1
|
Gonzalez-Melero L, Santos-Vizcaino E, Varela-Calvino R, Gomez-Tourino I, Asumendi A, Boyano MD, Igartua M, Hernandez RM. PLGA-PEI nanoparticle covered with poly(I:C) for personalised cancer immunotherapy. Drug Deliv Transl Res 2024; 14:2788-2803. [PMID: 38427275 PMCID: PMC11525302 DOI: 10.1007/s13346-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.
Collapse
Affiliation(s)
- Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruben Varela-Calvino
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Iria Gomez-Tourino
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Maria Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Marin-Muller C, Li D, Lü JM, Liang Z, Vega-Martínez O, Crawford SE, Estes MK, Fisher WE, Chen C, Yao Q. Nanoparticle-Mediated Therapy with miR-198 Sensitizes Pancreatic Cancer to Gemcitabine Treatment through Downregulation of VCP-Mediated Autophagy. Pharmaceutics 2023; 15:2038. [PMID: 37631252 PMCID: PMC10457905 DOI: 10.3390/pharmaceutics15082038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an extremely aggressive disease characterized by rapidly acquired multi-drug resistance, including to first-line chemotherapeutic agent gemcitabine. Autophagy is a process that is often exploited by cancer and is one of several intrinsic factors associated with resistance to gemcitabine. We have previously found that miR-198 acts as a tumor suppressor in PDAC through the targeting of factors including Valosin-containing protein (VCP). VCP has been reported to play an important role in autophagic flux. In this study, we investigated whether the repression of VCP through miR-198 administration disrupts the autophagy process and sensitizes PDAC cells to gemcitabine treatment in vitro. Moreover, we used LGA-PEI (LPNP) nanoparticles to effectively administer miR-198 to tumors in vivo, inducing tumor sensitization to gemcitabine and leading to a significant reduction in tumor burden and metastases and a concomitant downregulation of VCP expression and autophagy maturation. Our results indicate a potential therapeutic strategy for targeting gemcitabine resistant PDAC and establishes the use of LPNPs for effective therapeutic delivery of nucleic acids in vitro and in vivo.
Collapse
Affiliation(s)
- Christian Marin-Muller
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (C.M.-M.)
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Speratum Biopharma, Inc., Dover, DE 19901, USA
| | - Dali Li
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (C.M.-M.)
| | - Jian-Ming Lü
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (C.M.-M.)
| | - Zhengdong Liang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (C.M.-M.)
| | | | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - William E. Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (C.M.-M.)
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (C.M.-M.)
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (C.M.-M.)
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Mohan AK, M M, Kumar TRS, Kumar GSV. Multi-Layered PLGA-PEI Nanoparticles Functionalized with TKD Peptide for Targeted Delivery of Pep5 to Breast Tumor Cells and Spheroids. Int J Nanomedicine 2022; 17:5581-5600. [PMID: 36444195 PMCID: PMC9700446 DOI: 10.2147/ijn.s376358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 08/26/2023] Open
Abstract
PURPOSE Peptide-based therapy is a promising strategy for cancer treatment because of its low drug resistance. However, the major challenge is their inability to target cancer cells specifically. So, a targeted nano-delivery system that could deliver therapeutic peptides selectively to cancer cells to stimulate their action is highly desirable. This study aims to deliver the antitumor peptide, Pep5, to breast tumor cells selectively using a targeting peptide functionalised multi-layered PLGA-PEI nanoparticles. METHODS In this study, Pep5 entrapped PLGA-PEI (Pep5-PPN) dual layered nanoparticles were developed. These nanoparticles were decorated with TKD (Pep5-TPPN) on their surface for site-specific delivery of Pep5 to breast tumor cells. The particles were then characterized using various instrumental analyses. In vitro cytotoxicity of the particles was evaluated in estrogen receptor positive (ER+ve) and triple negative breast cancer (TNBC) cells. An ex vivo tumor spheroid model was used to analyze the antitumor activity of the particles. RESULTS Uniformly round Pep5-TPPN particles were synthesized with an average diameter of 420.8 ± 14.72 nm. The conjugation of PEI over Pep5-PLGA nanoparticles shifted the zeta potential from -11.6 ± 2.16 mV to +20.01 ± 2.97 mV. In vitro cytotoxicity analysis proved that TKD conjugation to nanoparticles enhanced the antitumor activity of Pep5 in tested breast cancer cells. Pep5-TPPN induced cytoskeletal damage and apoptosis in the tested cells, which showed that the mechanism of action of Pep5 is conserved but potentiated. Active targeting of Pep5 suppressed the tumor growth in ex vivo spheroid models. CONCLUSION A multi-layered nanoparticle functionalized with dual peptide was fabricated for active tumor targeting, which stimulated Pep5 activity to reduce the tumor growth in vitro and ex vivo.
Collapse
Affiliation(s)
- Akhil K Mohan
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Research Centre, Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Minsa M
- Cancer Research Programme-1, Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - T R Santhosh Kumar
- Cancer Research Programme-1, Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
4
|
Lü JM, Liang Z, Liu D, Zhan B, Yao Q, Chen C. Two Antibody-Guided Lactic-co-Glycolic Acid-Polyethylenimine (LGA-PEI) Nanoparticle Delivery Systems for Therapeutic Nucleic Acids. Pharmaceuticals (Basel) 2021; 14:841. [PMID: 34577541 PMCID: PMC8470087 DOI: 10.3390/ph14090841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
We previously reported a new polymer, lactic-co-glycolic acid-polyethylenimine (LGA-PEI), as an improved nanoparticle (NP) delivery for therapeutic nucleic acids (TNAs). Here, we further developed two antibody (Ab)-conjugated LGA-PEI NP technologies for active-targeting delivery of TNAs. LGA-PEI was covalently conjugated with a single-chain variable fragment antibody (scFv) against mesothelin (MSLN), a biomarker for pancreatic cancer (PC), or a special Ab fragment crystallizable region-binding peptide (FcBP), which binds to any full Ab (IgG). TNAs used in the current study included tumor suppressor microRNA mimics (miR-198 and miR-520h) and non-coding RNA X-inactive specific transcript (XIST) fragments; green fluorescence protein gene (GFP plasmid DNA) was also used as an example of plasmid DNA. MSLN scFv-LGA-PEI NPs with TNAs significantly improved their binding and internalization in PC cells with high expression of MSLN in vitro and in vivo. Anti-epidermal growth factor receptor (EGFR) monoclonal Ab (Cetuximab) binding to FcBP-LGA-PEI showed active-targeting delivery of TNAs to EGFR-expressing PC cells.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Zhengdong Liang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Bin Zhan
- National School of Tropical Medicine and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA;
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| |
Collapse
|
5
|
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021; 13:cancers13112680. [PMID: 34072348 PMCID: PMC8198729 DOI: 10.3390/cancers13112680] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer is a complex disease associated with deregulation of numerous genes. In addition, redundant cellular pathways limit efficiency of monotarget drugs in cancer therapy. MicroRNAs are a class of gene expression regulators, which often function by targeting multiple genes. This feature makes them a double-edged sword (a) as attractive targets for anti-tumor therapy and concomitantly (b) as risky targets due to their potential side effects on healthy tissues. As for conventional antitumor drugs, nanocarriers have been developed to circumvent the problems associated with miRNA delivery to tumors. In this review, we highlight studies that have established the pre-clinical proof-of concept of miRNAs as relevant therapeutic targets in oncology. Particular attention was brought to new strategies based on nanovectorization of miRNAs as well as to the perspectives for their applications. Abstract The discovery of microRNAs (miRNAs) in 1993 has challenged the dogma of gene expression regulation. MiRNAs affect most of cellular processes from metabolism, through cell proliferation and differentiation, to cell death. In cancer, deregulated miRNA expression leads to tumor development and progression by promoting acquisition of cancer hallmark traits. The multi-target action of miRNAs, which enable regulation of entire signaling networks, makes them attractive tools for the development of anti-cancer therapies. Hence, supplementing downregulated miRNA by synthetic oligonucleotides or silencing overexpressed miRNAs through artificial antagonists became a common strategy in cancer research. However, the ultimate success of miRNA therapeutics will depend on solving pharmacokinetic and targeted delivery issues. The development of a number of nanocarrier-based platforms holds significant promises to enhance the cell specific controlled delivery and safety profile of miRNA-based therapies. In this review, we provide among the most comprehensive assessments to date of promising nanomedicine platforms that have been tested preclinically, pertaining to the treatment of selected solid tumors including lung, liver, breast, and glioblastoma tumors as well as endocrine malignancies. The future challenges and potential applications in clinical oncology are discussed.
Collapse
Affiliation(s)
- Soha Reda El Sayed
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Justine Cristante
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Laurent Guyon
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Josiane Denis
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Olivier Chabre
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Nadia Cherradi
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Correspondence: ; Tel.: +33-(0)4-38783501; Fax: +33-(0)4-38785058
| |
Collapse
|
6
|
Grixti JM, Ayers D, Day PJR. An Analysis of Mechanisms for Cellular Uptake of miRNAs to Enhance Drug Delivery and Efficacy in Cancer Chemoresistance. Noncoding RNA 2021; 7:27. [PMID: 33923485 PMCID: PMC8167612 DOI: 10.3390/ncrna7020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Up until recently, it was believed that pharmaceutical drugs and their metabolites enter into the cell to gain access to their targets via simple diffusion across the hydrophobic lipid cellular membrane, at a rate which is based on their lipophilicity. An increasing amount of evidence indicates that the phospholipid bilayer-mediated drug diffusion is in fact negligible, and that drugs pass through cell membranes via proteinaceous membrane transporters or carriers which are normally used for the transportation of nutrients and intermediate metabolites. Drugs can be targeted to specific cells and tissues which express the relevant transporters, leading to the design of safe and efficacious treatments. Furthermore, transporter expression levels can be manipulated, systematically and in a high-throughput manner, allowing for considerable progress in determining which transporters are used by specific drugs. The ever-expanding field of miRNA therapeutics is not without its challenges, with the most notable one being the safe and effective delivery of the miRNA mimic/antagonist safely to the target cell cytoplasm for attaining the desired clinical outcome, particularly in miRNA-based cancer therapeutics, due to the poor efficiency of neo-vascular systems revolting around the tumour site, brought about by tumour-induced angiogenesis. This acquisition of resistance to several types of anticancer drugs can be as a result of an upregulation of efflux transporters expression, which eject drugs from cells, hence lowering drug efficacy, resulting in multidrug resistance. In this article, the latest available data on human microRNAs has been reviewed, together with the most recently described mechanisms for miRNA uptake in cells, for future therapeutic enhancements against cancer chemoresistance.
Collapse
Affiliation(s)
- Justine M. Grixti
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD 2080, Malta
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| | - Philip J. R. Day
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| |
Collapse
|
7
|
Proulx J, Joshi C, Vijayaraghavalu S, Saraswathy M, Labhasetwar V, Ghorpade A, Borgmann K. Arginine-Modified Polymers Facilitate Poly (Lactide-Co-Glycolide)-Based Nanoparticle Gene Delivery to Primary Human Astrocytes. Int J Nanomedicine 2020; 15:3639-3647. [PMID: 32547019 PMCID: PMC7250304 DOI: 10.2147/ijn.s250865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/24/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Astrocyte dysfunction is a hallmark of central nervous system injury or infection. As a primary contributor to neurodegeneration, astrocytes are an ideal therapeutic target to combat neurodegenerative conditions. Gene therapy has arisen as an innovative technique that provides excellent prospect for disease intervention. Poly (lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) are polymeric nanoparticles commonly used in gene delivery, each manifesting their own set of advantages and disadvantages. As a clinically approved polymer by the Federal Drug Administration, well characterized for its biodegradability and biocompatibility, PLGA-based nanoparticles (PLGA-NPs) are appealing for translational gene delivery systems. However, our investigations revealed PLGA-NPs were ineffective at facilitating exogenous gene expression in primary human astrocytes, despite their success in other cell lines. Furthermore, PEI polymers illustrate high delivery efficiency but induce cytotoxicity. The purpose of this study is to develop viable and biocompatible NPsystem for astrocyte-targeted gene therapy. MATERIALS AND METHODS Successful gene expression by PLGA-NPs alone or in combination with arginine-modified PEI polymers (AnPn) was assessed by a luciferase reporter gene encapsulated in PLGA-NPs. Cytoplasmic release and nuclear localization of DNA were investigated using fluorescent confocal imaging with YOYO-labeled plasmid DNA (pDNA). NP-mediated cytotoxicity was assessed via lactate dehydrogenase in primary human astrocytes and neurons. RESULTS Confocal imaging of YOYO-labeled pDNA confirmed PLGA-NPs delivered pDNA to the cytoplasm in a dose and time-dependent manner. However, co-staining revealed pDNA delivered by PLGA-NPs did not localize to the nucleus. The addition of AnPn significantly improved nuclear localization of pDNA and successfully achieved gene expression in primary human astrocytes. Moreover, these formulations were biocompatible with both astrocytes and neurons. CONCLUSION By co-transfecting two polymeric NPs, we developed an improved system for gene delivery and expression in primary human astrocytes. These findings provide a basis for a biocompatible and clinically translatable method to regulate astrocyte function during neurodegenerative diseases and disorders.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Chaitanya Joshi
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manju Saraswathy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX76107, USA,Correspondence: Kathleen Borgmann Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX76107, USATel +1 817 735-0339Fax +1 817 735-2610 Email
| |
Collapse
|
8
|
Operti MC, Dölen Y, Keulen J, van Dinther EAW, Figdor CG, Tagit O. Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles. Pharmaceutics 2019; 11:E590. [PMID: 31717354 PMCID: PMC6921086 DOI: 10.3390/pharmaceutics11110590] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Polymeric particles made up of biodegradable and biocompatible polymers such as poly(lactic-co-glycolic acid) (PLGA) are promising tools for several biomedical applications including drug delivery. Particular emphasis is placed on the size and surface functionality of these systems as they are regarded as the main protagonists in dictating the particle behavior in vitro and in vivo. Current methods of manufacturing polymeric drug carriers offer a wide range of achievable particle sizes, however, they are unlikely to accurately control the size while maintaining the same production method and particle uniformity, as well as final production yield. Microfluidics technology has emerged as an efficient tool to manufacture particles in a highly controllable manner. Here, we report on tuning the size of PLGA particles at diameters ranging from sub-micron to microns using a single microfluidics device, and demonstrate how particle size influences the release characteristics, cellular uptake and in vivo clearance of these particles. Highly controlled production of PLGA particles with ~100 nm, ~200 nm, and >1000 nm diameter is achieved through modification of flow and formulation parameters. Efficiency of particle uptake by dendritic cells and myeloid-derived suppressor cells isolated from mice is strongly correlated with particle size and is most efficient for ~100 nm particles. Particles systemically administered to mice mainly accumulate in liver and ~100 nm particles are cleared slower. Our study shows the direct relation between particle size varied through microfluidics and the pharmacokinetics behavior of particles, which provides a further step towards the establishment of a customizable production process to generate tailor-made nanomedicines.
Collapse
Affiliation(s)
- Maria Camilla Operti
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (Y.D.); (J.K.); (E.A.W.v.D.); (C.G.F.)
| | - Yusuf Dölen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (Y.D.); (J.K.); (E.A.W.v.D.); (C.G.F.)
- Oncode Institute, 3553 Utrecht, The Netherlands
| | - Jibbe Keulen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (Y.D.); (J.K.); (E.A.W.v.D.); (C.G.F.)
| | - Eric A. W. van Dinther
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (Y.D.); (J.K.); (E.A.W.v.D.); (C.G.F.)
- Oncode Institute, 3553 Utrecht, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (Y.D.); (J.K.); (E.A.W.v.D.); (C.G.F.)
- Oncode Institute, 3553 Utrecht, The Netherlands
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (Y.D.); (J.K.); (E.A.W.v.D.); (C.G.F.)
- Oncode Institute, 3553 Utrecht, The Netherlands
| |
Collapse
|
9
|
Bai Z, Wei J, Yu C, Han X, Qin X, Zhang C, Liao W, Li L, Huang W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7:1209-1225. [DOI: 10.1039/c8tb02946f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes. Herein, we will present the development of the strategies for intracellular miRNAs delivery, and specially focus on the rational designed routes, their mechanisms of action, as well as potential therapeutics used in the host cells orin vivostudies.
Collapse
Affiliation(s)
- Zhiman Bai
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| |
Collapse
|
10
|
Operti MC, Fecher D, van Dinther EAW, Grimm S, Jaber R, Figdor CG, Tagit O. A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles. Int J Pharm 2018; 550:140-148. [PMID: 30144511 DOI: 10.1016/j.ijpharm.2018.08.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
The clinical and commercial development of polymeric sub-micron size formulations based on poly(lactic-co-glycolic acid) (PLGA) particles is hampered by the challenges related to their good manufacturing practice (GMP)-compliant, scale-up production without affecting the formulation specifications. Continuous process technologies enable large-scale production without changing the process or formulation parameters by increasing the operation time. Here, we explore three well-established process technologies regarding continuity for the large-scale production of sub-micron size PLGA particles developed at the lab scale using a batch method. We demonstrate optimization of critical process and formulation parameters for high-shear mixing, high-pressure homogenization and microfluidics technologies to obtain PLGA particles with a mean diameter of 150-250 nm and a small polydispersity index (PDI, ≤0.2). The most influential parameters on the particle size distribution are discussed for each technique with a critical evaluation of their suitability for GMP production. Although each technique can provide particles in the desired size range, high-shear mixing is found to be particularly promising due to the availability of GMP-ready equipment and large throughput of production. Overall, our results will be of great guidance for establishing continuous process technologies for the GMP-compliant, large-scale production of sub-micron size PLGA particles, facilitating their commercial and clinical development.
Collapse
Affiliation(s)
- Maria Camilla Operti
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen and Oncode Institute, The Netherlands; Evonik Nutrition & Care GmbH, Health Care, 64293 Darmstadt, Germany
| | - David Fecher
- Evonik Nutrition & Care GmbH, Health Care, 64293 Darmstadt, Germany
| | - Eric A W van Dinther
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen and Oncode Institute, The Netherlands
| | - Silko Grimm
- Evonik Nutrition & Care GmbH, Health Care, 64293 Darmstadt, Germany
| | - Rima Jaber
- Evonik Nutrition & Care GmbH, Health Care, 64293 Darmstadt, Germany
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen and Oncode Institute, The Netherlands.
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen and Oncode Institute, The Netherlands.
| |
Collapse
|