1
|
Bañares MA, Alcolea-Rodriguez V, Portela R. A catalytic perspective to nanomaterials reactivity-based toxicity; implications for single- and multiple-component nanomaterials (nanocomposites). NANOIMPACT 2025; 37:100542. [PMID: 39814225 DOI: 10.1016/j.impact.2025.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The extended use of a given product normally precedes concerns about it. The reactivity-based nanotoxicity is a major concern that must be tackled from its fundamental understanding to its regulatory management. Moreover, concepts and ideas must seamlessly flow between relevant performers. Functional nanomaterials have been used in many fields; among these, catalysis is probably the earliest more extended application of nanomaterials, these are engineered to afford specific properties, and are typically known as Engineered Nanomaterials (ENMs). Heterogenous catalysis shares its basic features with reactivity-based toxicity. In both cases, we are dealing with phenomena triggered by reactions occurring at the surface of the nanomaterial. Therefore, the extensive knowledge in heterogeneous catalysis is key to understanding reactivity-based nanotoxicology. In this regard, determining surface exposure is fundamental to mechanistically comprehend dose-response, similar to how catalysis shifted from mass-based to surface-centered metrics. Catalysis science made a further refinement iteration: reactions occur at surfaces, though not all surfaces are necessarily reactive, making it crucial to normalize per reactive site. This perspective focuses on two key aspects that link heterogeneous catalysis and reactivity-based nanotoxicity: the reactive sites on the surface of nanomaterials and how different combinations of nanomaterials appear and perform. A comment is also made regarding the somewhat vague term 'multicomponent nanomaterial,' which is contrasted with the well-defined, established, and widely accepted term 'nanocomposite' within the chemical community. Clear and precise terminology and concepts are essential for effective research and regulation.
Collapse
Affiliation(s)
| | | | - Raquel Portela
- CSIC - Insituto de Catálisis y Petroleoquímica, Madrid, Spain
| |
Collapse
|
2
|
Guidi C, De Wannemaeker L, De Baets J, Demeester W, Maertens J, De Paepe B, De Mey M. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli. Microb Cell Fact 2022; 21:260. [PMID: 36522655 PMCID: PMC9753035 DOI: 10.1186/s12934-022-01983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Membrane proteins (MPs) are an important class of molecules with a wide array of cellular functions and are part of many metabolic pathways. Despite their great potential-as therapeutic drug targets or in microbial cell factory optimization-many challenges remain for efficient and functional expression in a host such as Escherichia coli. RESULTS A dynamically regulated small RNA-based circuit was developed to counter membrane stress caused by overexpression of different MPs. The best performing small RNAs were able to enhance the maximum specific growth rate with 123%. On culture level, the total MP production was increased two-to three-fold compared to a system without dynamic control. This strategy not only improved cell growth and production of the studied MPs, it also suggested the potential use for countering metabolic burden in general. CONCLUSIONS A dynamically regulated feedback circuit was developed that can sense metabolic stress caused by, in casu, the overexpression of an MP and responds to it by balancing the metabolic state of the cell and more specifically by downregulating the expression of the MP of interest. This negative feedback mechanism was established by implementing and optimizing simple-to-use genetic control elements based on post-transcriptional regulation: small non-coding RNAs. In addition to membrane-related stress when the MP accumulated in the cytoplasm as aggregates, the sRNA-based feedback control system was still effective for improving cell growth but resulted in a decreased total protein production. This result suggests promiscuity of the MP sensor for more than solely membrane stress.
Collapse
Affiliation(s)
- Chiara Guidi
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | | | - Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Wouter Demeester
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Sheta SM, El-Sheikh SM. Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses. Anal Biochem 2022; 648:114680. [PMID: 35429447 PMCID: PMC9007753 DOI: 10.1016/j.ab.2022.114680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
The world today lives in a state of terrible fear due to the mutation of the emerging COVID-19. With the continuation of this pandemic, there is an urgent need for fast, accurate testing devices to detect the emerging SARS-CoV-2 pandemic in terms of biosensors and point-of-care testing. Besides, the urgent development in personal defense tools, anti-viral surfaces and wearables, and smartphones open the door for simplifying the self-diagnosis process everywhere. This review introduces a quick COVID-19 overview: definition, transmission, pathophysiology, the identification and diagnosis, mutation and transformation, and the global situation. It also focuses on an overview of the rapidly advanced technologies based on nanomaterials and MOFs for biosensing, diagnosing, and viral control of the SARS-CoV-2 pandemic. Finally, highlight the latest technologies, applications, existing achievements, and preventive diagnostic strategies to control this epidemic and combat the emerging coronavirus. This humble effort aims to provide a helpful survey that can be used to develop a creative solution and to lay down the future vision of diagnosis against COVID-19.
Collapse
Affiliation(s)
- Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt.
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo, 11421, Egypt.
| |
Collapse
|
4
|
Lunardi CN, Subrinho FL, Freitas Barros MPD, Lima RC, de Queiroz Melo ACM, Barbosa DDM, Negreiros LGD, Rodrigues BS, Neiva MS, Linhares JVR, Dalla Costa GF, Gomes ADJ. BIBLIOMETRIC ANALYSIS: NANOTECHNOLOGY AND COVID-19. Curr Top Med Chem 2022; 22:629-638. [PMID: 35255795 DOI: 10.2174/1568026622666220307125446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 pandemic information is critical in order to study it further, but the virus has still not been confined. In addition, even if there is no longer any threat, more knowledge may be gathered from these resources. METHODS The data used in this study was gathered from several scientific areas and the links between them. Due to the fact that the COVID-19 pandemic has not been fully contained and additional information can be gleaned from these references, bibliometric analysis of it is important. RESULTS In total 155 publications on the topic of "COVID-19" and the keyword "nanotechnology" were identified in the Scopus database between 2020 and 2021 in a network visualization map. CONCLUSION As a result, our analysis was conducted at the appropriate time to provide a comprehensive understanding of COVID-19 and nanotechnology and prospective research directions for medicinal chemistry.
Collapse
Affiliation(s)
- Claure Nain Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Fernanda Lima Subrinho
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Mirella Paula de Freitas Barros
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Raiane Cavalcante Lima
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Ana Clara Magalhaes de Queiroz Melo
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Daniela de Melo Barbosa
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Luana Gouveia De Negreiros
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Brenda Soares Rodrigues
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Mateus Sousa Neiva
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Joao Victor Ribeiro Linhares
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Gabriel Farrapeira Dalla Costa
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Anderson de Jesus Gomes
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| |
Collapse
|
5
|
Souri M, Chiani M, Farhangi A, Mehrabi MR, Nourouzian D, Raahemifar K, Soltani M. Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:783. [PMID: 35269270 PMCID: PMC8912597 DOI: 10.3390/nano12050783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Following the announcement of the outbreak of COVID-19 by the World Health Organization, unprecedented efforts were made by researchers around the world to combat the disease. So far, various methods have been developed to combat this "virus" nano enemy, in close collaboration with the clinical and scientific communities. Nanotechnology based on modifiable engineering materials and useful physicochemical properties has demonstrated several methods in the fight against SARS-CoV-2. Here, based on what has been clarified so far from the life cycle of SARS-CoV-2, through an interdisciplinary perspective based on computational science, engineering, pharmacology, medicine, biology, and virology, the role of nano-tools in the trio of prevention, diagnosis, and treatment is highlighted. The special properties of different nanomaterials have led to their widespread use in the development of personal protective equipment, anti-viral nano-coats, and disinfectants in the fight against SARS-CoV-2 out-body. The development of nano-based vaccines acts as a strong shield in-body. In addition, fast detection with high efficiency of SARS-CoV-2 by nanomaterial-based point-of-care devices is another nanotechnology capability. Finally, nanotechnology can play an effective role as an agents carrier, such as agents for blocking angiotensin-converting enzyme 2 (ACE2) receptors, gene editing agents, and therapeutic agents. As a general conclusion, it can be said that nanoparticles can be widely used in disinfection applications outside in vivo. However, in in vivo applications, although it has provided promising results, it still needs to be evaluated for possible unintended immunotoxicity. Reviews like these can be important documents for future unwanted pandemics.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Dariush Nourouzian
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
| |
Collapse
|
6
|
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H, Cho JY. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics 2021; 13:2034. [PMID: 34959320 PMCID: PMC8705988 DOI: 10.3390/pharmaceutics13122034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Fazla Rabbi Mashrur
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Anisha Parsub Chhoan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, University of California-Davis, Davis, California, CA 95616, USA;
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | | | | | - Sunggyu Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| | - Hassan Hosseinzadeh
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| |
Collapse
|
7
|
Zaheer T, Pal K, Abbas RZ, Torres MDPR. COVID-19 and Ivermectin: Potential threats associated with human use. J Mol Struct 2021; 1243:130808. [PMID: 34149064 PMCID: PMC8195608 DOI: 10.1016/j.molstruc.2021.130808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/01/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022]
Abstract
Drugs re-purposing due to COVID-19 virus has declared a number of useful candidates for treatment and prevention of the virus. Ivermectin (IVM) has gained much popularity due to a strong background of magical applications against a broad spectrum of pathogens. The in- vitro studies of ivermectin have shown promise, the thorough clinical trials of its efficacy in the treatment and prevention of SARS-CoV-2 are still warranted. Useful strategies for analyzing projected use of IVM in human coronaviruses might be developed. It may be done by concluding ongoing clinical trials and culturing lessons from IVM usage in veterinary practice. The potential toxicity and careful dosage analyses are urgently required before declaring it as an anti-SARS-CoV-2 drug candidate. This manuscript overviews the background and potential threats associated with the off-label use of IVM as prophylactic drug or treatment option against COVID-19 virus.
Collapse
Affiliation(s)
- Tean Zaheer
- Chemotherapy Laboratory, Department of Parasitology, University of Agriculture, Faisalabad- 38040, Pakistan
| | - Kaushik Pal
- Laboratório de Biopolímeros e Sensores, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro (LABIOS/IMA/UFRJ), Cidade Universitária, Rio de Janeiro 21941-90, Brazil
| | - Rao Zahid Abbas
- Chemotherapy Laboratory, Department of Parasitology, University of Agriculture, Faisalabad- 38040, Pakistan
| | - María Del Pilar Rodríguez Torres
- Laboratorio de Ondas de Choque (LOCH),Centro de Física Aplicada y Tecnología Avanzada, (CFATA),Universidad Nacional Autónoma de México, Campus UNAM Juriquilla Boulevard, Juriquilla no. 3001, Santiago de Querétaro, Qro., C.P. 76230, Mexico
| |
Collapse
|
8
|
Ghasemzad M, Hashemian SMR, Memarnejadian A, Akbarzadeh I, Hossein-Khannazer N, Vosough M. The nano-based theranostics for respiratory complications of COVID-19. Drug Dev Ind Pharm 2021; 47:1353-1361. [PMID: 34666567 DOI: 10.1080/03639045.2021.1994989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs) for targeted drug delivery to the alveolar space appears to be an effective and promising therapeutic strategy. Loading the medicinal components into NPs enhances the stability, bioavailability, solubility and sustained release of them. This approach can circumvent major challenges in efficient drug delivery such as solubility and any adverse impact of medicinal components due to off-targeted delivery and resulting systemic complications. Inhalable NPs could be delivered through nasal sprays, inhalers, and nebulizers. NPs also could interfere in virus attachment to host cells and prevent infection. Moreover, nanomedicine-based technologies can facilitate accurate and rapid detection of virus compared to the conventional methods. In this review, the nano-based theranostics modalities for the management of respiratory complications of COVID-19 were discussed.
Collapse
Affiliation(s)
- Mahsa Ghasemzad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Faculty of Basic Sciences and Advanced Technologies in biology, Department of Molecular Cell Biology-Genetics, University of Science and Culture, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Scott-Fordsmand JJ, Amorim MJB. The Curious Case of Earthworms and COVID-19. BIOLOGY 2021; 10:biology10101043. [PMID: 34681142 PMCID: PMC8533077 DOI: 10.3390/biology10101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Earthworms have been used for centuries in traditional medicine, and more than a century ago were praised by Charles Darwin as one of the most important organisms in the history of the world. These worms are well-studied with a wealth of information available, for example on the genome, the gene expression, the immune system, the general biology, and ecology. These worms live in many habitats, and they had to find solutions for severe environmental challenges. The common compost worm, Eisenia fetida, has developed a unique mechanism to deal with intruding (nano)materials, bacteria, and viruses. It deals with the intruders by covering these with a defence toxin (lysenin) targeted to kill the intruder. We outline how this mechanism probably can be used as a therapeutic model for human COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2) and other corona viruses. Abstract Earthworms have been used for centuries in traditional medicine and are used globally as an ecotoxicological standard test species. Studies of the earthworm Eisenia fetida have shown that exposure to nanomaterials activates a primary corona-response, which is covering the nanomaterial with native proteins, the same response as to biological invaders such as a virus. We outline that the earthworm Eisenia fetida is possibly immune to COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2), and we describe the likely mechanisms of highly receptor-specific pore-forming proteins (PFPs). A non-toxic version of this protein is available, and we hypothesize that it is possible to use the earthworm’s PFPs based anti-viral mechanism as a therapeutic model for human SARS-CoV-2 and other corona viruses. The proteins can be used as a drug, for example, delivered with a nanoparticle in a similar way to the current COVID-19 vaccines. Obviously, careful consideration should be given to the potential risk of toxicity elicited by lysenin for in vivo usage. We aim to share this view to activate its exploration by the wider scientific community while promoting a potential therapeutic development.
Collapse
Affiliation(s)
- Janeck J. Scott-Fordsmand
- Department of Biosciences, Aarhus University, 8600 Silkeborg, Denmark
- Correspondence: ; Tel.: +45-4025-6803
| | - Monica J. B. Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
10
|
Pereira-Silva M, Chauhan G, Shin MD, Hoskins C, Madou MJ, Martinez-Chapa SO, Steinmetz NF, Veiga F, Paiva-Santos AC. Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination. Expert Opin Drug Deliv 2021; 18:1395-1414. [PMID: 33944644 PMCID: PMC8182831 DOI: 10.1080/17425247.2021.1922387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a particular coronavirus strain responsible for the coronavirus disease 2019 (COVID-19), accounting for more than 3.1 million deaths worldwide. Several health-related strategies have been successfully developed to contain the rapidly-spreading virus across the globe, toward reduction of both disease burden and infection rates. Particularly, attention has been focused on either the development of novel drugs and vaccines, or by adapting already-existing drugs for COVID-19 treatment, mobilizing huge efforts to block disease progression and to overcome the shortage of effective measures available at this point.Areas covered: This perspective covers the breakthrough of multifunctional biomimetic cell membrane-based nanoparticles as next-generation nanosystems for cutting-edge COVID-19 therapeutics and vaccination, specifically cell membrane-derived nanovesicles and cell membrane-coated nanoparticles, both tailorable cell membrane-based nanosystems enriched with the surface repertoire of native cell membranes, toward maximized biointerfacing, immune evasion, cell targeting and cell-mimicking properties.Expert opinion: Nano-based approaches have received widespread interest regarding enhanced antigen delivery, prolonged blood circulation half-life and controlled release of drugs. Cell membrane-based nanoparticles comprise interesting antiviral multifunctional nanoplatforms for blocking SARS-CoV-2 binding to host cells, reducing inflammation through cytokine neutralization and improving drug delivery toward COVID-19 treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Matthew D. Shin
- Department of Nanoengineering, University of California, San Diego, San Diego, United States
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Marc J. Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, United States
| | | | - Nicole F. Steinmetz
- Department of Nanoengineering, University of California, San Diego, San Diego, United States
- Department of Bioengineering, University of California, San Diego, United States
- Department of Radiology, UC San Diego Health, University of California, San Diego, United States
- Center for Nano-ImmunoEngineering (Nanoie), University of California, San Diego, United States
- Moores Cancer Center, UC San Diego Health, University of California, San Diego, United States
| | - Francisco Veiga
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
12
|
Seifi T, Reza Kamali A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. MEDICINE IN DRUG DISCOVERY 2021; 11:100099. [PMID: 34056572 PMCID: PMC8151376 DOI: 10.1016/j.medidd.2021.100099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 has been one of the most challenging global epidemics of modern times with a large number of casualties combined with economic hardships across the world. Considering that there is still no definitive cure for the recent viral crisis, this article provides a review of nanomaterials with antiviral activity, with an emphasis on graphene and its derivatives, including graphene oxide, reduced graphene oxide and graphene quantum dots. The possible interactions between surfaces of such nanostructured materials with coronaviruses are discussed. The antiviral mechanisms of graphene materials can be related to events such as the inactivation of virus and/or the host cell receptor, electrostatic trapping and physico-chemical destruction of viral species. These effects can be enhanced by functionalization and/or decoration of carbons with species that enhances graphene-virus interactions. The low-cost and large-scale preparation of graphene materials with enhanced antiviral performances is an interesting research direction to be explored.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
13
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Nanotechnology to the Rescue: Treatment Perspective for the Immune Dysregulation Observed in COVID-19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The study of the use of nanotechnology for drug delivery has been extensive. Nanomedical approaches for therapeutics; drug delivery in particular is superior to conventional methods in that it allows for controlled targeted delivery and release, higher stability, extended circulation time, minimal side-effects, and improved pharmacokinetic clearance (of the drug) form the body, to name a few. The magnitude of COVID-19, the current ongoing pandemic has been severe; it has caused widespread the loss of human life. In individuals with severe COVID-19, immune dysregulation and a rampant state of hyperinflammation is observed. This kind of an immunopathological response is detrimental and results in rapid disease progression, development of secondary infections, sepsis and can be fatal. Several studies have pin-pointed the reason for this immune dysregulation; deviations in the signaling pathways involved in the mediation and control of immune responses. In severe COVID-19 patients, many signaling cascades including JAK/STAT, NF-κB, MAPK/ERK, TGF beta, VEGF, and Notch signaling were found to be either upregulated or inactivated. Targeting these aberrant signaling pathways in conjunction with antiviral therapy will effectuate mitigation of the hyperinflammation, hypercytokinemia, and promote faster recovery. The science of the use of nanocarriers as delivery agents to modulate these signaling pathways is not new; it has already been explored for other inflammatory diseases and in particular, cancer therapy. Numerous studies have evaluated the efficacy and potential of nanomedical approaches to modulate these signaling pathways and have been met with positive results. A treatment regime, that includes nanotherapeutics and antiviral therapies will prove effective and holds great promise for the successful treatment of COVID-19. In this article, we review different nanomedical approaches already studied for targeting aberrant signaling pathways, the host immune response to SARS-CoV-2, immunopathology and the dysregulated signaling pathways observed in severe COVID-19 and the current treatment methods in use for targeting signaling cascades in COVID-19. We then conclude by suggesting that the use of nanomedical drug delivery systems for targeting signaling pathways can be extended to effectively target the aberrant signaling pathways in COVID-19 for best treatment results.
Collapse
|
14
|
Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. EMERGENT MATERIALS 2021; 4:75-99. [PMID: 33615140 PMCID: PMC7881345 DOI: 10.1007/s42247-021-00168-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the recent outbreak of coronavirus 2019 (COVID-19). Although nearly two decades have passed since the emergence of pandemics such as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), no effective drug against the CoV family has yet been approved, so there is a need to find newer therapeutic targets. Currently, simultaneous research across the globe is being performed to discover efficient vaccines or drugs, including both conventional therapies used to treat previous similar diseases and emerging therapies like nanomedicine. Nanomedicine has already proven its value through its application drug delivery and nanosensors in other diseases. Nanomedicine and its components can play an important role in various stages of prevention, diagnosis, treatment, vaccination, and research related to COVID-19. Nano-based antimicrobial technology can be integrated into personal equipment for the greater safety of healthcare workers and people. Various nanomaterials such as quantum dots can be used as biosensors to diagnose COVID-19. Nanotechnology offers benefits from the use of nanosystems, such as liposomes, polymeric and lipid nanoparticles, metallic nanoparticles, and micelles, for drug encapsulation, and facilitates the improvement of pharmacological drug properties. Antiviral functions for nanoparticles can target the binding, entry, replication, and budding of COVID-19. The toxicity-related inorganic nanoparticles are one of the limiting factors of its use that should be further investigated and modified. In this review, we are going to discuss nanomedicine options for COVID-19 management, similar applications for related viral diseases, and their gap of knowledge.
Collapse
Affiliation(s)
- Farzan Vahedifard
- Altman Clinical and Translational Research Institute, University of California San Diego Health Center, San Diego, CA USA
| | - Krishnan Chakravarthy
- Division of Pain Medicine, Department of Anesthesiology, University of California San Diego Health Center, 9400 Campus Point Dr, La Jolla, San Diego, CA USA
| |
Collapse
|
15
|
Tharayil A, Rajakumari R, Chirayil CJ, Thomas S, Kalarikkal N. A short review on nanotechnology interventions against COVID-19. EMERGENT MATERIALS 2021; 4:131-141. [PMID: 33554045 PMCID: PMC7856851 DOI: 10.1007/s42247-021-00163-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
The COVID-19 has affected all major aspects of the society in a global perspective. The role of nanotechnology is much sought after in fighting this pandemic. Advanced materials based on nanotechnology are the basis of several technologies starting from masks and personal protection equipment to specific diagnostic tools that could diminish the impact of COVID-19. Development of nanotechnology-based products is therefore an absolute necessity for fight against COVID-19. We examine the fundamental concepts related to virology, histopathologic findings and how nanotechnology can help in fighting the disease. In this review we discuss the state of the art and ongoing nanotechnology-based strategies like antiviral coatings, 3D printing and therapeutics to fight against this deadly disease. The importance of using nanoparticles in point of care tests and biosensors is also highlighted.
Collapse
Affiliation(s)
- Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - R. Rajakumari
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | | | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560 India
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560 India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - Nandakumar Kalarikkal
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560 India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| |
Collapse
|
16
|
Rehman MFU, Fariha C, Anwar A, Shahzad N, Ahmad M, Mukhtar S, Farhan Ul Haque M. Novel coronavirus disease (COVID-19) pandemic: A recent mini review. Comput Struct Biotechnol J 2020; 19:612-623. [PMID: 33398233 PMCID: PMC7773542 DOI: 10.1016/j.csbj.2020.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19, caused by a novel coronavirus, was declared as a global pandemic by WHO more than five months ago, and we are still experiencing a state of global emergency. More than 74.30 million confirmed cases of the COVID-19 have been reported globally so far, with an average fatality rate of almost 3.0%. Seven different types of coronaviruses had been detected from humans; three of them have resulted in severe outbreaks, i.e., MERS-CoV, SARS-CoV, and SARS-CoV-2. Phylogenetic analysis of the genomes suggests that the possible occurrence of recombination between SARS-like-CoVs from pangolin and bat might have led to the origin of SARS-CoV-2 and the COVID-19 outbreak. Coronaviruses are positive-sense, single-stranded RNA viruses and harbour a genome (30 kb) consisting of two terminal untranslated regions and twelve putative functional open reading frames (ORFs), encoding for non-structural and structural proteins. There are sixteen putative non-structural proteins, including proteases, RNA-dependent RNA polymerase, helicase, other proteins involved in the transcription and replication of SARS-CoV-2, and four structural proteins, including spike protein (S), envelope (E), membrane (M), and nucleocapsid (N). SARS-CoV-2 infection, with a heavy viral load in the body, destroys the human lungs through cytokine storm, especially in elderly persons and people with immunosuppressed disorders. A number of drugs have been repurposed and employed, but still, no specific antiviral medicine has been approved by the FDA to treat this disease. This review provides a current status of the COVID-19, epidemiology, an overview of phylogeny, mode of action, diagnosis, and possible treatment methods and vaccines.
Collapse
Affiliation(s)
| | - Chaudhary Fariha
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Aqsa Anwar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Munir Ahmad
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Salma Mukhtar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | | |
Collapse
|