1
|
Rolband LA, Chopra K, Danai L, Beasock D, van Dam HJJ, Krueger JK, Byrnes J, Afonin KA. Small-Angle X-ray Scattering (SAXS) Combined with SAXS-Driven Molecular Dynamics for Structural Analysis of Multistranded RNA Assemblies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67178-67191. [PMID: 39593218 PMCID: PMC11637918 DOI: 10.1021/acsami.4c12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nucleic acids (RNA and DNA) play crucial roles in all living organisms and find wide utility in clinical settings. The convergence of rationally designed nucleic acid multistranded assemblies with embedded therapeutic properties has led to the development of a platform based on nucleic acid nanoparticles (NANPs). NANPs incorporate various functional moieties to deliver their combinations to diseased cells in a highly controlled manner. Given that the structure and composition of NANPs can also influence their immunorecognition and biological activities, thorough verification of all designs is essential. We introduce an experimental pipeline for small-angle X-ray scattering (SAXS) to gather structural details about the solution-state NANPs assembled from up to 12 RNA strands. To the best of our knowledge, this study represents the largest multistranded RNA nanoassemblies characterized in this manner to date. We show that synchronized implementation of SAXS-driven molecular dynamics simulations reveals the diverse conformational landscape inhabited by these assemblies and provides insights into their immunorecognition. The developed strategy expands the capabilities of therapeutic nucleic acids and emerging nucleic acid nanotechnologies.
Collapse
Affiliation(s)
- Lewis A Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Kriti Chopra
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Leyla Danai
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Hubertus J J van Dam
- Condensed Matter Physics and Materials Science Dept, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Joanna K Krueger
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
2
|
Rebolledo LP, Ke W, Cedrone E, Wang J, Majithia K, Johnson MB, Dokholyan NV, Dobrovolskaia MA, Afonin KA. Immunostimulation of Fibrous Nucleic Acid Nanoparticles Can be Modulated through Aptamer-Based Functional Moieties: Unveiling the Structure-Activity Relationship and Mechanistic Insights. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8430-8441. [PMID: 38344840 PMCID: PMC10895590 DOI: 10.1021/acsami.3c17779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Fibrous nanomaterials containing silica, titanium oxide, and carbon nanotubes are notoriously known for their undesirable inflammatory responses and associated toxicities that have been extensively studied in the environmental and occupational toxicology fields. Biopersistance and inflammation of "hard" nanofibers prevent their broader biomedical applications. To utilize the structural benefits of fibrous nanomaterials for functionalization with moieties of therapeutic significance while preventing undesirable immune responses, researchers employ natural biopolymers─RNA and DNA─to design "soft" and biodegradable nanomaterials with controlled immunorecognition. Nucleic acid nanofibers have been shown to be safe and efficacious in applications that do not require their delivery into the cells such as the regulation of blood coagulation. Previous studies demonstrated that unlike traditional therapeutic nucleic acids (e.g., CpG DNA oligonucleotides) nucleic acid nanoparticles (NANPs), when used without a carrier, are not internalized by the immune cells and, as such, do not induce undesirable cytokine responses. In contrast, intracellular delivery of NANPs results in cytokine responses that are dependent on the physicochemical properties of these nanomaterials. However, the structure-activity relationship of innate immune responses to intracellularly delivered fibrous NANPs is poorly understood. Herein, we employ the intracellular delivery of model RNA/DNA nanofibers functionalized with G-quadruplex-based DNA aptamers to investigate how their structural properties influence cytokine responses. We demonstrate that nanofibers' scaffolds delivered to the immune cells using lipofectamine induce interferon response via the cGAS-STING signaling pathway activation and that DNA aptamers incorporation shields the fibers from recognition by cGAS and results in a lower interferon response. This structure-activity relationship study expands the current knowledge base to inform future practical applications of intracellularly delivered NANPs as vaccine adjuvants and immunotherapies.
Collapse
Affiliation(s)
- Laura P Rebolledo
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, Maryland 21701, United States
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Krishna Majithia
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Biochemistry & Molecular Biology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, Maryland 21701, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
3
|
Li X, Chandler M, Avila YI, Arroyo-Becker SI, Patriarche G, Vargas-Berenguel A, Casas-Solvas JM, Afonin KA, Gref R. Nanoscale metal-organic frameworks for the delivery of nucleic acids to cancer cells. Int J Pharm X 2023; 5:100161. [PMID: 36817971 PMCID: PMC9931914 DOI: 10.1016/j.ijpx.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/31/2023] Open
Abstract
Therapeutic nucleic acids (TNAs) are gaining increasing interest in the treatment of severe diseases including viral infections, inherited disorders, and cancers. However, the efficacy of intracellularly functioning TNAs is also reliant upon their delivery into the cellular environment, as unmodified nucleic acids are unable to cross the cell membrane mainly due to charge repulsion. Here we show that TNAs can be effectively delivered into the cellular environment using engineered nanoscale metal-organic frameworks (nanoMOFs), with the additional ability to tailor which cells receive the therapeutic cargo determined by the functional moieties grafted onto the nanoMOF's surface. This study paves the way to integrate the highly ordered programmable nucleic acids into larger-scale functionalized nanoassemblies.
Collapse
Affiliation(s)
- Xue Li
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yelixza I. Avila
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Sandra I. Arroyo-Becker
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Antonio Vargas-Berenguel
- Department of Chemistry and Physics, University of Almería, Ctra de Sacramento s/n, 04120 Almería, Spain
| | - Juan M. Casas-Solvas
- Department of Chemistry and Physics, University of Almería, Ctra de Sacramento s/n, 04120 Almería, Spain
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ruxandra Gref
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
4
|
Emerging Trends in Nano-Driven Immunotherapy for Treatment of Cancer. Vaccines (Basel) 2023; 11:vaccines11020458. [PMID: 36851335 PMCID: PMC9968063 DOI: 10.3390/vaccines11020458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Despite advancements in the development of anticancer medications and therapies, cancer still has the greatest fatality rate due to a dismal prognosis. Traditional cancer therapies include chemotherapy, radiotherapy, and targeted therapy. The conventional treatments have a number of shortcomings, such as a lack of selectivity, non-specific cytotoxicity, suboptimal drug delivery to tumour locations, and multi-drug resistance, which results in a less potent/ineffective therapeutic outcome. Cancer immunotherapy is an emerging and promising strategy to elicit a pronounced immune response against cancer. Immunotherapy stimulates the immune system with cancer-specific antigens or immune checkpoint inhibitors to overcome the immune suppressive tumour microenvironment and kill the cancer cells. However, delivery of the antigen or immune checkpoint inhibitors and activation of the immune response need to circumvent the issues pertaining to short lifetimes and effect times, as well as adverse effects associated with off-targeting, suboptimal, or hyperactivation of the immune system. Additional challenges posed by the tumour suppressive microenvironment are less tumour immunogenicity and the inhibition of effector T cells. The evolution of nanotechnology in recent years has paved the way for improving treatment efficacy by facilitating site-specific and sustained delivery of the therapeutic moiety to elicit a robust immune response. The amenability of nanoparticles towards surface functionalization and tuneable physicochemical properties, size, shape, and surfaces charge have been successfully harnessed for immunotherapy, as well as combination therapy, against cancer. In this review, we have summarized the recent advancements made in choosing different nanomaterial combinations and their modifications made to enable their interaction with different molecular and cellular targets for efficient immunotherapy. This review also highlights recent trends in immunotherapy strategies to be used independently, as well as in combination, for the destruction of cancer cells, as well as prevent metastasis and recurrence.
Collapse
|
5
|
Ke W, Crist RM, Clogston JD, Stern ST, Dobrovolskaia MA, Grodzinski P, Jensen MA. Trends and patterns in cancer nanotechnology research: A survey of NCI's caNanoLab and nanotechnology characterization laboratory. Adv Drug Deliv Rev 2022; 191:114591. [PMID: 36332724 PMCID: PMC9712232 DOI: 10.1016/j.addr.2022.114591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Cancer nanotechnologies possess immense potential as therapeutic and diagnostic treatment modalities and have undergone significant and rapid advancement in recent years. With this emergence, the complexities of data standards in the field are on the rise. Data sharing and reanalysis is essential to more fully utilize this complex, interdisciplinary information to answer research questions, promote the technologies, optimize use of funding, and maximize the return on scientific investments. In order to support this, various data-sharing portals and repositories have been developed which not only provide searchable nanomaterial characterization data, but also provide access to standardized protocols for synthesis and characterization of nanomaterials as well as cutting-edge publications. The National Cancer Institute's (NCI) caNanoLab is a dedicated repository for all aspects pertaining to cancer-related nanotechnology data. The searchable database provides a unique opportunity for data mining and the use of artificial intelligence and machine learning, which aims to be an essential arm of future research studies, potentially speeding the design and optimization of next-generation therapies. It also provides an opportunity to track the latest trends and patterns in nanomedicine research. This manuscript provides the first look at such trends extracted from caNanoLab and compares these to similar metrics from the NCI's Nanotechnology Characterization Laboratory, a laboratory providing preclinical characterization of cancer nanotechnologies to researchers around the globe. Together, these analyses provide insight into the emerging interests of the research community and rise of promising nanoparticle technologies.
Collapse
Affiliation(s)
- Weina Ke
- Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, Rockville, MD, United States
| | - Mark A Jensen
- Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, United States.
| |
Collapse
|
6
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
7
|
Multifunctional Nanoplatforms as a Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2022; 14:pharmaceutics14051075. [PMID: 35631660 PMCID: PMC9143284 DOI: 10.3390/pharmaceutics14051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022] Open
Abstract
It is more than sixty years since the era of modern photodynamic therapy (PDT) for cancer began. Enhanced selectivity for malignant cells with a reduced selectivity for non-malignant cells and good biocompatibility along with the limited occurrence of side effects are considered to be the most significant advantages of PDT in comparison with conventional therapeutic approaches, e.g., chemotherapy. The phenomenon of multidrug resistance, which is associated with drug efflux transporters, was originally identified in relation to the application of chemotherapy. Unfortunately, over the last thirty years, numerous papers have shown that many photosensitizers are the substrates of efflux transporters, significantly restricting the effectiveness of PDT. The concept of a dynamic nanoplatform offers a possible solution to minimize the multidrug resistance effect in cells affected by PDT. Indeed, recent findings have shown that the utilization of nanoparticles could significantly enhance the therapeutic efficacy of PDT. Additionally, multifunctional nanoplatforms could induce the synergistic effect of combined treatment regimens, such as PDT with chemotherapy. Moreover, the surface modifications that are associated with nanoparticle functionalization significantly improve the target potential of PDT or chemo-PDT in multidrug resistant and cancer stem cells.
Collapse
|
8
|
Tran AN, Chandler M, Halman J, Beasock D, Fessler A, McKeough RQ, Lam PA, Furr DP, Wang J, Cedrone E, Dobrovolskaia MA, Dokholyan NV, Trammell SR, Afonin KA. Anhydrous Nucleic Acid Nanoparticles for Storage and Handling at Broad Range of Temperatures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104814. [PMID: 35128787 PMCID: PMC8976831 DOI: 10.1002/smll.202104814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/17/2021] [Indexed: 05/13/2023]
Abstract
Recent advances in nanotechnology now allow for the methodical implementation of therapeutic nucleic acids (TNAs) into modular nucleic acid nanoparticles (NANPs) with tunable physicochemical properties which can match the desired biological effects, provide uniformity, and regulate the delivery of multiple TNAs for combinatorial therapy. Despite the potential of novel NANPs, the maintenance of their structural integrity during storage and shipping remains a vital issue that impedes their broader applications. Cold chain storage is required to maintain the potency of NANPs in the liquid phase, which greatly increases transportation costs. To promote long-term storage and retention of biological activities at higher temperatures (e.g., +50 °C), a panel of representative NANPs is first exposed to three different drying mechanisms-vacuum concentration (SpeedVac), lyophilization (Lyo), and light-assisted drying (LAD)-and then rehydrated and analyzed. While SpeedVac primarily operates using heat, Lyo avoids temperature increases by taking advantage of pressure reduction and LAD involves a near-infrared laser for uniform drying in the presence of trehalose. This work compares and defines refinements crucial in formulating an optimal strategy for producing stable, fully functional NANPs and presents a forward advancement in their development for clinical applications.
Collapse
Affiliation(s)
- Allison N Tran
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Justin Halman
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Adam Fessler
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Riley Q McKeough
- Department of Physics and Optical Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Phuong Anh Lam
- Department of Physics and Optical Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Daniel P Furr
- Department of Physics and Optical Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jian Wang
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Susan R Trammell
- Department of Physics and Optical Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
9
|
Afonin KA, Dobrovolskaia MA, Ke W, Grodzinski P, Bathe M. Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation. Adv Drug Deliv Rev 2022; 181:114081. [PMID: 34915069 PMCID: PMC8886801 DOI: 10.1016/j.addr.2021.114081] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023]
Abstract
With numerous recent advances, the field of therapeutic nucleic acid nanotechnology is now poised for clinical translation supported by several examples of FDA-approved nucleic acid nanoformulations including two recent mRNA-based COVID-19 vaccines. Within this rapidly growing field, a new subclass of nucleic acid therapeutics called nucleic acid nanoparticles (NANPs) has emerged in recent years, which offers several unique properties distinguishing it from traditional therapeutic nucleic acids. Key unique aspects of NANPs include their well-defined 3D structure, their tunable multivalent architectures, and their ability to incorporate conditional activations of therapeutic targeting and release functions that enable diagnosis and therapy of cancer, regulation of blood coagulation disorders, as well as the development of novel vaccines, immunotherapies, and gene therapies. However, non-consolidated research developments of this highly interdisciplinary field create crucial barriers that must be overcome in order to impact a broader range of clinical indications. Forming a consortium framework for nucleic acid nanotechnology would prioritize and consolidate translational efforts, offer several unifying solutions to expedite their transition from bench-to-bedside, and potentially decrease the socio-economic burden on patients for a range of conditions. Herein, we review the unique properties of NANPs in the context of therapeutic applications and discuss their associated translational challenges.
Collapse
Affiliation(s)
- Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Weina Ke
- Biomedical Informatics and Data Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Mohammapdour R, Ghandehari H. Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv Drug Deliv Rev 2022; 180:114022. [PMID: 34740764 PMCID: PMC8898339 DOI: 10.1016/j.addr.2021.114022] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Careful assessment of the biological fate and immune response of inorganic nanoparticles is crucial for use of such carriers in drug delivery and other biomedical applications. Many studies have elucidated the cellular and molecular mechanisms of the interaction of inorganic nanoparticles with the components of the immune system. The biodegradation and dissolution of inorganic nanoparticles can influence their ensuing immune response. While the immunological properties of inorganic nanoparticles as a function of their physicochemical properties have been investigated in detail, little attention has been paid to the immune adverse effects towards the degradation products of these nanoparticles. To fill this gap, we herein summarize the cellular mechanisms of immune response to inorganic nanoparticles and their degradation products with specific focus on immune cells. We also accentuate the importance of designing new methods and instruments for the in situ characterization of inorganic nanoparticles in order to assess their safety as a result of degradation. This review further sheds light on factors that need to be considered in the design of safe and effective inorganic nanoparticles for use in delivery of bioactive and imaging agents.
Collapse
Affiliation(s)
- Raziye Mohammapdour
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
12
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
13
|
Bila D, Radwan Y, Dobrovolskaia MA, Panigaj M, Afonin KA. The Recognition of and Reactions to Nucleic Acid Nanoparticles by Human Immune Cells. Molecules 2021; 26:molecules26144231. [PMID: 34299506 PMCID: PMC8306967 DOI: 10.3390/molecules26144231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
The relatively straightforward methods of designing and assembling various functional nucleic acids into nanoparticles offer advantages for applications in diverse diagnostic and therapeutic approaches. However, due to the novelty of this approach, nucleic acid nanoparticles (NANPs) are not yet used in the clinic. The immune recognition of NANPs is among the areas of preclinical investigation aimed at enabling the translation of these novel materials into clinical settings. NANPs’ interactions with the complement system, coagulation systems, and immune cells are essential components of their preclinical safety portfolio. It has been established that NANPs’ physicochemical properties—composition, shape, and size—determine their interactions with immune cells (primarily blood plasmacytoid dendritic cells and monocytes), enable recognition by pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), and mediate the subsequent cytokine response. However, unlike traditional therapeutic nucleic acids (e.g., CpG oligonucleotides), NANPs do not trigger a cytokine response unless they are delivered into the cells using a carrier. Recently, it was discovered that the type of carrier provides an additional tool for regulating both the spectrum and the magnitude of the cytokine response to NANPs. Herein, we review the current knowledge of NANPs’ interactions with various components of the immune system to emphasize the unique properties of these nanomaterials and highlight opportunities for their use in vaccines and immunotherapy.
Collapse
Affiliation(s)
- Dominika Bila
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 04154 Kosice, Slovakia;
| | - Yasmine Radwan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21702, USA;
| | - Martin Panigaj
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 04154 Kosice, Slovakia;
- Correspondence: (M.P.); (K.A.A.); Tel.: +421-55-234-1205 (M.P.); +1-704-687-0685 (K.A.A.)
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
- Correspondence: (M.P.); (K.A.A.); Tel.: +421-55-234-1205 (M.P.); +1-704-687-0685 (K.A.A.)
| |
Collapse
|