1
|
Liu J, Wu J, Chen T, Yang B, Liu X, Xi J, Zhang Z, Gao Y, Li Z. Enhancing X-Ray Sensitization with Multifunctional Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400954. [PMID: 38676336 DOI: 10.1002/smll.202400954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Indexed: 04/28/2024]
Abstract
In the progression of X-ray-based radiotherapy for the treatment of cancer, the incorporation of nanoparticles (NPs) has a transformative impact. This study investigates the potential of NPs, particularly those comprised of high atomic number elements, as radiosensitizers. This aims to optimize localized radiation doses within tumors, thereby maximizing therapeutic efficacy while preserving surrounding tissues. The multifaceted applications of NPs in radiotherapy encompass collaborative interactions with chemotherapeutic, immunotherapeutic, and targeted pharmaceuticals, along with contributions to photodynamic/photothermal therapy, imaging enhancement, and the integration of artificial intelligence technology. Despite promising preclinical outcomes, the paper acknowledges challenges in the clinical translation of these findings. The conclusion maintains an optimistic stance, emphasizing ongoing trials and technological advancements that bolster personalized treatment approaches. The paper advocates for continuous research and clinical validation, envisioning the integration of NPs as a revolutionary paradigm in cancer therapy, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - JunYong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Bin Yang
- Department of Orthopedics, Shaodong People's Hospital, Shaoyang, Hunan Province, 422800, China
| | - XiangPing Liu
- Department of Neurology, Shaodong People's Hospital, Shaoyang, Hunan Province, 422800, China
| | - Jing Xi
- Department of Nephrology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan Province, 415000, China
| | - Ziyang Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| |
Collapse
|
2
|
Ali BH, Khoee S, Mafakheri F, Sadri E, Mahabadi VP, Karimi MR, Shirvalilou S, Khoei S. Active targeted delivery of theranostic thermo/pH dual-responsive magnetic Janus nanoparticles functionalized with folic acid/fluorescein ligands for enhanced DOX combination therapy of rat glioblastoma. J Mater Chem B 2024; 12:5957-5973. [PMID: 38808630 DOI: 10.1039/d3tb02429f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Doxorubicin (DOX), a chemotherapy drug, has demonstrated limited efficacy against glioblastoma, an aggressive brain tumor with resistance attributed to the blood-brain barrier (BBB). This study aims to overcome this challenge by proposing the targeted delivery of magnetic Janus nanoparticles (MJNPs) functionalized with folic acid ligands, fluorescent dye, and doxorubicin (DOX/MJNPs-FLA). The properties of these nanoparticles were comprehensively evaluated using bio-physiochemical techniques such as Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta potential analysis, high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM), fluorescence microscopy, MTT assay, hemolysis assay, and liver enzyme level evaluation. Dual-controlled DOX release was investigated under different pH and temperature conditions. Additionally, the impact of DOX/MJNPs-FLA on apoptosis induction in tumor cells, body weight, and survival time of cancerous animals was assessed. The targeted delivery system was assessed using C6 and OLN-93 cell lines as representatives of cancerous and healthy cell lines, respectively, alongside Wistar rat tumor-bearing models. Results from Prussian blue staining and confocal microscopy tests demonstrated the effective targeted internalization of MJNPs-FLA by glioblastoma cells. Additionally, we investigated the biodistribution of the nanoparticles utilizing fluorescence imaging techniques. This enabled us to track the distribution pattern of MJNPs-FLA in vivo, shedding light on their movement and accumulation within the biological system. Furthermore, the combination of chemotherapy and magnetic hyperthermia exhibited enhanced efficacy in inducing apoptosis, as evidenced by the increase of the pro-apoptotic Bax gene and a decrease in the anti-apoptotic Bcl-2 gene. Remarkably, this combination treatment did not cause any hepatotoxicity. This study highlights the potential of DOX/MJNPs-FLA as carriers for therapeutic and diagnostic agents in the context of theranostic applications for the treatment of brain malignancies. Additionally, it demonstrates the promising performance of DOX/MJNPs-FLA in combination treatment through passive and active targeting.
Collapse
Affiliation(s)
- Bahareh Haji Ali
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fariba Mafakheri
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Sadri
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | | | - Mohammad Reza Karimi
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Shirvalilou S, Khoei S, Khoee S, Soleymani M, Shirvaliloo M, Ali BH, Mahabadi VP. Dual-drug delivery by thermo-responsive Janus nanogel for improved cellular uptake, sustained release, and combination chemo-thermal therapy. Int J Pharm 2024; 653:123888. [PMID: 38342325 DOI: 10.1016/j.ijpharm.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The goal of this work was to examine the heat-sensitizing effects of Janus-coated magnetic nanoparticles (JMNPs) as a vehicle for 5-fluorouracil (5-Fu) and Quercetin (Qu) in C6 and OLN-93 cell lines. The cellular uptake of nanoparticles was evaluated using Prussian blue staining and ICP-OES after monolayer culturing of C6 (rat brain cancer cell) and OLN-93 (normal rat brain cell) cells. The cells were treated with free 5-Fu, Qu, and MJNPs loaded with Qu/5-Fu for 24 h, followed by magnetic hyperthermia under an alternating magnetic field (AMF) at a temperature of 43 °C. Using the MTT test and Flow cytometry, the C6 and OLN-93 cells were investigated after being subjected to hyperthermia with and without magnetic nanoparticles. The results of Prussian blue staining confirmed the potential of MJNPs as carriers that facilitate the uptake of drugs by cancer cells. The results showed that the combined application of Qu/5-Fu/MJNPs with hyperthermia significantly increased the amount of ROS production compared to interventions without MJNPs. The therapeutic results demonstrated that the combination of Qu/5-Fu/MJNPs with hyperthermia considerably enhanced the rate of apoptotic and necrotic cell death compared to that of interventions without MJNPs. Furthermore, MTT findings indicated that controlled exposure of Qu/5-Fu/MJNPs to AMF caused a synergistic effect. The advanced Janus magnetic nanoparticles in this study can be proposed as a promising dual drug carrier (Qu/5-Fu) and thermosensitizer platform for dual-modal synergistic cancer therapy.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Soleymani
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Milad Shirvaliloo
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, United Kingdom
| | - Bahareh Haji Ali
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Gielecińska A, Kciuk M, Yahya EB, Ainane T, Mujwar S, Kontek R. Apoptosis, necroptosis, and pyroptosis as alternative cell death pathways induced by chemotherapeutic agents? Biochim Biophys Acta Rev Cancer 2023; 1878:189024. [PMID: 37980943 DOI: 10.1016/j.bbcan.2023.189024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
For decades, common chemotherapeutic drugs have been established to trigger apoptosis, the preferred immunologically "silent" form of cell death. The primary objective of this review was to show that various FDA-approved chemotherapeutic drugs, including cisplatin, cyclosporine, doxorubicin, etoposide, 5-fluorouracil, gemcitabine, paclitaxel, or vinblastine can trigger necroptosis and pyroptosis. We aimed to provide the advantages and disadvantages of the induction of the given type of cell death by chemotherapeutical agents. Moreover, we give a short overview of the molecular mechanism of each type of cell death and indicate the existing crosstalks between cell death types. Finally, we provide a comparison of cell death types to facilitate the exploration of cell death types induced by other chemotherapeutical agents. Understanding the cell death pathway induced by a drug can lessen side effects and assist the discovery of new combinations with synergistic effects and low systemic toxicity.
Collapse
Affiliation(s)
- A Gielecińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - M Kciuk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland
| | - E-B Yahya
- Bioprocess Technology Division, School of Industrial Technology, University Sains Malaysia, Penang 11800, Malaysia
| | - T Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - S Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - R Kontek
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
5
|
Mousazadeh N, Gharbavi M, Rashidzadeh H, Nosrati H, Danafar H, Johari B. Anticancer evaluation of methotrexate and curcumin coencapsulated niosomes against colorectal cancer cell line. Nanomedicine (Lond) 2022; 17:201-217. [PMID: 35037483 DOI: 10.2217/nnm-2021-0334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The aim of the present investigation was to develop niosomes containing both curcumin (CUR) and methotrexate (MTX). Also, the combinational effect of CUR and MTX in both free and niosomal forms on growth inhibition potential and induction of apoptosis in the HCT-116 cell line were exploited. Materials & methods: Niosomes were prepared by the thin-film hydration method and their physicochemical properties were determined by various techniques. Cellular uptake, cell apoptosis, wound healing and MTT assay were conducted to ascertain niosomes' feasibility for cancer therapy. Results: The combination of CUR and MTX in niosomal formulation showed more toxicity than their combination in free form. Conclusion: The nanocarrier-based approach was effective for the codelivery of CUR and MTX against cancer cells in vitro.
Collapse
Affiliation(s)
- Navid Mousazadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Rashidzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Nosrati
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Rahdar A, Reza Hajinezhad M, Sargazi S, Barani M, Karimi P, Velasco B, Taboada P, Pandey S, Bameri Z, Zarei S. Pluronic F127/carfilzomib-based nanomicelles as promising nanocarriers: synthesis, characterization, biological, and in silico evaluations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Jahangiri S, Khoei S, Khoee S, Safa M, Shirvalilou S, Pirhajati Mahabadi V. Potential anti-tumor activity of 13.56 MHz alternating magnetic hyperthermia and chemotherapy on the induction of apoptosis in human colon cancer cell lines HT29 and HCT116 by up-regulation of Bax, cleaved caspase 3&9, and cleaved PARP proteins. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00108-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The purpose of the present study was to evaluate the efficacy of chemo-magnetic hyperthermia (MH), a combination of alternating magnetic field (AMF) and superparamagnetic nanoparticles (SPIONs) coated with Polyethylene glycol-Poly(butyl acrylate)-Polyethylene glycol (PEG-PBA-PEG) carrying 5-Fluorouracil (5-Fu), at inducing apoptosis in the human cancer cell lines HT29 and HCT116. This process can be mediated by alterations in the expression of apoptotic effector proteins, including Bax, Bcl-2, cleaved caspase 3&9, and cleaved PARP, which are involved in the intrinsic pathway of apoptosis. For this purpose, the cells were cultured as monolayers. Then both cell lines were treated with 5-Fu/magnetic nanoparticles and magnetic hyperthermia. Finally, the effect of treatment on cancer cells was determined by Western blot analysis and flow cytometry.
Results
Our results showed that combined chemo-magnetic thermotherapy significantly increased the apoptosis in colon cancer cells compared to chemotherapy or hyperthermia alone (P < 0.05). Up-regulation of Bax, cleaved caspase 3&9, and cleaved PARP proteins was indicative of apoptosis induction in cancer cells, which are involved in the intrinsic pathway of apoptosis.
Conclusions
This study demonstrates that localized hyperthermia was able to significantly trigger the 5-Fu release and inhibit cell viability, which, due to the synchronization of hyperthermia and chemotherapy, exacerbated the damage of cancer cells.
Graphical Abstract
Collapse
|
8
|
Darroudi M, Gholami M, Rezayi M, Khazaei M. An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. J Nanobiotechnology 2021; 19:399. [PMID: 34844632 PMCID: PMC8630862 DOI: 10.1186/s12951-021-01150-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
With the growing demands for personalized medicine and medical devices, nanomedicine is a modern scientific field, and research continues to apply nanomaterials for therapeutic and damaged tissue diagnosis. In this regard, substantial progress has been made in synthesizing magnetic nanoparticles with desired sizes, chemical composition, morphologies, and surface chemistry. Among these materials, nanomagnetic iron oxides have demonstrated promise as unique drug delivery carriers due to cancer treatment. This carrier could lead to responsive properties to a specific trigger, including heat, pH, alternative magnetic field, or even enzymes, through functionalization and coating of magnetic nanoparticles, along with biocompatibility, good chemical stability, easy functionalization, simple processing, and ability to localize to the tumor site with the assistance of external magnetic field. Current studies have focused on magnetic nanoparticles' utilities in cancer therapy, especially for colorectal cancer. Additionally, a bibliometric investigation was performed on the public trends in the field of the magnetic nanoparticle to drug delivery and anticancer, which represented progressing applications of these carriers in the multidisciplinary zones with a general view on future research and identified potential opportunities and challenges. Furthermore, we outline the current challenges and forthcoming research perspective for high performance and fostering advanced MNPs in colorectal cancer treatment.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehrdad Gholami
- Department of Chemistry, Marvdasht Branch, Islamic Azad University, P.O. Box 465, Marvdasht, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran. .,Medical Toxicology Research Center, Mashhad University of Medical Science, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|