis might be associated with the immune system and its involved genes. TBX21, which encodes T-bet transcription factor, is a critical regulator of the commitment to the Th1 lineage and Interferon gamma (IFNγ) production. Investigation of the association of -1514T > C polymorphism located upstream of TBX21 gene with MS susceptibility is reasonable due to its demonstrated significant association with some other immune-mediated diseases. Methods: We analyzed the genotype frequencies of -1514T > C polymorphism between 248 Iranian patients with MS and 163 matched healthy controls. By applying polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP)- technique, the single-strand conformation patterns of the amplicons were compared and sequenced. Results: Strong association between the wild -1514T allele and MS susceptibility was found with the allelic frequency of 99.6% in patients vs. 95.1% in controls (P = 0.002), and the CC genotype frequency of the TBX21 polymorphism (-1514T > C) reported potential protective effect against the disease (P = 0.014). Conclusion: The TBX21-1514T > C polymorphism confers possible protective effect on MS in Iranian population. Further comprehensive studies in different settings are required to clarify the exact role of TBX21 gene in MS disease.
Collapse
Affiliation(s)
- Fatemeh Akbarian
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran,Department of Biology, School of Basic Sciences, University of Guilan, Rasht, Iran
| | - Mitra Ataei
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zivar Salehi
- Department of Biology, School of Basic Sciences, University of Guilan, Rasht, Iran
| | - Masoud Nabavi
- Department of Neurology and Neuroregenerative, Royan Institute, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
15
|
Yao R, Lin Y, Li Q, Zhou X, Pan X, Bao Y, He M, Zhu B, Guo W, Lin X, Jin L. Downregulation of T-bet/GATA-3 ratio induced by IL-11 treatment is responsible for Th1/Th2 balance restoration in human immune thrombocytopenic purpura (ITP). J Thromb Thrombolysis 2015; 38:183-9. [PMID: 24338248 DOI: 10.1007/s11239-013-1036-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abnormal cellular immunity induced by deranged Th1/Th2 profile has been revealed to play a critical role in the pathogenesis of immune thrombocytopenic purpura (ITP). Correction of the shifted Th1/Th2 balance represents a potential therapeutic approach to treat ITP. Here, we investigated the effects of IL-11 on the restoration of Th1/Th2 balance in the peripheral blood mononuclear cells (PBMCs) isolated from adult ITP patients. As shown here, we observed a higher ratio of T-bet/GATA-3 gene expression by quantitative real-time PCR in the PBMCs from ITP patients, consistent with the presence of an abnormally high Th1/Th2 ratio. Remarkably, upon IL-11 treatment, a reversal of T-bet/GATA-3 ratio in ITP was achieved and was shown to be responsible for the restoration of Th1/Th2 balance, with IL-11 at 100 ng/ml demonstrating the highest efficiency. T-bet and GATA-3 are the two transcriptional factors that have been indicated to be the master regulators for Th1 and Th2 lineage commitment, respectively. In the presence of 100 ng/ml IL-11, GATA-3 transcript abundance rose up to ~85-fold of that measured in untreated cells, whereas T-bet transcripts were lowered merely to ~41%, suggesting that GATA-3 was the major contributor for the reversal of T-bet/GATA-3 ratio. Thus, our findings may very well encourage the development of novel medicines that specifically target and correct the T-bet/GATA-3 imbalance identified in ITP.
Collapse
Affiliation(s)
- Rongxin Yao
- Department of Hematology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014; 74:5-17. [PMID: 25458968 DOI: 10.1016/j.cyto.2014.09.011] [Citation(s) in RCA: 781] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
CD4(+) T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, TX 77030, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, TX 78249, United States.
| |
Collapse
|
17
|
Sharma N, Jaiswal I, Mandal RK, Phadke SR, Awasthi S. Genetic variation of TBX21 gene increases risk of asthma and its severity in Indian children. J Hum Genet 2014; 59:437-43. [PMID: 25056814 DOI: 10.1038/jhg.2014.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 11/09/2022]
Abstract
T-box transcription factor protein (TBX21) is encoded by the TBX21 gene in human. It is crucial for naive T lymphocyte development, interferon-γ production, airway hyperresponsiveness and regulation of corticosteroid response in asthmatics. Polymorphisms rs4794067 and rs16947078 of TBX21 were found to be associated with acetylsalicylic acid-induced and allergic asthma, respectively. We examined whether sequence variants of TBX21 gene are associated with asthma and its severity in Indian population. In a hospital-based case-control study, 240 asthmatic children and 240 healthy controls were investigated for the association of TBX21 rs4794067 (C>T) and rs16947078 (G>A) polymorphisms with asthma and its severity using PCR-restriction fragment length polymorphism method. Heterozygous (CT) (odds ratio (OR)=2.33; P=0.001) and variant (TT) (OR=6.25; P=0.001) genotypes of rs4794067 were demonstrated significant risk of asthma. However, in asthma severity variant (TT) genotype revealed significant increase risk (intermittent: OR=5.9, P=0.001; mild: OR=8.0, P=0.001; moderate: OR=3.2, P=0.041; and severe: OR=43.6, P=0.001) in all subgroups. Furthermore, haplotypes TG (OR=2.83; P=0.001) and TA (OR=2.54; P=0.001) of TBX21 were associated with an increased risk of asthma. Conversely, rs16947078 G>A polymorphism was not associated with any asthma/asthma severity risk. These data suggest that TBX21 gene variation may modify individual's susceptibility to asthma and its severity in Indian population. However, further validation in large population-based studies is needed to confirm the finding.
Collapse
Affiliation(s)
- Neeraj Sharma
- Department of Paediatrics and Translational Medicine Unit, King George's Medical University, Lucknow, India
| | - Indu Jaiswal
- Department of Pulmonary Medicine, King George's Medical University, Lucknow, India
| | - Raju K Mandal
- Department of Urology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Shally Awasthi
- Department of Paediatrics and Translational Medicine Unit, King George's Medical University, Lucknow, India
| |
Collapse
|
18
|
Woo C, Shin S, Koh S, Lim J. TBX21 participates in innate immune response by regulating Toll-like receptor 2 expression inStreptococcus pneumoniaeinfections. Mol Oral Microbiol 2014; 29:233-43. [DOI: 10.1111/omi.12061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C.H. Woo
- Department of Pharmacology; Yeungnam University College of Medicine; Daegu Korea
| | - S.G. Shin
- Department of Microbiology; Ewha Womans University School of Medicine; Seoul Korea
| | - S.H. Koh
- Department of Microbiology; Ewha Womans University School of Medicine; Seoul Korea
| | - J.H. Lim
- Department of Microbiology; Ewha Womans University School of Medicine; Seoul Korea
- Gonda Department of Cell and Molecular Biology; House Ear Institute; Los Angeles CA USA
| |
Collapse
|
19
|
Munang'andu HM, Mutoloki S, Evensen Ø. Acquired immunity and vaccination against infectious pancreatic necrosis virus of salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:184-196. [PMID: 23962742 DOI: 10.1016/j.dci.2013.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Acquired immunity plays an important role in the protection of salmonids vaccinated against infectious pancreatic necrosis virus (IPNV) infections. In recent years, vaccine research has taken a functional approach to find the correlates of protective immunity against IPNV infections. Accumulating evidence suggests that the humoral response, specifically IgM is a correlate of vaccine protection against IPNV infections. The role of IgT on the other hand, especially at the sites of virus entry into the host is yet to be established. The kinetics of CD4+ and CD8+ T-cell gene expression have also been shown to correlate with protection in salmonids, suggesting that other arms of the adaptive immune response e.g. cytotoxic T cell responses and Th1 may also be important. Overall, the mechanisms of vaccine protection observed in salmonids are comparable to those seen in other vertebrates suggesting that the immunological basis of vaccine protection has been conserved across vertebrate taxa.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Stephen Mutoloki
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway.
| |
Collapse
|
20
|
Takahashi Y, Mogami Y, Mine J, Imai K, Koide Y, Matsuda K, Akasaka N, Konishi T, Imamura A, Inoue Y. Genetic variations of immunoregulatory genes associated with Rasmussen syndrome. Epilepsy Res 2013; 107:238-43. [DOI: 10.1016/j.eplepsyres.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/29/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022]
|
21
|
Zhang D, Zhang X, Ge M, Xuan M, Li H, Yang Y, Fu R, Zhou F, Zheng Y, Yang R. The polymorphisms of T cell-specific TBX21 gene may contribute to the susceptibility of chronic immune thrombocytopenia in Chinese population. Hum Immunol 2013; 75:129-33. [PMID: 24262372 DOI: 10.1016/j.humimm.2013.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 02/07/2023]
Abstract
Chronic primary immune thrombocytopenia (ITP) is an acquired autoimmune hemorrhagic disease characterized by both reduced platelet counts and suppression of megakaryocyte and platelet development. T cell-specific T-box transcription factor gene (TBX21) plays a critical role in the development and maintenance of T helper 1 (Th1) cells. Recently, several studies have confirmed that the T-1554C and T-1993C polymorphisms of this gene can influence its expression level and are associated with autoimmune diseases. Therefore, we speculated that TBX21 polymorphisms might be associated with the susceptibility of chronic ITP in Chinese population. We investigated the distributions of TBX21 (T-1514C and T-1993C) polymorphisms in 275 patients with chronic ITP and 261 healthy controls by polymerase chain reaction-restriction fragment length polymorphism. We observed significant overrepresentation of T allele and T/T genotype at T-1993C (but not T-1514C) in patients compared with controls. Stratified analysis by gender and age of disease onset revealed comparable observations in both female and childhood ITP cohorts. In conclusion, the T-1993C polymorphisms of TBX21 gene may be associated with the susceptibility of chronic primary ITP in Chinese population.
Collapse
Affiliation(s)
- Donglei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Xian Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Min Xuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yanhui Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Fangfang Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| |
Collapse
|
22
|
Sarcoidosis: Immunopathogenesis and Immunological Markers. Int J Chronic Dis 2013; 2013:928601. [PMID: 26464848 PMCID: PMC4590933 DOI: 10.1155/2013/928601] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/17/2013] [Indexed: 12/26/2022] Open
Abstract
Sarcoidosis is a multisystem granulomatous disorder invariably affecting the lungs. It is a disease with noteworthy variations in clinical manifestation and disease outcome and has been described as an “immune paradox” with peripheral anergy despite exaggerated inflammation at disease sites. Despite extensive research, sarcoidosis remains a disease with undetermined aetiology. Current evidence supports the notion that the immune response in sarcoidosis is driven by a putative antigen in a genetically susceptible individual. Unfortunately, there currently exists no reliable biomarker to delineate the disease severity and prognosis. As such, the diagnosis of sarcoidosis remains a vexing clinical challenge. In this review, we outline the immunological features of sarcoidosis, discuss the evidence for and against various candidate etiological agents (infective and noninfective), describe the exhaled breath condensate, a novel method of identifying immunological biomarkers, and suggest other possible immunological biomarkers to better characterise the immunopathogenesis of sarcoidosis.
Collapse
|
23
|
Morphine, but not ketamine, decreases the ratio of Th1/Th2 in CD4-positive cells through T-bet and GATA3. Inflammation 2012; 35:1069-77. [PMID: 22160839 DOI: 10.1007/s10753-011-9413-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study was conducted to investigate the effect of morphine on CD4-positive T cells differentiation and the transcriptional factors induced by phorbol myristate acetate (PMA) and ionomycin. CD4-positive lymphocytes separated from healthy volunteers were incubated by PMA (25 ng/ml) + ionomycin (1 μg/ml) with or without the presence of morphine, ketamine, or naloxone. Th subsets, supernatant cytokines, and transcriptional factors were detected 4 h later. Th1 and Th2 cells, levels of INF-γ, IL-2, IL-4 and the activities of T-bet and GATA3 were significantly increased after incubation with PMA and ionomycin. However, the number of Th1 cells, Th1/ Th2, the levels of INF-γ and INF-γ/IL-4, and the activities and protein levels of T-bet and GATA3 were decreased after incubation with PMA and ionomycin in the presence of morphine. Naloxone can abolish morphine's suppressive effect on Th cell differentiation. Morphine has a negative effect on Th cell balance induced by PMA and ionomycin, the mechanism is related to T-bet and GATA3.
Collapse
|
24
|
Gao M, Jin W, Qian Y, Ji L, Feng G, Sun J. Effect of N-methyl-D-aspartate receptor antagonist on T helper cell differentiation induced by phorbol-myristate-acetate and ionomycin. Cytokine 2011; 56:458-65. [DOI: 10.1016/j.cyto.2011.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/06/2011] [Accepted: 06/27/2011] [Indexed: 02/03/2023]
|
25
|
Bai F, Villagra AV, Zou J, Painter JS, Connolly K, Blaskovich MA, Sokol L, Sebti S, Djeu JY, Loughran TP, Wei S, Sotomayor E, Epling-Burnette P. Tipifarnib-mediated suppression of T-bet-dependent signaling pathways. Cancer Immunol Immunother 2011; 61:523-33. [PMID: 21983879 DOI: 10.1007/s00262-011-1109-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
Large granular lymphocyte (LGL) leukemia is a chronic lymphoproliferative disease in which T-bet [T-box transcription factor 21 gene (tbx21)] overexpression may play a pathogenic role. T-bet orchestrates the differentiation of mature peripheral T-cells into interferon-γ (IFN-γ) and tumor necrosis factor-α producing CD4+ T-helper type I (Th1) and CD8+ T cytotoxic cells that are necessary for antiviral responses. When IL-12 is produced by antigen-presenting cells, T-bet expression is induced, causing direct stimulation of ifng gene transcription while simultaneously acting as a transcriptional repressor of the IL4 gene, which then leads to Th1 dominance and T-helper type 2 differentiation blockade. Additionally, T-bet has been shown to regulate histone acetylation of the ifng promoter and enhancer to loosen condensed DNA, creating greater accessibility for other transcription factor binding, which further amplifies IFNγ production. We found that treatment with a farnesyltransferase inhibitor tipifarnib reduced Th1 cytokines in LGL leukemia patient T-cells and blocked T-bet protein expression and IL-12 responsiveness in T-cells from healthy donors. The mechanism of suppression was based on modulation of histone acetylation of the ifng gene, which culminated in Th1 blockade.
Collapse
Affiliation(s)
- Fanqi Bai
- Immunology Program, H. Lee Moffitt Cancer Center, SRB3, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|