1
|
Sertznig H, Roesmann F, Wilhelm A, Heininger D, Bleekmann B, Elsner C, Santiago M, Schuhenn J, Karakoese Z, Benatzy Y, Snodgrass R, Esser S, Sutter K, Dittmer U, Widera M. SRSF1 acts as an IFN-I-regulated cellular dependency factor decisively affecting HIV-1 post-integration steps. Front Immunol 2022; 13:935800. [PMID: 36458014 PMCID: PMC9706209 DOI: 10.3389/fimmu.2022.935800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/19/2022] [Indexed: 08/24/2023] Open
Abstract
Efficient HIV-1 replication depends on balanced levels of host cell components including cellular splicing factors as the family of serine/arginine-rich splicing factors (SRSF, 1-10). Type I interferons (IFN-I) play a crucial role in the innate immunity against HIV-1 by inducing the expression of IFN-stimulated genes (ISGs) including potent host restriction factors. The less well known IFN-repressed genes (IRepGs) might additionally affect viral replication by downregulating host dependency factors that are essential for the viral life cycle; however, so far, the knowledge about IRepGs involved in HIV-1 infection is very limited. In this work, we could demonstrate that HIV-1 infection and the associated ISG induction correlated with low SRSF1 levels in intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs) during acute and chronic HIV-1 infection. In HIV-1-susceptible cell lines as well as primary monocyte-derived macrophages (MDMs), expression levels of SRSF1 were transiently repressed upon treatment with specific IFNα subtypes in vitro. Mechanically, 4sU labeling of newly transcribed mRNAs revealed that IFN-mediated SRSF1 repression is regulated on early RNA level. SRSF1 knockdown led to an increase in total viral RNA levels, but the relative proportion of the HIV-1 viral infectivity factor (Vif) coding transcripts, which is essential to counteract APOBEC3G-mediated host restriction, was significantly reduced. In the presence of high APOBEC3G levels, however, increased LTR activity upon SRSF1 knockdown facilitated the overall replication, despite decreased vif mRNA levels. In contrast, SRSF1 overexpression significantly impaired HIV-1 post-integration steps including LTR transcription, alternative splice site usage, and virus particle production. Since balanced SRSF1 levels are crucial for efficient viral replication, our data highlight the so far undescribed role of SRSF1 acting as an IFN-modulated cellular dependency factor decisively regulating HIV-1 post-integration steps.
Collapse
Affiliation(s)
- Helene Sertznig
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Delia Heininger
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Barbara Bleekmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mario Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Jonas Schuhenn
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yvonne Benatzy
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Ryan Snodgrass
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Stefan Esser
- Clinic of Dermatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol 2022; 13:986840. [PMID: 36189206 PMCID: PMC9522975 DOI: 10.3389/fimmu.2022.986840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The immune system protects us from pathogens, such as viruses. Antiviral immune mechanisms aim to limit viral replication, and must maintain immunological homeostasis to avoid excessive inflammation and damage to the host. Sex differences in the manifestation and progression of immune-mediated disease point to sex-specific factors modulating antiviral immunity. The exact mechanisms regulating these immunological differences between females and males are still insufficiently understood. Females are known to display stronger Type I IFN responses and are less susceptible to viral infections compared to males, indicating that Type I IFN responses might contribute to the sexual dimorphisms observed in antiviral responses. Here, we review the impact of sex hormones and X chromosome-encoded genes on differences in Type I IFN responses between females and males; and discuss the consequences of sex differences in Type I IFN responses for the regulation of antiviral immune responses.
Collapse
Affiliation(s)
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Wang P, Xia L, Liang X, Han F, Ren H, Zhang Y, Wei Z. Expression of porcine interferon-α and its bioactivity analysis in vitro and in vivo. Bioprocess Biosyst Eng 2020; 44:473-482. [PMID: 33051705 DOI: 10.1007/s00449-020-02457-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Interferon α (IFN-α) plays a crucial role in the host's immune response. In this study, the amino acid sequence of porcine interferon α (PoIFN-α) was analyzed. Seven substitutions, S38F, H40Q, F43L, N78D, Y86C, S151A, and R156T, were mutated and obtained by aligning the sequences of PoIFN-α subtypes. The PoIFN-α mutants were designed, expressed, and purified in E. coli. The antiviral activities of these PoIFN-αs were measured in Vero and swine testis cells against vesicular stomatitis virus (VSV). Their inhibitory abilities on pseudorabies virus (PRV) were also examined. Commercial PoIFN-α was used as a control. We found the ideal inducer concentration of isopropyl β-D-thiogalactoside was 1 mM, and the best time-point for induction was 8 h. The PoIFN-α mutant named PoIFN-α-156s had the highest antiviral activity, which was about 200-fold more than that of PoIFN-α. PoIFN-α-156s could inhibit VSV and PRV replication in a dose-dependent manner in vitro. The half-life of PoIFN-α-156s was longer than that of PoIFN-α in mice, and the effective antiviral action was higher than PoIFN-α. Animal experiments showed that PoIFN-α-156s could decrease the viral load after infection with VSV. Overall, these results suggest that recombinant PoIFN-α-156s has the ability of antivirus, and is feasible for veterinary clinical applications and fundamental research.
Collapse
Affiliation(s)
- Pengtao Wang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Lu Xia
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xiuli Liang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Fangfang Han
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Haojie Ren
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Yixuan Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Zhanyong Wei
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China. .,Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
4
|
Qiao Z, Yang D, Liu L, Liu Z, Wang J, He D, Wu H, Wang J, Ma Z. Genome-wide identification and characterization of long non-coding RNAs in MDCK cell lines with high and low tumorigenicities. Genomics 2020; 112:1077-1086. [DOI: 10.1016/j.ygeno.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
5
|
Li Y, Sun B, Esser S, Jessen H, Streeck H, Widera M, Yang R, Dittmer U, Sutter K. Expression Pattern of Individual IFNA Subtypes in Chronic HIV Infection. J Interferon Cytokine Res 2018; 37:541-549. [PMID: 29252127 DOI: 10.1089/jir.2017.0076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon-α (IFN-α) plays an important role in HIV pathogenesis. IFN-α consists of 13 individual IFN-α subtypes, which exhibit individual antiviral and immunomodulatory activities in HIV infection. Here, we determined the expression profiles of all IFN-α subtypes in treated and treatment-naive HIV+ patients and their impact on the induction of distinct HIV restriction factors. We collected blood samples of chronic HIV+ patients, which underwent antiretroviral therapy or were treatment-naive, and determined the individual expression levels of different IFN-α subtypes and HIV restriction factors. HIV infection transiently enhanced the expression of IFNA mRNA. The IFN-α response was dominated by the most abundantly expressed subtypes IFNA4, A5, A7, and A14 in all individuals. HIV infection affected the expression pattern of the IFN-α response, in particular for IFNA2 and IFNA16, which were elevated by chronic HIV infection. Elevated expression of HIV restriction factors was observed in chronically HIV-infected patients, which partly decreased during successful antiretroviral treatment. In vitro stimulation of peripheral blood mononuclear cells revealed that IFN-α6, -α14, and -α21 were most effective in inducing the expression of HIV restriction factors. These results indicate that HIV infection induces a specific expression pattern of IFN-α subtypes, which in turn induce the expression of various HIV restriction factors.
Collapse
Affiliation(s)
- Yanpeng Li
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Binlian Sun
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Stefan Esser
- 2 Clinic of Dermatology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | | | - Hendrik Streeck
- 4 Institute for HIV Research, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Marek Widera
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Rongge Yang
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Ulf Dittmer
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Kathrin Sutter
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|
6
|
Zhao H, Ma J, Wang Y, Liu J, Shao Y, Li J, Jiang G, Xing M. Molecular cloning and functional characterization of eleven subtypes of interferon-α in Amur tigers (Panthera tigris altaica). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:46-55. [PMID: 28751224 DOI: 10.1016/j.dci.2017.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Interferon has a broad-spectrum of antiviral effects and represents an ideal choice for the development of antiviral drugs. Nonetheless, information about alpha interferon (IFN-α) is vacant in Amur tiger (Panthera tigris altaica), an endangered species and indigenous to northeast Asia. Herein, 11 PtIFN-αs genes, which encoded proteins of 164-165 amino acids, were amplified. Afterwards, expression and purification were conducted in Escherichia coli. In physicochemical analysis, PtIFN-αs were shown to be highly sensitive to trypsin and remained stable despite changes in pH and temperature. In feline kidney cells (F81)/vesicular stomatitis virus (VSV)/canine distemper virus (CDV)/avian influenza virus (AIV) systems, PtIFN-αs were demonstrated to have distinct antiviral activities, some of them (PtIFN-α and PtIFN-α9) inhibited viral transcription levels more effectively than the other subtypes including Felis catus IFN-α, an effective therapeutic agent used for viral infections clinically. Additionally, PtIFN-α and PtIFN-α9 can up-regulate the transcription and expression of p53, a tumor suppressor factor, which could promote apoptosis of virus-infected cells. In conclusion, we cloned and expressed 11 subtypes of PtIFN-α for the first time. Furthermore, PtIFN-α and PtIFN-α9 were likely to be more efficient against both chronic viral infections and neoplastic diseases that affect the Amur tiger population. It will be of significant importance for further studies to protect this endangered species.
Collapse
Affiliation(s)
- Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Jian Ma
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, 150001, China
| | - Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Juanjuan Liu
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yizhi Shao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Jinglun Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
7
|
Ziegler SM, Beisel C, Sutter K, Griesbeck M, Hildebrandt H, Hagen SH, Dittmer U, Altfeld M. Human pDCs display sex-specific differences in type I interferon subtypes and interferon α/β receptor expression. Eur J Immunol 2017; 47:251-256. [DOI: 10.1002/eji.201646725] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Susanne M. Ziegler
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Claudia Beisel
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
- Section Infectious Diseases; I. Department of Internal Medicine; University Medical Center Hamburg-Eppendorf, and DZIF partner site (German Center for Infection Research); Hamburg Germany
| | - Kathrin Sutter
- Institute for Virology University Hospital in Essen; University of Duisburg-Essen; Essen Germany
| | - Morgane Griesbeck
- CIMI; Université Pierre et Marie Curie/INSERM U1135; Hospital Pitié Salpêtrière; Paris France
| | - Heike Hildebrandt
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Sven H. Hagen
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Ulf Dittmer
- Institute for Virology University Hospital in Essen; University of Duisburg-Essen; Essen Germany
| | - Marcus Altfeld
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| |
Collapse
|
8
|
Kuruganti S, Accavitti-Loper MA, Walter MR. Production and characterization of thirteen human type-I interferon-α subtypes. Protein Expr Purif 2014; 103:75-83. [PMID: 25149396 DOI: 10.1016/j.pep.2014.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 01/04/2023]
Abstract
Thirteen human interferon-α (IFNα) subtypes were expressed in Escherichiacoli and purified using an N-terminal affinity tag from the prodomain of subtilisin. IFNα subtypes were expressed in soluble form and purified from cell lysates or refolded and purified from inclusion bodies. Proteins produced by either protocol exhibited biological activities equal to or greater than commercially prepared IFNα preparations. The IFNαs were used to produce an anti-IFNα16 antibody (MAb-1B12) that specifically neutralized the biological activity of IFNα16, but not the 12 other IFNαs. Using MAb-1B12, and a previously generated IFNAR1/IFNAR2-FChk heterodimer, an assay was developed to determine total type I IFN biological activity and IFNα16-derived biological activity in an unknown sample.
Collapse
Affiliation(s)
- Srilalitha Kuruganti
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Mark R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Internal ribosome entry site-based attenuation of a flavivirus candidate vaccine and evaluation of the effect of beta interferon coexpression on vaccine properties. J Virol 2013; 88:2056-70. [PMID: 24307589 DOI: 10.1128/jvi.03051-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infectious clone technologies allow the rational design of live attenuated viral vaccines with the possibility of vaccine-driven coexpression of immunomodulatory molecules for additional vaccine safety and efficacy. The latter could lead to novel strategies for vaccine protection against infectious diseases where traditional approaches have failed. Here we show for the flavivirus Murray Valley encephalitis virus (MVEV) that incorporation of the internal ribosome entry site (IRES) of Encephalomyocarditis virus between the capsid and prM genes strongly attenuated virulence and that the resulting bicistronic virus was both genetically stable and potently immunogenic. Furthermore, the novel bicistronic genome organization facilitated the generation of a recombinant virus carrying an beta interferon (IFN-β) gene. Given the importance of IFNs in limiting virus dissemination and in efficient induction of memory B and T cell antiviral immunity, we hypothesized that coexpression of the cytokine with the live vaccine might further increase virulence attenuation without loss of immunogenicity. We found that bicistronic mouse IFN-β coexpressing MVEV yielded high virus and IFN titers in cultured cells that do not respond to the coexpressed IFN. However, in IFN response-sufficient cell cultures and mice, the virus produced a self-limiting infection. Nevertheless, the attenuated virus triggered robust innate and adaptive immune responses evidenced by the induced expression of Mx proteins (used as a sensitive biomarker for measuring the type I IFN response) and the generation of neutralizing antibodies, respectively. IMPORTANCE The family Flaviviridae includes a number of important human pathogens, such as Dengue virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, and Hepatitis C virus. Flaviviruses infect large numbers of individuals on all continents. For example, as many as 100 million people are infected annually with Dengue virus, and 150 million people suffer a chronic infection with Hepatitis C virus. However, protective vaccines against dengue and hepatitis C are still missing, and improved vaccines against other flaviviral diseases are needed. The present study investigated the effects of a redesigned flaviviral genome and the coexpression of an antiviral protein (interferon) on virus replication, pathogenicity, and immunogenicity. Our findings may aid in the rational design of a new class of well-tolerated and safe vaccines.
Collapse
|
10
|
Berry CM, Hertzog PJ, Mangan NE. Interferons as biomarkers and effectors: lessons learned from animal models. Biomark Med 2012; 6:159-76. [PMID: 22448790 DOI: 10.2217/bmm.12.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) comprise type I, II and III families with multiple subtypes. Via transcription of IFN-stimulated genes (ISGs), IFNs can exert multiple biological effects on the cell. In infectious and chronic inflammatory diseases, the IFNs and their ISG sets can be potentially utilized as biomarkers of disease outcome. Animal models allow investigations into disease pathogenesis and gene knockout models have proved cause and effect relationships of molecules related to the IFN response. Sets of IFN subtypes and their ISG products provide immunological signature patterns for different viral and other diseases. In this article, we give an overview of IFNs in several virus infection models and autoimmune diseases of medical relevance. Lessons learned from animal models inform us of IFN system parameters as indicators of disease outcome and whether clinical research is warranted. Moreover, validated IFN biomarkers for prognosis enhance our understanding of therapeutic and vaccine development.
Collapse
Affiliation(s)
- Cassandra M Berry
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
11
|
Bayer W, Lietz R, Ontikatze T, Johrden L, Tenbusch M, Nabi G, Schimmer S, Groitl P, Wolf H, Berry CM, Uberla K, Dittmer U, Wildner O. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes. Retrovirology 2011; 8:75. [PMID: 21943056 PMCID: PMC3193818 DOI: 10.1186/1742-4690-8-75] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/26/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Type I interferons (IFNs) exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV) or HIV. RESULTS Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4(+) T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4(+) T cell responses were enhanced by IFNα subtypes. CONCLUSIONS Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4(+) T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.
Collapse
Affiliation(s)
- Wibke Bayer
- Department of Molecular and Medical Virology, Institute of Microbiology and Hygiene, Ruhr-University Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|