1
|
Popli P, Meduri RT, Sharma T, Challa RR, Vallamkonda B, Satti PR, Singh TG, Swami R. Polymeric and lipidic nanoparticles in transforming anti-HIV combinational therapy: can they turn the tide? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04169-w. [PMID: 40266304 DOI: 10.1007/s00210-025-04169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The HIV-1 pandemic presents a multifaceted challenge across the globe, standing as the foremost public health crisis today. Global data on HIV-related morbidity and mortality are alarming. Effective HIV management hinges on minimizing transmission through highly active antiretroviral therapy (HAART), which relies on a combination of HAART and has been a cornerstone in HIV management. However, challenges such as low patient adherence, suboptimal drug pharmacokinetics, and side effects, potentially undermine the efficacy of existing treatment. Emerging nanotherapeutics, particularly lipidic and polymeric nanoparticles, have exhibited immense promise in addressing these concerns. These nanocarriers enhance targeted drug delivery, facilitate controlled release, and reduce toxicity. Notably, co-delivery strategies using nanoparticles enable the simultaneous transport of multiple drugs involved in HAART. But the question arises whether the exploration is enough to turn the tide. Hence, through this review, the authors have tried to explore and discuss the obstacles faced by the lipid and polymeric nanoparticles such as stability and encapsulation efficiency, and translating these innovations to clinical practice in detail and discussed the future potential of AI-driven nanomedicine.
Collapse
Affiliation(s)
- Pankaj Popli
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Guntur, India
| | | | | | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Kelly SH, Nightingale S, Gupta RK, Collier DA. HIV Cerebrospinal Fluid Escape: Interventions for the Management, Current Evidence and Future Perspectives. Trop Med Infect Dis 2025; 10:45. [PMID: 39998049 PMCID: PMC11860496 DOI: 10.3390/tropicalmed10020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Neurocognitive impairment is an important cause of HIV-associated morbidity. The advent of antiretroviral therapy (ART) has shifted the spectrum of HIV-associated cognitive impairment from HIV-associated dementia to milder forms of cognitive impairment. Independent replication of HIV within the central nervous system in those on effective ART with peripheral suppression is a recognised phenomenon known as cerebrospinal fluid (CSF) HIV RNA escape. CSF HIV RNA escape is independently associated with neurocognitive impairment but has also been detected in asymptomatic persons with HIV. The current consensus for management of CSF HIV RNA escape is based on expert opinion rather than empirical evidence. The current evidence suggests having a low threshold to investigate for CSF HIV RNA escape and optimising ART based on resistance profiles. The use of central nervous system (CNS) penetration effectiveness scores is no longer recommended. The evidence for statins, SSRIs, minocycline, lithium and valproate is limited to small-scale studies. There are potential new developments in the form of nanoparticles, Janus Kinase inhibitors and latency reversal agents.
Collapse
Affiliation(s)
- Sophie H. Kelly
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Sam Nightingale
- Neuroscience Institute, University of Cape Town, Cape Town 7700, South Africa;
| | - Ravindra K. Gupta
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Africa Health Research Institute, Durban 4013, South Africa
| | - Dami A. Collier
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
- Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
3
|
Georgakopoulou VE, Papalexis P, Trakas N. Nanotechnology-based approaches for targeted drug delivery for the treatment of respiratory tract infections. J Biol Methods 2024; 11:e99010032. [PMID: 39839091 PMCID: PMC11744063 DOI: 10.14440/jbm.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 01/23/2025] Open
Abstract
Background Nanotechnology has emerged as a promising field for the diagnosis, monitoring, and treatment of respiratory tract infections (RTIs). By leveraging the unique properties of nanoscale delivery systems, nanotechnology can significantly enhance the selectivity and efficacy of antimicrobials, thereby reducing off-target effects. Objective This review explores the development and application of targeted nanosystems in combating viral, bacterial, and fungal RTIs. Nanotechnology-based systems, including biological and non-biological nanoparticles, offer innovative solutions for overcoming antimicrobial resistance, improving drug bioavailability, and minimizing systemic side effects. RTIs are a leading cause of morbidity and mortality globally, particularly affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. Traditional drug delivery methods face numerous challenges, such as rapid clearance, poor tissue penetration, and drug degradation. Nanoparticle-based delivery systems address these issues by enhancing tissue penetration, providing sustained drug release, and enabling targeted delivery to infection sites. These systems include liposomal delivery, polymeric nanoparticles, dendrimers, and metal-based nanoparticles, each offering unique advantages in treating RTIs. Nanotechnology also plays a crucial role in vaccine development by offering new strategies to enhance immune responses and improve antigen delivery. Furthermore, the review discusses the clinical translation and regulatory considerations for nanotechnology-based drug delivery, emphasizing the need for rigorous testing and quality control to ensure safety and efficacy. Conclusion Nanotechnology offers promising advancements in the treatment, and prevention of RTIs by enhancing drug delivery and efficacy. By addressing challenges such as antimicrobial resistance and poor tissue penetration, nanotechnology-based systems have the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
| | - Petros Papalexis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Athens 12243, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| |
Collapse
|
4
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
5
|
Ebrahimi S, Sadeghizadeh M, Aghasadeghi MR, Ardestani MS, Amini SA, Vahabpour R. Inhibition of HIV-1 infection with curcumin conjugated PEG-citrate dendrimer; a new nano formulation. BMC Complement Med Ther 2024; 24:350. [PMID: 39358802 PMCID: PMC11448447 DOI: 10.1186/s12906-024-04634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Nano-drug delivery systems have become a promising approach to overcoming problems such as low solubility and cellular uptake of drugs. Along with various delivery devices, dendrimers are widely used through their unique features. PEG-citrate dendrimers are biocompatible and nontoxic, with the ability to improve drug solubility. Curcumin, a naturally occurring polyphenol, has multiple beneficial properties, such as antiviral activities. However, its optimum potential has been significantly hampered due to its poor water solubility, which leads to reduced bioavailability. So, the present study attempted to address this issue and investigate its antiviral effects against HIV-1. METHOD The G2 PEG-citrate dendrimer was synthesized. Then, curcumin was conjugated to it directly. FTIR, HNMR, DLS, and LCMS characterized the structure of products. The conjugate displayed an intense yellow color. In addition, increased aqueous solubility and cell permeability of curcumin were achieved based on flow cytometry results. So, it could be a suitable vehicle for improving the therapeutic applications of curcumin. Moreover, cell toxicity was assessed using XTT method. Ultimately, the SCR HIV system provided an opportunity to evaluate the level of HIV-1 inhibition by the curcumin-dendrimer conjugate using a p24 HIV ELISA kit. RESULTS The results demonstrated a 50% up to 90% inhibition of HIV proliferation at 12 μm and 60 μm, respectively. Inhibition of HIV-1 at concentrations much lower than CC50 (300 µM) indicates a high potential of curcumin-dendrimer conjugate against this virus. CONCLUSION Thereby, curcumin-dendrimer conjugate proves to be a promising tool to use in HIV-1 therapy.
Collapse
Affiliation(s)
- Saeideh Ebrahimi
- Arak Branch of Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organisation (AREEO), Arak, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | | | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roohollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Rojekar S, Gholap AD, Togre N, Bhoj P, Haeck C, Hatvate N, Singh N, Vitore J, Dhoble S, Kashid S, Patravale V. Current status of mannose receptor-targeted drug delivery for improved anti-HIV therapy. J Control Release 2024; 372:494-521. [PMID: 38849091 DOI: 10.1016/j.jconrel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
In the pursuit of achieving better therapeutic outcomes in the treatment of HIV, innovative drug delivery strategies have been extensively explored. Mannose receptors, which are primarily found on macrophages and dendritic cells, offer promising targets for drug delivery due to their involvement in HIV pathogenesis. This review article comprehensively evaluates recent drug delivery system advancements targeting the mannose receptor. We have systematically described recent developments in creating and utilizing drug delivery platforms, including nanoparticles, liposomes, micelles, noisomes, dendrimers, and other nanocarrier systems targeted at the mannose receptor. These strategies aim to enhance drug delivery specificity, bioavailability, and therapeutic efficacy while decreasing off-target effects and systemic toxicity. Furthermore, the article delves into how mannose receptors and HIV interact, highlighting the potential for exploiting this interaction to enhance drug delivery to infected cells. The review covers essential topics, such as the rational design of nanocarriers for mannose receptor recognition, the impact of physicochemical properties on drug delivery performance, and how targeted delivery affects the pharmacokinetics and pharmacodynamics of anti-HIV agents. The challenges of these novel strategies, including immunogenicity, stability, and scalability, and future research directions in this rapidly growing area are discussed. The knowledge synthesis presented in this review underscores the potential of mannose receptor-based targeted drug delivery as a promising avenue for advancing HIV treatment. By leveraging the unique properties of mannose receptors, researchers can design drug delivery systems that cater to individual needs, overcome existing limitations, and create more effective and patient-friendly treatments in the ongoing fight against HIV/AIDS.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Namdev Togre
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Priyanka Bhoj
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clement Haeck
- Population Council, , Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Jyotsna Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Sagar Dhoble
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Snehal Kashid
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
7
|
Chheda D, Shete S, Tanisha T, Devrao Bahadure S, Sampathi S, Junnuthula V, Dyawanapelly S. Multifaceted therapeutic applications of biomimetic nanovaccines. Drug Discov Today 2024; 29:103991. [PMID: 38663578 DOI: 10.1016/j.drudis.2024.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The development of vaccines has had a crucial role in preventing and controlling infectious diseases on a global scale. Innovative formulations of biomimetic vaccines inspired by natural defense mechanisms combine long-term antigen stability, immunogenicity, and targeted delivery with sustained release. Types of biomimetic nanoparticle (NP) include bacterial outer membrane vesicles (OMVs), cell membrane-decorated NPs, liposomes, and exosomes. These approaches have shown potential for cancer immunotherapy, and in antibacterial and antiviral applications. Despite current challenges, nanovaccines have immense potential to transform disease prevention and treatment, promising therapeutic approaches for the future. In this review, we highlight recent advances in biomimetic vaccine design, mechanisms of action, and clinical applications, emphasizing their role in personalized medicine, targeted drug delivery, and immunomodulation.
Collapse
Affiliation(s)
- Dev Chheda
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sukhen Shete
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Tanisha Tanisha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Sumedh Devrao Bahadure
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sunitha Sampathi
- Department of Pharmacy, School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India.
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
8
|
Limenh LW. Advances in the transdermal delivery of antiretroviral drugs. SAGE Open Med 2024; 12:20503121231223600. [PMID: 38249942 PMCID: PMC10798114 DOI: 10.1177/20503121231223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Antiretroviral therapy regimens are successful in stopping the advancement of human immunodeficiency virus infection to acquired immunodeficiency syndrome, and other opportunistic infections. However, they do have significant disadvantages, including long-term treatment, limited oral bioavailability, inaccessibility to organs, non-adherence by patients, and the development of medication resistance. Because of the listed drawbacks of available routes and the availability of curative medicines for human immunodeficiency virus/acquired immunodeficiency syndrome, advanced solutions are required. Antiretroviral therapy transdermal delivery is one of the current strategies that have attracted much attention from many researchers. In this narrative review, various in vitro, in vivo, and ex vivo transdermal antiretroviral therapy delivery strategies were reviewed, such as transdermal patches and films, lipid-based nano-delivery systems, microneedles, chemical penetration enhancers, and iontophoresis, which showed promising results. Although the majority of studies on Antiretroviral transdermal delivery have produced hopeful findings, additional in-depth research on passive and physical enhancement techniques, both existing and new, is necessary to fully understand the potential of this route and to make it accessible to human immunodeficiency virus patients.
Collapse
Affiliation(s)
- Liknaw Workie Limenh
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Bhunia S, Kolishetti N, Vashist A, Yndart Arias A, Brooks D, Nair M. Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics 2023; 15:2658. [PMID: 38139999 PMCID: PMC10747851 DOI: 10.3390/pharmaceutics15122658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023] Open
Abstract
Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous system (CNS) diseases remain limited. Despite the significant advancement in drug development technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood-brain barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery. Many strategies have been developed over the years which include local disruption of BBB via physical and chemical methods, and drug transport across BBB via transcytosis by targeting some endogenous proteins expressed on brain-capillary. Drug delivery to brain is an ever-evolving topic, although there were multiple review articles in literature, an update is warranted due to continued growth and new innovations of research on this topic. Thus, this review is an attempt to highlight the recent strategies employed to overcome challenges of CNS drug delivery while emphasizing the necessity of investing more efforts in CNS drug delivery technologies parallel to drug development.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Deborah Brooks
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Prakash S. Nano-based drug delivery system for therapeutics: a comprehensive review. Biomed Phys Eng Express 2023; 9:052002. [PMID: 37549657 DOI: 10.1088/2057-1976/acedb2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Nanomedicine and nano-delivery systems hold unlimited potential in the developing sciences, where nanoscale carriers are employed to efficiently deliver therapeutic drugs at specifically targeted sites in a controlled manner, imparting several advantages concerning improved efficacy and minimizing adverse drug reactions. These nano-delivery systems target-oriented delivery of drugs with precision at several site-specific, with mild toxicity, prolonged circulation time, high solubility, and long retention time in the biological system, which circumvent the problems associated with the conventional delivery approach. Recently, nanocarriers such as dendrimers, liposomes, nanotubes, and nanoparticles have been extensively investigated through structural characteristics, size manipulation, and selective diagnosis through disease imaging molecules, which are very effective and introduce a new paradigm shift in drugs. In this review, the use of nanomedicines in drug delivery has been demonstrated in treating various diseases with significant advances and applications in different fields. In addition, this review discusses the current challenges and future directions for research in these promising fields as well.
Collapse
Affiliation(s)
- Satyendra Prakash
- Centre of Biotechnology, Faculty of Science, University of Allahabad, Allahabad, India
| |
Collapse
|
11
|
Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG, Ogbodo JO, Umeh BU, Ossai EC, Nwanguma BC. Advances in drug delivery systems, challenges and future directions. Heliyon 2023; 9:e17488. [PMID: 37416680 PMCID: PMC10320272 DOI: 10.1016/j.heliyon.2023.e17488] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Advances in molecular pharmacology and an improved understanding of the mechanism of most diseases have created the need to specifically target the cells involved in the initiation and progression of diseases. This is especially true for most life-threatening diseases requiring therapeutic agents which have numerous side effects, thus requiring accurate tissue targeting to minimize systemic exposure. Recent drug delivery systems (DDS) are formulated using advanced technology to accelerate systemic drug delivery to the specific target site, maximizing therapeutic efficacy and minimizing off-target accumulation in the body. As a result, they play an important role in disease management and treatment. Recent DDS offer greater advantages when compared to conventional drug delivery systems due to their enhanced performance, automation, precision, and efficacy. They are made of nanomaterials or miniaturized devices with multifunctional components that are biocompatible, biodegradable, and have high viscoelasticity with an extended circulating half-life. This review, therefore, provides a comprehensive insight into the history and technological advancement of drug delivery systems. It updates the most recent drug delivery systems, their therapeutic applications, challenges associated with their use, and future directions for improved performance and use.
Collapse
Affiliation(s)
- Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ugochukwu Solomon Okpala
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ufedo Lovet Onoja
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chinenye Princess Nwike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chimeh Ezeako
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Osinachi Juliet Okpara
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Chinkwere Okoroafor
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Shadrach Chinecherem Eze
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Onyinyechi Loveth Kalu
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Ugochukwu Gideon Nwadike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - John Onyebuchi Ogbodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bravo Udochukwu Umeh
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chekwube Ossai
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bennett Chima Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
12
|
Malik S, Muhammad K, Aslam SM, Waheed Y. Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV. Expert Rev Anti Infect Ther 2023; 21:431-446. [PMID: 36803177 DOI: 10.1080/14787210.2023.2182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus type 1 (HIV1); the causative agent of Acquired Immunodeficiency Syndrome (AIDS), has been a major target of the scientific community to develop an anti-viral therapy. Some successful discoveries have been made during the last two decades in the form of availability of antiviral therapy in endemic regions. Nevertheless, a total cure and safety vaccine has not yet been designed to eradicate HIV from the world. AREAS COVERED The purpose of this comprehensive study is to compile recent data regarding therapeutic interventions against HIV and to determine future research needs in this field. A systematic research strategy has been used to gather data from recent, most advanced published electronic sources. Literature based results show that experiments at the invitro level and animal models are continuously in research annals and are providing hope for human trials. EXPERT OPINION There is still a gap and more work is needed in the direction of modern drug and vaccination designs. Moreover coordination is necessary among researchers, educationists, public health workers, and the general community to communicate and coordinate the repercussions associated with the deadly disease. It is important for taking timely measures regarding mitigation and adaptation with HIV in future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanaa Masood Aslam
- Foundation University College of Dentistry, Foundation University Islamabad, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
13
|
Mishra S, Bhatt T, Kumar H, Jain R, Shilpi S, Jain V. Nanoconstructs for theranostic application in cancer: Challenges and strategies to enhance the delivery. Front Pharmacol 2023; 14:1101320. [PMID: 37007005 PMCID: PMC10050349 DOI: 10.3389/fphar.2023.1101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Nanoconstructs are made up of nanoparticles and ligands, which can deliver the loaded cargo at the desired site of action. Various nanoparticulate platforms have been utilized for the preparation of nanoconstructs, which may serve both diagnostic as well as therapeutic purposes. Nanoconstructs are mostly used to overcome the limitations of cancer therapies, such as toxicity, nonspecific distribution of the drug, and uncontrolled release rate. The strategies employed during the design of nanoconstructs help improve the efficiency and specificity of loaded theranostic agents and make them a successful approach for cancer therapy. Nanoconstructs are designed with a sole purpose of targeting the requisite site, overcoming the barriers which hinders its right placement for desired benefit. Therefore, instead of classifying modes for delivery of nanoconstructs as actively or passively targeted systems, they are suitably classified as autonomous and nonautonomous types. At large, nanoconstructs offer numerous benefits, however they suffer from multiple challenges, too. Hence, to overcome such challenges computational modelling methods and artificial intelligence/machine learning processes are being explored. The current review provides an overview on attributes and applications offered by nanoconstructs as theranostic agent in cancer.
Collapse
Affiliation(s)
- Shivani Mishra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Satish Shilpi
- Department of Pharmaceutics, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
- *Correspondence: Vikas Jain,
| |
Collapse
|
14
|
Asl FD, Mousazadeh M, Taji S, Bahmani A, Khashayar P, Azimzadeh M, Mostafavi E. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine (Lond) 2023; 18:279-302. [PMID: 37125616 PMCID: PMC10242436 DOI: 10.2217/nnm-2022-0248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/08/2023] [Indexed: 05/02/2023] Open
Abstract
AIDS causes increasing mortality every year. With advancements in nanomedicine, different nanomaterials (NMs) have been applied to treat AIDS and overcome its limitations. Among different NMs, nanoparticles (NPs) can act as nanocarriers due to their enhanced solubility, sustained release, targeting abilities and facilitation of drug-dose reductions. This review discusses recent advancements in therapeutics for AIDS/HIV using various NMs, mainly focused on three classifications: polymeric, liposomal and inorganic NMs. Polymeric dendrimers, polyethylenimine-NPs, poly(lactic-co-glycolic acid)-NPs, chitosan and the use of liposomal-based delivery systems and inorganic NPs, including gold and silver NPs, are explored. Recent advances, current challenges and future perspectives on the use of these NMs for better management of HIV/AIDS are also discussed.
Collapse
Affiliation(s)
- Fateme Davarani Asl
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 88138-33435, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Shirinsadat Taji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
- Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Abbas Bahmani
- Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Ghent, 9050, Belgium
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89195-999, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
16
|
Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Olojede SO, Lawal SK, Dare A, Naidu ECS, Rennie CO, Azu OO. Evaluation of tenofovir disoproxil fumarate loaded silver nanoparticle on testicular morphology in experimental type-2 diabetic rats. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:71-80. [PMID: 35343349 DOI: 10.1080/21691401.2022.2042009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Reproductive derangement and metabolic disorders in human immunodeficiency virus (HIV) infected persons require a nanoparticle delivery system to convey antiretroviral drugs to the anatomical sanctuary such as testis. This study investigated the effects of tenofovir disoproxil fumarate (TDF) loaded silver nanoparticles (AgNPs) on the testicular oxidative stress, inflammatory cytokines and histology in male diabetic rats. Thirty-six Sprague-Dawley rats weighing 230 ± 20 g were randomly divided into diabetic and non-diabetic groups (n = 18). Diabetes was induced using the fructose-streptozotocin (Frt-STZ) rat model. Both groups were further divided into three (n = 6) and administered distilled water, TDF, or TDF-AgNP. Results obtained with the TDF-AgNP administration showed a significant increase (p < .05) in the reduced glutathione and catalase levels. Tumour necrosis factor-alpha and interleukin 6 were reduced in diabetic rats administered TDF-AgNP. More so, administration of TDF-AgNP to diabetic rats improved testicular histoarchitecture in diabetic rats. In addition, diabetic rats administered TDF-AgNP showed a significant reduction (p < .05) in blood glucose levels. TDF-AgNP to diabetic rats enhanced testicular antioxidant enzyme, reduced testicular inflammation, and alleviated structural derangements in the testis. Thus, the application of AgNP to deliver TDF may alleviate testicular toxicity and subsequently cater for neglected reproductive dysfunction during the management of HIV infection.
Collapse
Affiliation(s)
- Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ayobami Dare
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Edwin C Stephen Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological & Translational Medical Sciences, School of Medicine, University of Namibia, Hage Geingob Campus, Windhoek, Namibia
| |
Collapse
|
18
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
19
|
Zhao FR, Wang W, Zheng Q, Zhang YG, Chen J. The regulation of antiviral activity of interferon epsilon. Front Microbiol 2022; 13:1006481. [PMID: 36386666 PMCID: PMC9642105 DOI: 10.3389/fmicb.2022.1006481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Interferon epsilon (IFN-ε) is a type I IFN. Some biological properties has been identified in many species, such as antiproliferative, anti-tumor, and antiviral effects, of IFN-ε, which are much weaker than those of IFN-α, have also been revealed. It has been shown to play a role in mucosal immunity and bacterial infection and in the prevention of certain sexually transmitted diseases, such as human immunodeficiency virus (HIV). This paper reviews the known activity of IFN-ε, particularly in some viruses. In general, this review provides a better understanding of effective IFN-ε treatment in the future.
Collapse
|
20
|
Kwee Y, Zhou Y, Fahmi MZ, Sharon M, Kristanti AN. Progress on Applying Carbon Dots for Inhibition of RNA Virus Infection. Nanotheranostics 2022; 6:436-450. [PMID: 36051856 PMCID: PMC9428922 DOI: 10.7150/ntno.73918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Viral infection is a globally leading health issue. Annually, new lethal RNA viruses unexpectedly emerged and mutated threatening health and safety. Meanwhile, it is urgent to explore novel antiviral agents, which, however, takes years to be clinically available. Nonetheless, the development of carbon dots (CDs) in the past 20 years has exhibited their vast application potentials and revealed their promising capacity as future antiviral agents considering their versatile properties and significant antiviral responses. Thus, CDs have been widely investigated as an alternative of traditional chemotherapy for inhibiting viral infection and replication in vitro. Meanwhile, attempts to apply CDs to in vivo systems are in high demand. In this review, recent developments of CDs-based antiviral therapies are systematically summarized. Furthermore, the role of CDs in photodynamic inactivation to kill viruses or bacteria is briefly discussed.
Collapse
Affiliation(s)
- Yaung Kwee
- Department of Chemistry, Pakokku University, Myaing Road, Pakokku 90401, Myanmar
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.,Supramodification Nano-micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Madhuri Sharon
- Research Director at Walchand Center for Research in Nanotechnology and Bionanotechnology, Walchand College of Arts and Science, W. H. Road, Ashok Chowk, Solapur 413006, India
| | | |
Collapse
|
21
|
Sarkar J, Das S, Aich S, Bhattacharyya P, Acharya K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J Trace Elem Med Biol 2022; 72:126977. [PMID: 35397331 PMCID: PMC8957383 DOI: 10.1016/j.jtemb.2022.126977] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND On 31st December 2019 in Wuhan, China, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was acknowledged. This virus spread quickly throughout the world causing a global pandemic. The World Health Organization declared COVID-19 a pandemic disease on 11th March 2020. Since then, the whole world has come together and have developed several vaccines against this deadly virus. Similarly, several alternative searches for pandemic disease therapeutics are still ongoing. One of them has been identified as nanotechnology. It has demonstrated significant promise for detecting and inhibiting a variety of viruses, including coronaviruses. Several nanoparticles, including gold nanoparticles, silver nanoparticles, quantum dots, carbon dots, graphene oxide nanoparticles, and zinc oxide nanoparticles, have previously demonstrated remarkable antiviral activity against a diverse array of viruses. OBJECTIVE This review aims to provide a basic and comprehensive overview of COVID-19's initial global outbreak and its mechanism of infiltration into human host cells, as well as the detailed mechanism and inhibitory effects of various nanoparticles against this virus. In addition to nanoparticles, this review focuses on the role of several antiviral drugs used against COVID-19 to date. CONCLUSION COVID-19 has severely disrupted the social and economic lives of people all over the world. Due to a lack of adequate medical facilities, countries have struggled to maintain control of the situation. Neither a drug nor a vaccine has a 100% efficacy rate. As a result, nanotechnology may be a better therapeutic alternative for this pandemic disease.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sunandana Das
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sahasrabdi Aich
- Department of Botany, Vivekananda College, Thakurpukur, Kolkata, West Bengal 700063, India
| | - Prithu Bhattacharyya
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India; Center for Research in Nanoscience & Nanotechnology, Technology Campus, University of Calcutta, Kolkata, West Bengal 700098, India.
| |
Collapse
|
22
|
Jadhav S, Yenorkar N, Bondre R, Karemore M, Bali N. Nanomedicines encountering HIV dementia: A guiding star for neurotherapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Khizar S, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Contribution of magnetic particles in molecular diagnosis of human viruses. Talanta 2022; 241:123243. [PMID: 35121538 PMCID: PMC8779935 DOI: 10.1016/j.talanta.2022.123243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Viral diseases are the primary source of death, making a worldwide influence on healthcare, social, and economic development. Thus, diagnosis is the vital approach to the main aim of virus control and elimination. On the other hand, the prompt advancement of nanotechnology in the field of medicine possesses the probability of being beneficial to diagnose infections normally in labs as well as specifically. Nanoparticles are efficiently in use to make novel strategies because of permitting analysis at cellular in addition to the molecular scale. Henceforth, they assist towards pronounced progress concerning molecular analysis at the nanoscale. In recent times, magnetic nanoparticles conjugated through covalent bonds to bioanalytes for instance peptides, antibodies, nucleic acids, plus proteins are established like nanoprobes aimed at molecular recognition. These modified magnetic nanoparticles could offer a simple fast approach for extraction, purification, enrichment/concentration, besides viruses' recognition precisely also specifically. In consideration of the above, herein insight and outlook into the limitations of conventional methods and numerous roles played by magnetic nanoparticles to extract, purify, concentrate, and additionally in developing a diagnostic regime for viral outbreaks to combat viruses especially the ongoing novel coronavirus (COVID-19).
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | - Amal A Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France.
| |
Collapse
|
24
|
Rawat P, Imam SS, Gupta S. Formulation of Cabotegravir Loaded Gold Nanoparticles: Optimization, Characterization to In-Vitro Cytotoxicity Study. J CLUST SCI 2022; 34:893-905. [PMID: 35493274 PMCID: PMC9044393 DOI: 10.1007/s10876-022-02261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
The effective and preventive treatment of HIV is one of the difficult challenges worldwide. It requires the development of an effective prophylactic strategy to prevent HIV/AIDS. This study aimed to synthesize Cabotegravir (CAB)-biodegradable gold (Au) nanoparticles by using pectin as a reducer and stabilizer. CAB-GNPs were prepared by the slightly modified Turkevich method. CAB-GNPs were optimized using Box Behnken design for independent variables gold chloride (A), pectin (B) and pH range (C). The effects of independent variables were observed on particle size (Y1) and encapsulation efficiency (Y2). The results of the study revealed that the optimized nanoparticles (GLN7) had a particle size of 3.9 ± 0.1 nm and encapsulation efficiency of 97.2 ± 3.9%. TEM study showed the spherical shape particles. The in-vitro drug release revealed 62.1 ± 0.5% release of CAB in simulated gastric buffer (pH 1.2) and 45.5 ± 2.8% in physiological buffer (pH 7.4). In-vitro cytotoxicity study and antibacterial activity depicted the safety of the prepared NPs by showing lesser toxicity than pure CAB. From the results, our experimental outcomes concluded that CAB gold nanoparticles composed of pectin may constitute a preferred embodiment for the delivery of CAB.
Collapse
Affiliation(s)
- Purnima Rawat
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Madhya Pradesh, Indore, 453552 India
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Sharad Gupta
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Madhya Pradesh, Indore, 453552 India
| |
Collapse
|
25
|
Tiwari S, Juneja S, Ghosal A, Bandara N, Khan R, Wallen SL, Ramakrishna S, Kaushik A. Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-CoV-2 variants of concern. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 21:100363. [PMID: 34869963 PMCID: PMC8632437 DOI: 10.1016/j.cobme.2021.100363] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
The increased severity of the COVID-19 infection due to new SARS-CoV-2 variants has resonated pandemic impact which made health experts to re-evaluate the effectiveness of pandemic management strategies. This becomes critical owing to the infection in large population and shortcomings in the existing global healthcare system worldwide. The designing of high-performance nanosystems (NS) with tunable performances seems to be the most efficient method to tackle infectious SARS-CoV-2 variants including recently emerged omicron mutation. In this direction, experts projects the versatile functionalized NS and their capabilities to mitigate SARS-CoV-2 propagation pathways by sensitization, antipathogenicity, photocatalysis, photothermal effects, immune response, developing efficient diagnostics assays or associated, selective biomarkers detection, and targeted drug delivery systems. To achieve these tasks, this opinion article project the importance of the fabrication of nano-enabled protective gear, masks, gloves, sheets, filtration units, nano-emulsified disinfectants, antiviral/bacterial paints, and therangostics to facilitate quarantine strategies via protection, detection, and treatment needed to manage COVID-19 pandemic in personalized manners. These functional protective high-performance antibacterial and antiviral NS can efficiently tackle the SARS-CoV-2 variants transmission through respiratory fluids and pollutants within water droplets, aerosols, air, and particulates along with their severe infection via neutralizing or eradicating the virus.
Collapse
Affiliation(s)
- Shivani Tiwari
- Department of Zoology, Delhi University, New Delhi, 110007, India
| | - Subhavna Juneja
- NanoBiotechnology Lab, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anujit Ghosal
- Department of Food & Human Nutritional Sciences, The University of Manitoba, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, The University of Manitoba, MB R3T 6C5, Canada
| | - Nandika Bandara
- Department of Food & Human Nutritional Sciences, The University of Manitoba, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, The University of Manitoba, MB R3T 6C5, Canada
| | - Raju Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
| | - Scott L Wallen
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 119260 Singapore
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| |
Collapse
|
26
|
Kolishetti N, Vashist A, Arias AY, Atluri V, Dhar S, Nair M. Recent advances, status, and opportunities of magneto-electric nanocarriers for biomedical applications. Mol Aspects Med 2022; 83:101046. [PMID: 34743901 PMCID: PMC8792247 DOI: 10.1016/j.mam.2021.101046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 02/03/2023]
Abstract
Magneto-electric (ME) materials with core-shell architecture where the core is made of magnetic materials have emerged as an attractive nanomaterial due to the coupling of magnetic and electric properties in the same material and the fact that both fields can be controlled which allows an on-demand, transport and release of loaded cargo. Over the last decade, biomedical engineers and researchers from various interdisciplinary fields have successfully demonstrated promising properties ranging from therapeutic delivery to sensing, and neuromodulation using ME materials. In this review, we systematically summarize developments in various biomedical fields using the nanoforms of these materials. Herein, we also highlight various promising biomedical applications where the ME nanocarriers are encapsulated in other materials such as gels and liposomes and their potential for promising therapeutics and diagnostic applications.
Collapse
Affiliation(s)
- Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Venkata Atluri
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT, 84606, USA
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
27
|
Chue-Gonçalves M, Pereira GN, Faccin-Galhardi LC, Kobayashi RKT, Nakazato G. Metal Nanoparticles against Viruses: Possibilities to Fight SARS-CoV-2. NANOMATERIALS 2021; 11:nano11113118. [PMID: 34835882 PMCID: PMC8618109 DOI: 10.3390/nano11113118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
In view of the current Coronavirus Disease 2019 (COVID-19) pandemic outbreak, the research community is focusing on development of diagnostics, treatment, and vaccines to halt or reverse this scenario. Although there are already various vaccines available, adaptive mutations in the SARS-CoV-2 genome can alter its pathogenic potential and, at the same time, increase the difficulty of developing drugs or immunization by vaccines. Nanotechnology carries a potential to act in all stages in fighting this viral disease, with several possibilities of strategies such as applying nanoparticles directly as antivirals in delivery systems against these viruses or incorporating them in materials, with power of achievement in therapeutics, vaccines and prevention. In this paper, we review and bring insights of recent studies using metal nanocomposites as antivirals against coronavirus and structurally similar viruses.
Collapse
Affiliation(s)
- Marcelly Chue-Gonçalves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Giovana N. Pereira
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Lígia C. Faccin-Galhardi
- Laboratory of Virology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil;
| | - Renata K. T. Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
- Correspondence:
| |
Collapse
|
28
|
Sreeram S, Sathishkumar R, Amritha PS. Targeting the ENV spike protein of HIV with naturally occurring compounds: an in-silico study for drug designing. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC8506072 DOI: 10.1007/s13596-021-00617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Oti VB. Nanoparticles and Its Implications in HIV/AIDS Therapy. Curr Drug Discov Technol 2021; 17:448-456. [PMID: 31250759 DOI: 10.2174/1570163816666190620111652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023]
Abstract
The use of Antiretroviral drugs in treating HIV/ AIDS patients has enormously increased their life spans with serious disadvantages. The virus infection still remains a public health problem worldwide with no cure and vaccine for the viral agent until now. The use of nanoparticles (NPs) for the treatment and prevention of HIV/AIDS is an emerging technology of the 21st century. NPs are solid and colloid particles with 10 nm to <1000 nm size range; although, less than 200 nm is the recommended size for nanomedical usage. There are NPs with therapeutic capabilities such as liposomes, micelles, dendrimers and nanocapsules. The particle enters the body mainly via oral intake, direct injection and inhalation. It has been proven to have potentials of advancing the prevention and treatment of the viral agent. Certain NPs have been shown to have selftherapeutic activity for the virus in vitro. Strategies that are novel are emerging which can be used to improve nanotechnology, such as genetic treatment and immunotherapy. In this review, nanoparticles, the types and its characteristics in drug delivery were discussed. The light was furthermore shed on its implications in the prevention and treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Victor B Oti
- Department of Microbiology, Nasarawa State University, PMB 1022, Keffi, Nigeria
| |
Collapse
|
30
|
Campbell GR, Zhuang J, Zhang G, Landa I, Kubiatowicz LJ, Dehaini D, Fang RH, Zhang L, Spector SA. CD4+ T cell-mimicking nanoparticles encapsulating DIABLO/SMAC mimetics broadly neutralize HIV-1 and selectively kill HIV-1-infected cells. Theranostics 2021; 11:9009-9021. [PMID: 34522224 PMCID: PMC8419049 DOI: 10.7150/thno.59728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
HIV-1 is a major global health challenge. The development of an effective vaccine and a therapeutic cure are top priorities. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 stymies this progress. Therapeutic strategies that provide effective and broad‐spectrum neutralization against HIV-1 infection are highly desirable. Methods: We investigated the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) encapsulating the DIABLO/SMAC mimetics LCL-161 or AT-406 (also known as SM-406 or Debio 1143) to both neutralize HIV-1 and selectively kill HIV-1-infected resting CD4+ T cells and macrophages. Results: DIABLO/SMAC mimetic-loaded TNP displayed outstanding neutralizing breadth and potency, and selectively kill HIV-1-infected cells via autophagy-dependent apoptosis while having no drug-induced off-target or cytotoxic effects on bystander cells. Genetic inhibition of early stages of autophagy abolishes this effect. Conclusion: DIABLO/SMAC mimetic loaded TNP have the potential to be used as therapeutic agents to neutralize cell-free HIV-1 and to kill specifically HIV-1-infected cells as part of an HIV-1 cure strategy.
Collapse
|
31
|
Teaching Ethics in Healthcare Technology-Not Science Fiction. Comput Inform Nurs 2021; 39:231-236. [PMID: 33950898 DOI: 10.1097/cin.0000000000000766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021; 13:pharmaceutics13081294. [PMID: 34452255 PMCID: PMC8398060 DOI: 10.3390/pharmaceutics13081294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.
Collapse
|
33
|
Obisesan O, Katata-Seru L, Mufamadi S, Mufhandu H. Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment. J Biomed Nanotechnol 2021; 17:793-808. [PMID: 34082867 DOI: 10.1166/jbn.2021.3074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the growing studies focused on the immunotherapy of hepatocellular carcinoma and proved the preclinical and clinical promises of host antitumor immune response. However, there were still various obstacles in meeting satisfactory clinic need, such as low response rate, primary resistance and secondary resistance to immunotherapy. Tackling these barriers required a deeper understanding of immune underpinnings and a broader understanding of advanced technology. This review described immune microenvironment of liver and HCC which naturally decided the complexity of immunotherapy, and summarized recent immunotherapy focusing on different points. The ever-growing clues indicated that the instant killing of tumor cell and the subsequent relive of immunosuppressive microenvironment were both indis- pensables. The nanotechnology applied in immunotherapy and the combination with intervention technology was also discussed.
Collapse
Affiliation(s)
- Oluwafemi Obisesan
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Lebogang Katata-Seru
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Steven Mufamadi
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Hazel Mufhandu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
34
|
Naidu ECS, Olojede SO, Lawal SK, Rennie CO, Azu OO. Nanoparticle delivery system, highly active antiretroviral therapy, and testicular morphology: The role of stereology. Pharmacol Res Perspect 2021; 9:e00776. [PMID: 34107163 PMCID: PMC8189564 DOI: 10.1002/prp2.776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
The conjugation of nanoparticles (NPs) with antiretroviral drugs is a drug delivery approach with great potential for managing HIV infections. Despite their promise, recent studies have highlighted the toxic effects of nanoparticles on testicular tissue and their impact on sperm morphology. This review explores the role of stereological techniques in assessing the testicular morphology in highly active antiretroviral therapy (HAART) when a nanoparticle drug delivery system is used. Also, NPs penetration and pharmacokinetics concerning the testicular tissue and blood-testis barrier form the vital part of this review. More so, various classes of NPs employed in biomedical and clinical research to deliver antiretroviral drugs were thoroughly discussed. In addition, considerations for minimizing nanoparticle-drugs toxicity, ensuring enhanced permeability of nanoparticles, maximizing drug efficacy, ensuring adequate bioavailability, and formulation of HAART-NPs fabrication are well discussed.
Collapse
Affiliation(s)
- Edwin Coleridge S. Naidu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sodiq Kolawole Lawal
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Onyemaechi Okpara Azu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of AnatomySchool of MedicineUniversity of NamibiaWindhoekNamibia
| |
Collapse
|
35
|
Nanotechnology-based approaches for emerging and re-emerging viruses: Special emphasis on COVID-19. Microb Pathog 2021; 156:104908. [PMID: 33932543 PMCID: PMC8079947 DOI: 10.1016/j.micpath.2021.104908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
In recent decades, the major concern of emerging and re-emerging viral diseases has become an increasingly important area of public health concern, and it is of significance to anticipate future pandemic that would inevitably threaten human lives. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged virus that causes mild to severe pneumonia. Coronavirus disease (COVID-19) became a very much concerned issue worldwide after its super-spread across the globe and emerging viral diseases have not got specific and reliable diagnostic and treatments. As the COVID-19 pandemic brings about a massive life-loss across the globe, there is an unmet need to discover a promising and typically effective diagnosis and treatment to prevent super-spreading and mortality from being decreased or even eliminated. This study was carried out to overview nanotechnology-based diagnostic and treatment approaches for emerging and re-emerging viruses with the current treatment of the disease and shed light on nanotechnology's remarkable potential to provide more effective treatment and prevention to a special focus on recently emerged coronavirus.
Collapse
|
36
|
Khelghati N, Soleimanpour Mokhtarvand J, Mir M, Alemi F, Asemi Z, Sadeghpour A, Maleki M, Samadi Kafil H, Jadidi-Niaragh F, Majidinia M, Yousefi B. The importance of co-delivery of nanoparticle-siRNA and anticancer agents in cancer therapy. Chem Biol Drug Des 2021; 97:997-1015. [PMID: 33458952 DOI: 10.1111/cbdd.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/10/2021] [Indexed: 01/12/2023]
Abstract
According to global statistics, cancer is the second leading cause of death worldwide. Because of the heterogeneity of cancer, single-drug therapy has many limitations due to low efficacy. Therefore, combination therapy with two or more therapeutic agents is being arisen. One of the most important approaches in cancer therapy is the shot down of key genes involved in apoptotic processes and cell cycle. In this regard, siRNA is a good candidate, a highly attractive method to suppressing tumor growth and invasion. Combination therapy with siRNAs and chemotherapeutic agents can overcome the multidrug resistance and increase apoptosis. The efficient delivery of siRNA to the target cell/tissue/organ has been a challenge. To overcome these challenges, the presence of suitable delivery systems by using nanoparticles is interesting. In this review, we discuss the current challenges for successful RNA interference. Also, we suggested proper a strategy for delivering siRNA that can be useful in targeting therapy. Finally, the combination of a variety of anticancer drugs and siRNA through acceptable delivery systems and their effects on cell cycle and apoptosis will be evaluated.
Collapse
Affiliation(s)
- Nafiseh Khelghati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Mir
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Minooei F, Fried JR, Fuqua JL, Palmer KE, Steinbach-Rankins JM. In vitro Study on Synergistic Interactions Between Free and Encapsulated Q-Griffithsin and Antiretrovirals Against HIV-1 Infection. Int J Nanomedicine 2021; 16:1189-1206. [PMID: 33623382 PMCID: PMC7894819 DOI: 10.2147/ijn.s287310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Human immunodeficiency virus (HIV) remains a persistent global challenge, impacting 38 million people worldwide. Antiretrovirals (ARVs) including tenofovir (TFV), raltegravir (RAL), and dapivirine (DAP) have been developed to prevent and treat HIV-1 via different mechanisms of action. In parallel, a promising biological candidate, griffithsin (GRFT), has demonstrated outstanding preclinical safety and potency against HIV-1. While ARV co-administration has been shown to enhance virus inhibition, synergistic interactions between ARVs and the oxidation-resistant variant of GRFT (Q-GRFT) have not yet been explored. Here, we co-administered Q-GRFT with TFV, RAL, and DAP, in free and encapsulated forms, to identify unique protein-drug synergies. Methods Nanoparticles (NPs) were synthesized using a single or double-emulsion technique and release from each formulation was assessed in simulated vaginal fluid. Next, each ARV, in free and encapsulated forms, was co-administered with Q-GRFT or Q-GRFT NPs to evaluate the impact of co-administration in HIV-1 pseudovirus assays, and the combination indices were calculated to identify synergistic interactions. Using the most synergistic formulations, we investigated the effect of agent incorporation in NP-fiber composites on release properties. Finally, NP safety was assessed in vitro using MTT assay. Results All active agents were encapsulated in NPs with desirable encapsulation efficiency (15–100%), providing ~20% release over 2 weeks. The co-administration of free Q-GRFT with each free ARV resulted in strong synergistic interactions, relative to each agent alone. Similarly, Q-GRFT NP and ARV NP co-administration resulted in synergy across all formulations, with the most potent interactions between encapsulated Q-GRFT and DAP. Furthermore, the incorporation of Q-GRFT and DAP in NP-fiber composites resulted in burst release of DAP and Q-GRFT with a second phase of Q-GRFT release. Finally, all NP formulations exhibited safety in vitro. Conclusions This work suggests that Q-GRFT and ARV co-administration in free or encapsulated forms may improve efficacy in achieving prophylaxis.
Collapse
Affiliation(s)
- Farnaz Minooei
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY, USA
| | - Joel R Fried
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY, USA
| | - Joshua L Fuqua
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
38
|
Muheem A, Baboota S, Ali J. An in-depth analysis of novel combinatorial drug therapy via nanocarriers against HIV/AIDS infection and their clinical perspectives: a systematic review. Expert Opin Drug Deliv 2021; 18:1025-1046. [PMID: 33460332 DOI: 10.1080/17425247.2021.1876660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Conventional antiretroviral therapy against HIV infections is threatening to become outdated due to the low chemical, physical, biological, and pharmacokinetic characteristics of therapeutic molecules, followed by the high chance of emergence of drug resistance. Considering the co-encapsulation of multi-infection agents in a single nanocarrier is emerging to offer various benefits such as synergistic action, improved therapeutic efficacy, reduced drug resistance development, patient compliance, and economical therapy.Areas covered: A systematic review of nano-based combinatorial drug therapy was performed using various databases including Scopus, PubMed, Google Scholar, and Science Direct between 2000 and 2020. The search set was screened as per the inclusion and exclusion criteria, followed by 46 scientific articles and seven clinical studies selected for in-depth analysis.Expert opinion: There has been an immense effort to analyze the mechanism of HIV infection to develop a promising therapeutic approach, although the aim of complete prevention has not been succeeded yet. The key finding is to overcome the challenges associated with conventional therapy by the combinatorial drug in a single nanoformulation, which holds great potential for impact in the management of HIV infection.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| |
Collapse
|
39
|
Bianchin MD, Prebianca G, Immich MF, Teixeira ML, Colombo M, Koester LS, Araújo BVD, Poletto F, Külkamp-Guerreiro IC. Monoolein-based nanoparticles containing indinavir: a taste-masked drug delivery system. Drug Dev Ind Pharm 2020; 47:83-91. [PMID: 33289591 DOI: 10.1080/03639045.2020.1862167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study developed a novel child-friendly drug delivery system for pediatric HIV treatment: a liquid, taste-masked, and solvent-free monoolein-based nanoparticles formulation containing indinavir (0.1%). SIGNIFICANCE Adherence to antiretroviral therapy by pediatric patients is difficult because of the lack of dosage forms adequate for children. METHODS Monoolein-based nanoparticles were developed. The particle size, zeta potential, pH, drug content, small angle X-ray scattering, stability, in vitro drug release profile, biocompatibility, toxicity, and taste-masking properties were evaluated. RESULTS Monoolein-based formulations containing indinavir had nanosized particles with 155 ± 7 nm, unimodal particle size distribution, and polydispersity index of 0.16 ± 0.03. The zeta potential was negative (-31.3 ± 0.3 mV) and pH was neutral (7.78 ± 0.01). A 96% drug incorporation efficiency was achieved, and the indinavir concentration remained constant for 30 days. Polarized light microscopy revealed isotropic characteristics. Transmission electron microscopy images showed spherical shaped morphology. Small-angle X-ray scattering displayed a form factor broad peak. Indinavir had a sustained release from the nanoparticles. The system was nonirritant and was able to mask drug bitter taste. CONCLUSIONS Monoolein-based nanoparticles represent a suitable therapeutic strategy for antiretroviral treatment with the potential to reduce the frequency of drug administration and promote pediatric adherence.
Collapse
Affiliation(s)
- Mariana Domingues Bianchin
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Germano Prebianca
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maira Frielink Immich
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Mariana Colombo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leticia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bibiana Verlindo de Araújo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Poletto
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irene Clemes Külkamp-Guerreiro
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
40
|
Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Mahajan K, Rojekar S, Desai D, Kulkarni S, Vavia P. Efavirenz Loaded Nanostructured Lipid Carriers for Efficient and Prolonged Viral Inhibition in HIV-Infected Macrophages. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: The clinical outcome of anti-HIV therapy is poor due to the inherent fallouts ofanti-HIV therapy. It is further worsened due to the presence of viral reservoirs in immune cellslike the macrophages. An ideal anti-HIV therapy must reach, deliver the drug and exert itsaction inside macrophages. To address this, we developed novel cationic nanostructured lipidcarriers of efavirenz (cationic EFV-NLC). Methods: The developed cationic EFV NLCs were evaluated for particle size, zeta potential,encapsulation efficiency, in-vitro drug release, DSC, XRD, TEM, cytotoxicity, cellular uptakestudies and anti-HIV efficacy in a monocyte-derived macrophage cell line (THP-1). Results: Cationic EFV-NLCs showed high encapsulation efficiency (90.54 ± 1.7%), uniformparticle size distribution (PDI 0.3-0.5 range) and high colloidal stability with positive zetapotential (+23.86 ± 0.49 mV). DSC and XRD studies confirmed the encapsulation of EFVwithin NLCs. Cytotoxicity studies (MTT assay) revealed excellent cytocompatibility (CC5013.23 ± 0.54 μg/mL). Fluorescence microscopy confirmed the efficient uptake of cationic EFVNLCs,while flow cytometry revealed time and concentration dependant uptake within THP-1cells. Cationic EFV-NLCs showed higher retention and sustained release with 2.32-fold higherpercent inhibition of HIV-1 in infected macrophages as compared to EFV solution at equimolarconcentrations. Interestingly, they demonstrated 1.23-fold superior anti-HIV efficacy over EFVloadedNLCs at equimolar concentrations. Conclusion: Cationic NLCs were capable of inhibiting the viral replication at higher limitsconsistently for 6 days suggesting successful prevention of HIV-1 replication in infectedmacrophages and thus can prove to be an attractive tool for promising anti-HIV therapy.
Collapse
Affiliation(s)
- Ketan Mahajan
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| | - Satish Rojekar
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| | - Dipen Desai
- Department of Virology, National AIDS Research Institute, Plot No 73, G-block, M I D C, Bhosari, Pune, Maharashtra 411 026, India
| | - Smita Kulkarni
- Department of Virology, National AIDS Research Institute, Plot No 73, G-block, M I D C, Bhosari, Pune, Maharashtra 411 026, India
| | - Pradeep Vavia
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| |
Collapse
|
42
|
Akilesh M S, Wadhwani A. Novel Applications of Nanotechnology in Controlling HIV and HSV Infections. Curr Drug Res Rev 2020; 13:120-129. [PMID: 33238862 DOI: 10.2174/2589977512999201124121931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
Infectious diseases have been prevalent since many decades and viral pathogens have caused global health crisis and economic meltdown on a devastating scale. High occurrence of newer viral infections in the recent years, in spite of the progress achieved in the field of pharmaceutical sciences defines the critical need for newer and more effective antiviral therapies and diagnostics. The incidence of multi-drug resistance and adverse effects due to the prolonged use of anti-viral therapy is also a major concern. Nanotechnology offers a cutting edge platform for the development of novel compounds and formulations for biomedical applications. The unique properties of nano-based materials can be attributed to the multi-fold increase in the surface to volume ratio at the nano-scale, tunable surface properties of charge and chemical moieties. Idealistic pharmaceutical properties such as increased bioavailability and retention times, lower toxicity profiles, sustained release formulations, lower dosage forms and most importantly, targeted drug delivery can be achieved through the approach of nanotechnology. The extensively researched nano-based materials are metal and polymeric nanoparticles, dendrimers and micelles, nano-drug delivery vesicles, liposomes and lipid based nanoparticles. In this review article, the impact of nanotechnology on the treatment of Human Immunodeficiency Virus (HIV) and Herpes Simplex Virus (HSV) viral infections during the last decade are outlined.
Collapse
Affiliation(s)
- Sai Akilesh M
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty - 643001, The Nilgiris, Tamil Nadu. India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty - 643001, The Nilgiris, Tamil Nadu. India
| |
Collapse
|
43
|
Macchione MA, Aristizabal Bedoya D, Figueroa FN, Muñoz-Fernández MÁ, Strumia MC. Nanosystems Applied to HIV Infection: Prevention and Treatments. Int J Mol Sci 2020; 21:E8647. [PMID: 33212766 PMCID: PMC7697905 DOI: 10.3390/ijms21228647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Sexually-transmitted infections (STIs) are a global health concern worldwide as they cause acute diseases, infertility, and significant mortality. Among the bacterial, viral, and parasitic pathogens that can be sexually transmitted, human immunodeficiency virus (HIV) has caused one of the most important pandemic diseases, which is acquired immune deficiency syndrome (AIDS). 32.7 million people have died from AIDS-related illnesses since the start of the epidemic. Moreover, in 2019, 38 million people were living with HIV worldwide. The need to deal with this viral infection becomes more obvious, because it represents not only a problem for public health, but also a substantial economic problem. In this context, it is necessary to focus efforts on developing methods for prevention, detection and treatment of HIV infections that significantly reduce the number of newly infected people and provide a better quality of life for patients. For several decades, biomedical research has been developed allowing quick solutions through the contribution of effective tools. One of them is the use of polymers as vehicles, drug carrier agents, or as macromolecular prodrugs. Moreover, nanosystems (NSs) play an especially important role in the diagnosis, prevention, and therapy against HIV infection. The purpose of this work is to review recent research into diverse NSs as potential candidates for prevention and treatment of HIV infection. Firstly, this review highlights the advantages of using nanosized structures for these medical applications. Furthermore, we provide an overview of different types of NSs used for preventing or combating HIV infection. Then, we briefly evaluate the most recent developments associated with prevention and treatment alternatives. Additionally, the implications of using different NSs are also addressed.
Collapse
Affiliation(s)
- Micaela A. Macchione
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Av. Medina Allende, Córdoba X5000HUA, Argentina; (M.A.M.); (D.A.B.); (F.N.F.)
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Arturo Jauretche 1555, Villa María, Córdoba X5220XAO, Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina
| | - Dariana Aristizabal Bedoya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Av. Medina Allende, Córdoba X5000HUA, Argentina; (M.A.M.); (D.A.B.); (F.N.F.)
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina
| | - Francisco N. Figueroa
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Av. Medina Allende, Córdoba X5000HUA, Argentina; (M.A.M.); (D.A.B.); (F.N.F.)
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Laboratorio InmunoBiología Molecular, Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón (HGUGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28007 Madrid, Spain
| | - Miriam C. Strumia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Av. Medina Allende, Córdoba X5000HUA, Argentina; (M.A.M.); (D.A.B.); (F.N.F.)
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina
| |
Collapse
|
44
|
Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and Vaccine Development. Pharm Nanotechnol 2020; 8:6-21. [PMID: 31647394 DOI: 10.2174/2211738507666191024162042] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses. The use of nanoparticles in vaccine formulations allows not only enhanced immunogenicity and stability of antigen, but also targeted delivery and slow release. Over the past decade, nanoscale size materials such as virus-like particles, liposomes, ISCOMs, polymeric, inorganic nanoparticles and emulsions have gained attention as potential delivery vehicles for vaccine antigens, which can both stabilize vaccine antigens and act as adjuvants. This advantage is attributable to the nanoscale particle size, which facilitates uptake by Antigen- Presenting Cells (APCs), then leading to efficient antigen recognition and presentation. Modifying the surfaces of nanoparticles with different targeting moieties permits the delivery of antigens to specific receptors on the cell surface, thereby stimulating selective and specific immune responses. This review provides an overview of recent advances in nanovaccinology.
Collapse
Affiliation(s)
- Mehdi Kheirollahpour
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.,Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Naser Mohammadpour Dounighi
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
45
|
Patil V, Patel A. Biodegradable Nanoparticles: A Recent Approach and Applications. Curr Drug Targets 2020; 21:1722-1732. [PMID: 32938346 DOI: 10.2174/1389450121666200916091659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Biodegradable nanoparticles (NPs) are the novel carriers for the administration of drug molecules. Biodegradable nanoparticles have become popular recently because of their special features such as targeted delivery of drugs, improved bioavailability, and better therapeutic effectiveness to administer the drug at a constant rate. Polymeric NPs are very small-sized polymeric colloidal elements in which a drug of interest may be encapsulated or incorporated in their polymeric network or conjugated or adsorbed on the layer. Various polymers are employed in the manufacturing of nanoparticles, some of the frequently employed polymers are agents, chitosan, cellulose, gelatin, gliadin, polylactic acid, polylactic-co-glycolic acid, and pullulan. Nanoparticles have been progressively explored for the delivery of targeted ARVs to cells of HIV-infected and have performed the prolonged kinetic release. Drug embedded in this system can give better effectiveness, diminished resistance of drugs, reduction in systemic toxicity and symptoms, and also enhanced patient compliance. The present review highlights the frequently employed manufacturing methods for biodegradable nanoparticles, various polymers used, and its application in anti-retroviral therapy. Also, common evaluation parameters to check the purity of nanoparticles, ongoing and recently concluded clinical trials and patents filled by the various researchers, and the future implication of biodegradable NPs in an innovative drug delivery system are described. The biodegradable NPs are promising systems for the administration of a broad variety of drugs including anti-retroviral drugs, and hence biodegradable nanoparticles can be employed in the future for the treatment of several diseases and disorders.
Collapse
Affiliation(s)
- Vijay Patil
- Department of Pharmaceutics, Faculty of Pharmacy, Parul institute of Pharmacy, Parul University P.O.Limda, Ta.Waghodia, Vadodara, Gujarat 391760 Gujarat, India
| | - Asha Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Parul institute of Pharmacy, Parul University P.O.Limda, Ta.Waghodia, Vadodara, Gujarat 391760 Gujarat, India
| |
Collapse
|
46
|
CD4 + T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. mBio 2020; 11:mBio.00903-20. [PMID: 32934078 PMCID: PMC7492730 DOI: 10.1128/mbio.00903-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HIV-1 is a major global health challenge. The development of an effective vaccine and/or a therapeutic cure is a top priority. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 hinders this progress. Here we developed an approach using nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP). Not only do TNP effectively neutralize all strains of HIV-1, but they also selectively bind to infected cells and decrease the release of HIV-1 particles through an autophagy-dependent mechanism with no drug-induced off-target or cytotoxic effects on bystander cells. Therapeutic strategies that provide effective and broad‐spectrum neutralization against HIV-1 infection are highly desirable. Here, we investigate the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) to neutralize a broad range of HIV-1 strains. TNP displayed outstanding neutralizing breadth and potency; they neutralized all 125 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, and transmitted/founder viruses, with a geometric mean 80% inhibitory concentration (IC80) of 819 μg ml−1 (range, 72 to 8,570 μg ml−1). TNP also selectively bound to and induced autophagy in HIV-1-infected CD4+ T cells and macrophages, while having no effect on uninfected cells. This TNP-mediated autophagy inhibited viral release and reduced cell-associated HIV-1 in a dose- and phospholipase D1-dependent manner. Genetic or pharmacological inhibition of autophagy ablated this effect. Thus, we can use TNP as therapeutic agents to neutralize cell-free HIV-1 and to target HIV-1 gp120-expressing cells to decrease the HIV-1 reservoir.
Collapse
|
47
|
The Paradox of HIV Blood-Brain Barrier Penetrance and Antiretroviral Drug Delivery Deficiencies. Trends Neurosci 2020; 43:695-708. [PMID: 32682564 PMCID: PMC7483662 DOI: 10.1016/j.tins.2020.06.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
HIV attacks the body's immune cells, frequently compromises the integrity of the blood-brain barrier (BBB), and infects the CNS in the early stages of infection. Dysfunction of the BBB further potentiates viral replication within the CNS, which can lead to HIV-associated neuropathology. Antiretroviral therapy (ART) significantly improves HIV patient outcomes and reduces mortality rates. However, there has been limited progress in targeting latent viral reservoirs within the CNS, which may eventually lead to rebound viremia. While ART drugs are shown to be effective in attenuating HIV replication in the periphery, the protection of the brain by the BBB offers an isolated sanctuary to harbor HIV and maintains chronic and persistent replication within the CNS. In this review, we elucidate the pathology of the BBB, its ability to potentiate viral replication, as well as current therapies and insufficiencies in treating HIV-infected individuals.
Collapse
|
48
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
49
|
Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci 2020; 151:105412. [DOI: 10.1016/j.ejps.2020.105412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
|
50
|
Aung YY, Kristanti AN, Khairunisa SQ, Nasronudin N, Fahmi MZ. Inactivation of HIV-1 Infection through Integrative Blocking with Amino Phenylboronic Acid Attributed Carbon Dots. ACS Biomater Sci Eng 2020; 6:4490-4501. [PMID: 33455181 DOI: 10.1021/acsbiomaterials.0c00508] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current antiretroviral HIV therapies continue to have problems related to procedural complications, toxicity, and uncontrolled side effects. In this study, amino phenylboronic acid-modified carbon dots (APBA-CDs) were introduced as a new nanoparticle-based on gp120 targeting that inhibits HIV-1 entry processes. Prolonged by simple pyrolysis for preparing carbon dots, this report further explores attributing amino phenylboronic acid on carbon dots, which prove the formation of graphene-like structures on carbon dots and boronic acid sites, thereby enabling the enhancement of positive optical properties through photoluminescent detection. Aside from performing well in terms of biocompatibility and low cytotoxicity (the CC50 reach up to 11.2 mg/mL), APBA-CDs exhibited superior capabilities in terms of prohibiting HIV-1 entry onto targeted MOLT-4 cells recognized by the delimitations of syncitia formation and higher ATP signal rather than bare carbon dots. The modified carbon dots also promote dual-action on HIV-1 treatment by both intracellularly and extracellularly viral blocking by combining with the Duviral drug, along with compressing p24 antigen signals that are better than APBA-CDs and Duviral itself.
Collapse
Affiliation(s)
- Yu Yu Aung
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | | | | | - Mochamad Zakki Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.,Supra Modification Nano-micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|