1
|
Kohestani AA, Xu Z, Baştan FE, Boccaccini AR, Pishbin F. Electrically conductive coatings in tissue engineering. Acta Biomater 2024; 186:30-62. [PMID: 39128796 DOI: 10.1016/j.actbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Recent interest in tissue engineering (TE) has focused on electrically conductive biomaterials. This has been inspired by the characteristics of the cells' microenvironment where signalling is supported by electrical stimulation. Numerous studies have demonstrated the positive influence of electrical stimulation on cell excitation to proliferate, differentiate, and deposit extracellular matrix. Even without external electrical stimulation, research shows that electrically active scaffolds can improve tissue regeneration capacity. Tissues like bone, muscle, and neural contain electrically excitable cells that respond to electrical cues provided by implanted biomaterials. To introduce an electrical pathway, TE scaffolds can incorporate conductive polymers, metallic nanoparticles, and ceramic nanostructures. However, these materials often do not meet implantation criteria, such as maintaining mechanical durability and degradation characteristics, making them unsuitable as scaffold matrices. Instead, depositing conductive layers on TE scaffolds has shown promise as an efficient alternative to creating electrically conductive structures. A stratified scaffold with an electroactive surface synergistically excites the cells through active top-pathway, with/without electrical stimulation, providing an ideal matrix for cell growth, proliferation, and tissue deposition. Additionally, these conductive coatings can be enriched with bioactive or pharmaceutical components to enhance the scaffold's biomedical performance. This review covers recent developments in electrically active biomedical coatings for TE. The physicochemical and biological properties of conductive coating materials, including polymers (polypyrrole, polyaniline and PEDOT:PSS), metallic nanoparticles (gold, silver) and inorganic (ceramic) particles (carbon nanotubes, graphene-based materials and Mxenes) are examined. Each section explores the conductive coatings' deposition techniques, deposition parameters, conductivity ranges, deposit morphology, cell responses, and toxicity levels in detail. Furthermore, the applications of these conductive layers, primarily in bone, muscle, and neural TE are considered, and findings from in vitro and in vivo investigations are presented. STATEMENT OF SIGNIFICANCE: Tissue engineering (TE) scaffolds are crucial for human tissue replacement and acceleration of healing. Neural, muscle, bone, and skin tissues have electrically excitable cells, and their regeneration can be enhanced by electrically conductive scaffolds. However, standalone conductive materials often fall short for TE applications. An effective approach involves coating scaffolds with a conductive layer, finely tuning surface properties while leveraging the scaffold's innate biological and physical support. Further enhancement is achieved by modifying the conductive layer with pharmaceutical components. This review explores the under-reviewed topic of conductive coatings in tissue engineering, introducing conductive biomaterial coatings and analyzing their biological interactions. It provides insights into enhancing scaffold functionality for tissue regeneration, bridging a critical gap in current literature.
Collapse
Affiliation(s)
- Abolfazl Anvari Kohestani
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran 11155-4563 Tehran, Iran
| | - Zhiyan Xu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Fatih Erdem Baştan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany; Thermal Spray Research and Development Laboratory, Metallurgical and Materials Engineering Department, Sakarya University, Esentepe Campus, 54187, Turkey
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran 11155-4563 Tehran, Iran.
| |
Collapse
|
2
|
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Nanotechnology-Based Delivery Systems for Antimicrobial Peptides. Pharmaceutics 2021; 13:pharmaceutics13111795. [PMID: 34834210 PMCID: PMC8620809 DOI: 10.3390/pharmaceutics13111795] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant threat to global health. The conventional antibiotic pool has been depleted, forcing the investigation of novel and alternative antimicrobial strategies. Antimicrobial peptides (AMPs) have shown potential as alternative diagnostic and therapeutic agents in biomedical applications. To date, over 3000 AMPs have been identified, but only a fraction of these have been approved for clinical trials. Their clinical applications are limited to topical application due to their systemic toxicity, susceptibility to protease degradation, short half-life, and rapid renal clearance. To circumvent these challenges and improve AMP’s efficacy, different approaches such as peptide chemical modifications and the development of AMP delivery systems have been employed. Nanomaterials have been shown to improve the activity of antimicrobial drugs by providing support and synergistic effect against pathogenic microbes. This paper describes the role of nanotechnology in the targeted delivery of AMPs, and some of the nano-based delivery strategies for AMPs are discussed with a clear focus on metallic nanoparticle (MNP) formulations.
Collapse
Affiliation(s)
| | | | | | - Mervin Meyer
- Correspondence: (A.O.F.); (N.R.S.S.); (A.M.M.); (M.M.)
| |
Collapse
|
3
|
Menaa F, Fatemeh Y, Vashist SK, Iqbal H, Sharts ON, Menaa B. Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects. Biomed Eng Comput Biol 2021; 12:1179597220983821. [PMID: 33716517 PMCID: PMC7917420 DOI: 10.1177/1179597220983821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Graphene, a relatively new two-dimensional (2D) nanomaterial, possesses unique structure (e.g. lighter, harder, and more flexible than steel) and tunable physicochemical (e.g. electronical, optical) properties with potentially wide eco-friendly and cost-effective usage in biosensing. Furthermore, graphene-related nanomaterials (e.g. graphene oxide, doped graphene, carbon nanotubes) have inculcated tremendous interest among scientists and industrials for the development of innovative biosensing platforms, such as arrays, sequencers and other nanooptical/biophotonic sensing systems (e.g. FET, FRET, CRET, GERS). Indeed, combinatorial functionalization approaches are constantly improving the overall properties of graphene, such as its sensitivity, stability, specificity, selectivity, and response for potential bioanalytical applications. These include real-time multiplex detection, tracking, qualitative, and quantitative characterization of molecules (i.e. analytes [H2O2, urea, nitrite, ATP or NADH]; ions [Hg2+, Pb2+, or Cu2+]; biomolecules (DNA, iRNA, peptides, proteins, vitamins or glucose; disease biomarkers such as genetic alterations in BRCA1, p53) and cells (cancer cells, stem cells, bacteria, or viruses). However, there is still a paucity of comparative reports that critically evaluate the relative toxicity of carbon nanoallotropes in humans. This manuscript comprehensively reviews the biosensing applications of graphene and its derivatives (i.e. GO and rGO). Prospects and challenges are also introduced.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| | - Yazdian Fatemeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sandeep K Vashist
- Hahn-Schickard-Gesellschaft für Angewandte Forschung e.V. (HSG-IMIT), Freiburg, Germany.,College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Haroon Iqbal
- College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Olga N Sharts
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| | - Bouzid Menaa
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| |
Collapse
|
4
|
Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater 2019; 4:366-379. [PMID: 31872161 PMCID: PMC6909203 DOI: 10.1016/j.bioactmat.2019.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Recent years have witnessed the expansion of tissue failures and diseases. The uprising of regenerative medicine converges the sight onto stem cell-biomaterial based therapy. Tissue engineering and regenerative medicine proposes the strategy of constructing spatially, mechanically, chemically and biologically designed biomaterials for stem cells to grow and differentiate. Therefore, this paper summarized the basic properties of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. The properties of frequently used biomaterials were also described in terms of natural and synthetic origins. Particularly, the combination of stem cells and biomaterials for tissue repair applications was reviewed in terms of nervous, cardiovascular, pancreatic, hematopoietic and musculoskeletal system. Finally, stem-cell-related biomanufacturing was envisioned and the novel biofabrication technologies were discussed, enlightening a promising route for the future advancement of large-scale stem cell-biomaterial based therapeutic manufacturing.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, West Lafayette, IN, 47907, USA
| |
Collapse
|
5
|
Patel DK, Seo YR, Lim KT. Stimuli-Responsive Graphene Nanohybrids for Biomedical Applications. Stem Cells Int 2019; 2019:9831853. [PMID: 31065286 PMCID: PMC6466862 DOI: 10.1155/2019/9831853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Stimuli-responsive materials, also known as smart materials, can change their structure and, consequently, original behavior in response to external or internal stimuli. This is due to the change in the interactions between the various functional groups. Graphene, which is a single layer of carbon atoms with a hexagonal morphology and has excellent physiochemical properties with a high surface area, is frequently used in materials science for various applications. Numerous surface functionalizations are possible for the graphene structure with different functional groups, which can be used to alter the properties of native materials. Graphene-based hybrids exhibit significant improvements in their native properties. Since functionalized graphene contains several reactive groups, the behavior of such hybrid materials can be easily tuned by changing the external conditions, which is very useful in biomedical applications. Enhanced cell proliferation and differentiation of stem cells was reported on the surfaces of graphene-based hybrids with negligible cytotoxicity. In addition, pH or light-induced drug delivery with a controlled release rate was observed for such nanohybrids. Besides, notable improvements in antimicrobial activity were observed for nanohybrids, which demonstrated their potential for biomedical applications. This review describes the physiochemical properties of graphene and graphene-based hybrid materials for stimuli-responsive drug delivery, tissue engineering, and antimicrobial applications.
Collapse
Affiliation(s)
- Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yu-Ri Seo
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Phadke GS, Satterwhite-Warden JE, Choudhary D, Taylor JA, Rusling JF. A novel and accurate microfluidic assay of CD62L in bladder cancer serum samples. Analyst 2018; 143:5505-5511. [PMID: 30295303 PMCID: PMC6231417 DOI: 10.1039/c8an01463a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a low-cost, sensitive, bead-based electrochemical immunoarray for soluble L-selectin (or CD62L protein), a potential biomarker for staging bladder cancer. We used a semi-automated modular microfluidic array with online antigen capture on superparamagnetic beads, which were subsequently delivered to a detection chamber housing multiple sensors. The assay was designed to accurately detect CD62L in diluted serum with a limit of detection (LOD) of 0.25 ng mL-1 and a dynamic range of 0.25-100 ng mL-1. The microfluidic array gave significantly better accuracy and higher sensitivity than a standard ELISA kit, which was shown to be subject to significant systematic error at high and low concentration ranges. 31 serum samples from patients with varying grades of bladder cancer and cancer-free controls were analyzed by the immunoarray and ELISA, and the CD62L levels correlated. This work establishes a new accurate assay for determining CD62L levels and highlights the potential of this protein as a biomarker for detecting locoregional progression of bladder cancer.
Collapse
Affiliation(s)
- Gayatri S Phadke
- Department of Chemistry (U-3060), University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | | | | | | | | |
Collapse
|
7
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
8
|
A highly sensitive and reliable detection of CA15-3 in patient plasma with electrochemical biosensor labeled with magnetic beads. Biosens Bioelectron 2018; 122:8-15. [PMID: 30236808 DOI: 10.1016/j.bios.2018.08.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
An early on-time detection of breast cancer can effectively affect the outcome of the treatment. Here, we developed an ultrasensitive, simple and reliable immunosensor to detect the lowest alteration of CA 15-3, the standard biomarker of breast cancer patients. The proposed immunosensor was achieved by modification of gold electrode by streptavidin to immobilize the biotinylated anti-CA 15-3 monoclonal antibody (mAb). Bovine serum albumin was used to prevent nonspecific binding. To improve the sensitivity of modified immunosensor, the sandwich signal enhancer consisting of streptavidin-coated magnetic beads conjugated with biotinylated horseradish peroxidase (HRP) and anti-CA 15-3 biotinylated mAb was applied. The electrochemical measurements were obtained in the presence of hydroquinone as a redox agent and H2O2 as the activating agent of HRP. Under optimized condition and using square wave voltammetry, the lower limit of quantification was obtained as 15 × 10-6 U/mL and the linear CA 15-3 concentration range was 50-15 × 10-6 U/mL. While showing significant stability, the immunosensor displayed an excellent sensitivity and specificity for the detection of CA 15-3 even in the human serum as compared to the enzyme-linked immunosorbent assay (ELISA) as a gold standard method. Based on our findings, the engineered immunosensor is proposed as a robust diagnostic tool for the clinical determination of CA 15-3 and other cancer biomarkers.
Collapse
|
9
|
Amărandi RM, Becheru DF, Vlăsceanu GM, Ioniță M, Burns JS. Advantages of Graphene Biosensors for Human Stem Cell Therapy Potency Assays. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1676851. [PMID: 30003089 PMCID: PMC5996421 DOI: 10.1155/2018/1676851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
Regenerative medicine is challenged by the need to conform to rigorous guidelines for establishing safe and effective development and translation of stem cell-based therapies. Counteracting widespread concerns regarding unproven cell therapies, stringent cell-based assays seek not only to avoid harm but also to enhance quality and efficacy. Potency indicates that the cells are functionally fit for purpose before they are administered to the patient. It is a paramount quantitative critical quality attribute serving as a decisive release criterion. Given a broad range of stem cell types and therapeutic contexts the potency assay often comprises one of the most demanding hurdles for release of a cell therapy medicinal product. With need for improved biomarker assessment and expedited measurement, recent advances in graphene-based biosensors suggest that they are poised to be valuable platforms for accelerating potency assay development. Among several potential advantages, they offer versatility for sensitive measurement of a broad range of potential biomarker types, cell biocompatibility for direct measurement, and small sample sufficiency, plus ease of use and point-of-care applicability.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Diana F. Becheru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - George M. Vlăsceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Jorge S. Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Department of Medical and Surgical Sciences of Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Advances in Micro- and Nanotechnologies for Stem Cell-Based Translational Applications. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2017. [DOI: 10.1007/978-3-319-29149-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Lim SA, Ahmed MU. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 2016. [DOI: 10.1039/c6ra00333h] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, tremendous advances have been made in biosensors based on nanoscale electrochemical immunosensors for use in the fields of agriculture, food safety, biomedicine, quality control, and environmental and industrial monitoring.
Collapse
Affiliation(s)
- Syazana Abdullah Lim
- Environmental and Life Sciences Programme
- Faculty of Science
- Universiti Brunei Darussalam
- Gadong
- Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Biotechnology Laboratory
- Chemical Science Programme
- Faculty of Science
- Universiti Brunei Daruusalam
- Gadong
| |
Collapse
|
12
|
Menaa F, Abdelghani A, Menaa B. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. J Tissue Eng Regen Med 2014; 9:1321-38. [DOI: 10.1002/term.1910] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/21/2014] [Accepted: 04/20/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Farid Menaa
- Fluorotronics Inc.; Department of Nanomedicine, Oncology and Stem Cells; San Diego CA USA
| | - Adnane Abdelghani
- Carthage University; Nanotechnology Laboratory, National Institute of Applied Science and Technology; Charguia Tunisia
| | - Bouzid Menaa
- Fluorotronics Inc.; Department of Nanomaterials and Nanobiotechnology; San Diego CA USA
| |
Collapse
|
13
|
Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des 2014; 19:6315-29. [PMID: 23470005 DOI: 10.2174/13816128113199990375] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/01/2013] [Indexed: 01/03/2023]
Abstract
One major challenge in nanomedicine is the selective delivery of nanoparticles to diseased tissues. Nanoparticle delivery systems require targeting for specific delivery to pathogenic sites when enhanced permeability and retention (EPR) is not suitable or inefficient. Nanoparticle functionalization is a widely-used technique for targeting ligand conjugation; these ligands possess inherent abilities to direct nanoparticle selective binding. This review illustrates methods of ligand-nanoparticle functionalization, provides a cross-section of various ligand classes, including small molecules, peptides, antibodies, engineered proteins, or nucleic acid aptamers, and discusses some unconventional approaches currently under investigation.
Collapse
Affiliation(s)
- Adam D Friedman
- Eshelman School of Pharmacy and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, USA.
| | | | | |
Collapse
|