1
|
Gao M, Long X, Du J, Teng M, Zhang W, Wang Y, Wang X, Wang Z, Zhang P, Li J. Enhanced curcumin solubility and antibacterial activity by encapsulation in PLGA oily core nanocapsules. Food Funct 2020; 11:448-455. [PMID: 31829367 DOI: 10.1039/c9fo00901a] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infections caused by bacteria represent an emerging public health threat due to the development of antibiotic resistance in bacteria. Curcumin (CUR), a naturally derived substance, is found to be effective against several bacteria. However, its use is limited by its low water solubility and rapid degradation profile. Polymeric nanocapsules (NCs) represent an interesting drug delivery system with high incorporation rates due to their liquid core. The present study aimed to develop poly-(lactic-co-glycolic acid) (PLGA) NCs for the delivery of CUR for enhancing its solubility and antibacterial activity. The particle size, polydispersity index (PDI), zeta potential and drug entrapment efficiency of CUR NCs with optimal formulation were 158 nm, 0.156, -29.1 mV and 92.64%, respectively. The water solubility of CUR in NCs increased about 1500 fold compared to that of free CUR. TEM and AFM images proved the core-shell structure of PLGA NCs with narrow size distributions. The in vitro release profile of CUR from PLGA NCs showed a burst release in the initial 24 h followed by a sustained release of the interior CUR over 10 days. In vitro antibacterial experiments demonstrate that the minimum inhibitory concentrations (MICs) of CUR NCs were lower than those of free CUR for all different bacterial strains, especially for Gram-negative bacteria. CUR NCs exhibited broad-spectrum antibacterial effects compared with free CUR. These data suggest that these CUR-loaded PLGA NCs may provide a promising strategy as novel antibacterial agents.
Collapse
Affiliation(s)
- Mengqian Gao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Schiavone M, Sieczkowski N, Castex M, Trevisiol E, Dague E, François JM. AFM dendritips functionalized with molecular probes specific to cell wall polysaccharides as a tool to investigate cell surface structure and organization. Cell Surf 2020; 5:100027. [PMID: 32743143 PMCID: PMC7389267 DOI: 10.1016/j.tcsw.2019.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Functionalisation of AFM dendritips with conA, WGA and anti-β-1,3/β-1, 6-glucan antibodies. Cell wall polysaccharides were immobilized on epoxy-activated glass slides. Specific binding of immobilized polysaccharides to functionalized dendritips. Functionalized dendritips used as a new tool to probe yeast cell surface.
The yeast cell wall is composed of mannoproteins, β-1,3/β-1, 6-glucans and chitin. Each of these components has technological properties that are relevant for industrial and medical applications. To address issues related to cell wall structure and alteration in response to stress or conditioning processes, AFM dendritips were functionalized with biomolecules that are specific for each of the wall components, which was wheat germ agglutinin (WGA) for chitin, concanavalin A (ConA) for mannans and anti-β-1,3/anti-β-1,6-glucan antibodies for β-1,3/β-1,6-glucans. Binding specificity of these biomolecules were validated using penta-N-acetylchitopentaose, α-mannans, laminarin (short β-1,3-glucan chain) and gentiobiose (2 glucose units linked in β 1→6) immobilized on epoxy glass slides. Dynamic force spectroscopy was employed to obtain kinetic and thermodynamic information on the intermolecular interaction of the binary complexes using the model of Friddle-Noy-de Yoreo. Using this model, transition state distance xt, dissociate rate koff and the lowest force (feq) required to break the intermolecular bond of the complexes were approximated. These functionalized dendritips were then used to probe the yeast cell surface treated with a bacterial protease. As expected, this treatment, which removed the outer layer of the cell wall, gave accessibility to the inner layer composed of β-glucans. Likewise, bud scars were nicely localized using AFM dendritip bearing the WGA probe. To conclude, these functionalized AFM dendritips constitute a new toolbox that can be used to investigate cell surface structure and organization in response to a wide arrays of cultures and process conditions.
Collapse
Affiliation(s)
- Marion Schiavone
- LISBP, UMR INSA-CNRS 5504 & INRA 792, F-31077 Toulouse, France.,Lallemand SAS, 19, rue des briquetiers, 31702 Blagnac, France
| | | | - Mathieu Castex
- Lallemand SAS, 19, rue des briquetiers, 31702 Blagnac, France
| | | | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | |
Collapse
|
3
|
Golan M, Pribyl J, Pesl M, Jelinkova S, Acimovic I, Jaros J, Rotrekl V, Falk M, Sefc L, Skladal P, Kratochvilova I. Cryopreserved Cells Regeneration Monitored by Atomic Force Microscopy and Correlated With State of Cytoskeleton and Nuclear Membrane. IEEE Trans Nanobioscience 2018; 17:485-497. [PMID: 30307873 DOI: 10.1109/tnb.2018.2873425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atomic force microscopy (AFM) helps to describe and explain the mechanobiological properties of living cells on the nanoscale level under physiological conditions. The stiffness of cells is an important parameter reflecting cell physiology. Here, we have provided the first study of the stiffness of cryopreserved cells during post-thawing regeneration using AFM combined with confocal fluorescence microscopy. We demonstrated that the nonfrozen cell stiffness decreased proportionally to the cryoprotectant concentration in the medium. AFM allowed us to map cell surface reconstitution in real time after a freeze/thaw cycle and to monitor the regeneration processes at different depths of the cell and even different parts of the cell surface (nucleus and edge). Fluorescence microscopy showed that the cytoskeleton in fibroblasts, though damaged by the freeze/thaw cycle, is reconstructed after long-term plating. Confocal microscopy confirmed that structural changes affect the nuclear envelopes in cryopreserved cells. AFM nanoindentation analysis could be used as a noninvasive method to identify cells that have regenerated their surface mechanical properties with the proper dynamics and to a sufficient degree. This identification can be important particularly in the field of in vitro fertilization and in future cell-based regeneration strategies.
Collapse
|
4
|
High-resolution imaging of the microbial cell surface. J Microbiol 2016; 54:703-708. [PMID: 27796933 DOI: 10.1007/s12275-016-6348-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
Abstract
Microorganisms, or microbes, can function as threatening pathogens that cause disease in humans, animals, and plants; however, they also act as litter decomposers in natural ecosystems. As the outermost barrier and interface with the environment, the microbial cell surface is crucial for cell-to-cell communication and is a potential target of chemotherapeutic agents. Surface ultrastructures of microbial cells have typically been observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Owing to its characteristics of low-temperature specimen preparation and superb resolution (down to 1 nm), cryo-field emission SEM has revealed paired rodlets, referred to as hydrophobins, on the cell walls of bacteria and fungi. Recent technological advances in AFM have enabled high-speed live cell imaging in liquid at the nanoscale level, leading to clear visualization of cell-drug interactions. Platinum-carbon replicas from freeze-fractured fungal spores have been observed using transmission electron microscopy, revealing hydrophobins with varying dimensions. In addition, AFM has been used to resolve bacteriophages in their free state and during infection of bacterial cells. Various microscopy techniques with enhanced spatial resolution, imaging speed, and versatile specimen preparation are being used to document cellular structures and events, thus addressing unanswered biological questions.
Collapse
|
5
|
Van Der Hofstadt M, Hüttener M, Juárez A, Gomila G. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope. Ultramicroscopy 2015; 154:29-36. [PMID: 25791909 DOI: 10.1016/j.ultramic.2015.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 02/05/2023]
Abstract
With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates.
Collapse
Affiliation(s)
- M Van Der Hofstadt
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona, Spain
| | - M Hüttener
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona, Spain; Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | - A Juárez
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona, Spain; Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | - G Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona, Spain; Departament d'Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Liu D. Technical Advances in Veterinary Diagnostic Microbiology. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2013. [PMCID: PMC7121739 DOI: 10.1007/978-1-4614-3970-7_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Forming a significant part of biomass on earth, microorganisms are renowned for their abundance and diversity. From submicroscopic infectious particles (viruses), small unicellular cells (bacteria and yeasts) to multinucleate and multicellular organisms (filamentous fungi, protozoa, and helminths), microorganisms have found their way into virtually every environmental niche, and show little restrain in making their presence felt. While a majority of microorganisms are free-living and involved in the degradation of plant debris and other organic materials, others lead a symbiotic, mutually beneficial life within their hosts. In addition, some microorganisms have the capacity to take advantage of temporary weaknesses in animal and human hosts, causing notable morbidity and mortality. Because clinical manifestations in animals and humans resulting from infections with various microorganisms are often nonspecific (e.g., general malaise and fever), it is necessary to apply laboratory diagnostic means to identify the culprit organisms for treatment and prevention purposes.
Collapse
|
7
|
Shi X, Zhang X, Xia T, Fang X. Living cell study at the single-molecule and single-cell levels by atomic force microscopy. Nanomedicine (Lond) 2012; 7:1625-37. [DOI: 10.2217/nnm.12.130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atomic force microscopy (AFM) has been emerging as a multifunctional molecular tool in nanobiology and nanomedicine. This review summarizes the recent advances in AFM study of living mammalian cells at the single-molecule and single-cell levels. Besides nanoscale imaging of cell membrane structure, AFM-based force measurements on living cells are mainly discussed. These include the development and application of single-molecule force spectroscopy to investigate ligand–receptor binding strength and dissociation dynamics, and the characterization of cell mechanical properties in a physiological environment. Molecular manipulation of cells by AFM to change the cellular process is also described. Living-cell AFM study offers a new approach to understand the molecular mechanisms of cell function, disease development and drug effect, as well as to develop new strategies to achieve single-cell-based diagnosis.
Collapse
Affiliation(s)
- Xiaoli Shi
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Xuejie Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Tie Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| |
Collapse
|
8
|
Zhao XQ, Wu J, Liang JH, Yan JW, Zhu Z, Yang CJ, Mao BW. Single-molecule force spectroscopic studies on intra- and intermolecular interactions of G-quadruplex aptamer with target Shp2 protein. J Phys Chem B 2012; 116:11397-404. [PMID: 22924632 DOI: 10.1021/jp303518b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With widespread applications in biosensors, diagnostics, and therapeutics, much investigation has been made in the structure of the G-quadruplexes and mechanism of their interactions with protein targets. However, in view of AFM based single-molecule force spectroscopic (SMFS) studies of G-quadruplex systems, only bimolecular approaches have been employed. In this article, we present an improved dual-labeling approach for surface immobilization of G-quadruplex DNA apatmers for investigation of intramolecular interaction from an integral unimolecular G-quadruplex system. The melting force of HJ24 G-quadruplex aptamer in the presence of K(+) has been successfully measured. It has been found that dynamic equilibrium exists between unfolding and folding structures of the HJ24 aptamer even in pure water. We also investigated the interactions between the HJ24 aptamer and its target protein (Shp2) under the same solution condition. The HJ24/Shp2 unbinding force in the absence of K(+), 42.0 pN, is about 50% smaller than that in the presence of K(+), 61.7 pN. The great reduction in force in the absence of K(+) suggests that the stability of G-quadruplex secondary structure is important for a stable HJ24/Shp2 binding. The methodology developed and demonstrated in this work is applicable for studying the stability of secondary structures of other unimolecular G-quadruplex aptamers and their interactions with target proteins.
Collapse
Affiliation(s)
- Xue-Qin Zhao
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | | | |
Collapse
|