1
|
Xie L, Sun Z, Brown NJ, Glinskii OV, Meininger GA, Glinsky VV. Changes in dynamics of tumor/endothelial cell adhesive interactions depending on endothelial cell growth state and elastic properties. PLoS One 2022; 17:e0269552. [PMID: 35666755 PMCID: PMC9170101 DOI: 10.1371/journal.pone.0269552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cell adhesion to the endothelium is a crucial process in hematogenous metastasis, but how the integrity of the endothelial barrier and endothelial cell (EC) mechanical properties influence the adhesion between metastatic cancer cells and the endothelium remain unclear. In the present study, we have measured the adhesion between single cancer cells and two types of ECs at various growth states and their mechanical properties (elasticity) using atomic force microscopy single cell force spectroscopy. We demonstrated that the EC stiffness increased and adhesion with cancer cells decreased, as ECs grew from a single cell to a confluent state and developed cell-cell contacts, but this was reversed when confluent cells returned to a single state in a scratch assay. Our results suggest that the integrity of the endothelial barrier is an important factor in reducing the ability of the metastatic tumor cells to adhere to the vascular endothelium, extravasate and lodge in the vasculature of a distant organ where secondary metastatic tumors would develop.
Collapse
Affiliation(s)
- Leike Xie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Microcirculation Research Group, Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Olga V. Glinskii
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Vladislav V. Glinsky
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| |
Collapse
|
2
|
Chen X, Hughes R, Mullin N, Hawkins RJ, Holen I, Brown NJ, Hobbs JK. Atomic force microscopy reveals the mechanical properties of breast cancer bone metastases. NANOSCALE 2021; 13:18237-18246. [PMID: 34710206 PMCID: PMC8584157 DOI: 10.1039/d1nr03900h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Mechanically dependent processes are essential in cancer metastases. However, reliable mechanical characterization of metastatic cancer remains challenging whilst maintaining the tissue complexity and an intact sample. Using atomic force microscopy, we quantified the micro-mechanical properties of relatively intact metastatic breast tumours and their surrounding bone microenvironment isolated from mice, and compared with other breast cancer models both ex vivo and in vitro. A mechanical distribution of extremely low elastic modulus and viscosity was identified on metastatic tumours, which were significantly more compliant than both 2D in vitro cultured cancer cells and subcutaneous tumour explants. The presence of mechanically distinct metastatic tumour did not result in alterations of the mechanical properties of the surrounding microenvironment at meso-scale distances (>200 μm). These findings demonstrate the utility of atomic force microscopy in studies of complex tissues and provide new insights into the mechanical properties of cancer metastases in bone.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK.
- Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
- The Krebs Institute, University of Sheffield, S10 2TN, UK
| | - Russell Hughes
- Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
| | - Nic Mullin
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK.
- The Krebs Institute, University of Sheffield, S10 2TN, UK
| | - Rhoda J Hawkins
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK.
- The Krebs Institute, University of Sheffield, S10 2TN, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
| | - Nicola J Brown
- Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK.
- The Krebs Institute, University of Sheffield, S10 2TN, UK
| |
Collapse
|
3
|
Lu Z, Wang Z, Li D. Application of atomic force microscope in diagnosis of single cancer cells. BIOMICROFLUIDICS 2020; 14:051501. [PMID: 32922587 PMCID: PMC7474552 DOI: 10.1063/5.0021592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Changes in mechanical properties of cells are closely related to a variety of diseases. As an advanced technology on the micro/nano scale, atomic force microscopy is the most suitable tool for information acquisition of living cells in human body fluids. AFMs are able to measure and characterize the mechanical properties of cells which can be used as effective markers to distinguish between different cell types and cells in different states (benign or cancerous). Therefore, they can be employed to obtain additional information to that obtained via the traditional biochemistry methods for better identifying and diagnosing cancer cells for humans, proposing better treatment methods and prognosis, and unravelling the pathogenesis of the disease. In this report, we review the use of AFMs in cancerous tissues, organs, and cancer cells cultured in vitro to obtain cellular mechanical properties, demonstrate and summarize the results of AFMs in cancer biology, and look forward to possible future applications and the direction of development.
Collapse
Affiliation(s)
- Zhengcheng Lu
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Zuobin Wang
- Authors to whom correspondence should be addressed: and
| | - Dayou Li
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
4
|
|
5
|
Duś-Szachniewicz K, Drobczyński S, Woźniak M, Zduniak K, Ostasiewicz K, Ziółkowski P, Korzeniewska AK, Agrawal AK, Kołodziej P, Walaszek K, Bystydzieński Z, Rymkiewicz G. Differentiation of single lymphoma primary cells and normal B-cells based on their adhesion to mesenchymal stromal cells in optical tweezers. Sci Rep 2019; 9:9885. [PMID: 31285461 PMCID: PMC6614388 DOI: 10.1038/s41598-019-46086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023] Open
Abstract
We have adapted a non-invasive method based on optical tweezers technology to differentiate between the normal B-cells and the B-cell non-Hodgkin lymphoma (B-NHL) cells derived from clinical samples. Our approach bases on the nascent adhesion between an individual B-cell and a mesenchymal stromal cell. In this study, a single B-cell was trapped and optically seeded on a mesenchymal stromal cell and kept in a direct contact with it until a stable connection between the cells was formed in time scale. This approach allowed us to avoid the introduction of any exogenous beads or chemicals into the experimental setup which would have affected the cell-to-cell adhesion. Here, we have provided new evidence that aberrant adhesive properties found in transformed B-cells are related to malignant neoplasia. We have demonstrated that the mean time required for establishing adhesive interactions between an individual normal B-cell and a mesenchymal stromal cell was 26.7 ± 16.6 s, while for lymphoma cell it was 208.8 ± 102.3 s, p < 0.001. The contact time for adhesion to occur ranged from 5 to 90 s and from 60 to 480 s for normal B-cells and lymphoma cells, respectively. This method for optically controlled cell-to-cell adhesion in time scale is beneficial to the successful differentiation of pathological cells from normal B-cells within the fine needle aspiration biopsy of a clinical sample. Additionally, variations in time-dependent adhesion among subtypes of B-NHL, established here by the optical trapping, confirm earlier results pertaining to cell heterogeneity.
Collapse
Affiliation(s)
- Kamila Duś-Szachniewicz
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland.
| | - Sławomir Drobczyński
- Department of Optics and Photonics, Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Marta Woźniak
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Krzysztof Zduniak
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Katarzyna Ostasiewicz
- Department of Statistics, Wrocław University of Economics, Komandorska 118/120, 53-345, Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Aleksandra K Korzeniewska
- Department of Optics and Photonics, Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anil K Agrawal
- 2nd Department of General and Oncological Surgery, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Paweł Kołodziej
- Division of Pathology, Sokołowski Hospital Wałbrzych, Sokołowskiego 4, 58-309, Wałbrzych, Poland
| | - Kinga Walaszek
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Zbigniew Bystydzieński
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Institute-Oncology Centre, Wilhelma Konrada Roentgena 5, 02-781, Warsaw, Poland
| | - Grzegorz Rymkiewicz
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Institute-Oncology Centre, Wilhelma Konrada Roentgena 5, 02-781, Warsaw, Poland
| |
Collapse
|
6
|
Kulkarni T, Tam A, Mukhopadhyay D, Bhattacharya S. AFM study: Cell cycle and probe geometry influences nanomechanical characterization of Panc1 cells. Biochim Biophys Acta Gen Subj 2019; 1863:802-812. [PMID: 30763604 DOI: 10.1016/j.bbagen.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Abstract
Atomic force microscope (AFM) is emerging as an immensely promising tool to study the cellular morphology with a nanometer scale resolution and to analyze nanomechanical properties (NPs) at various physiological conditions. Advancement of AFM technology enables studying living cells and differentiating cancer cell from normal cells based on topography and NPs. Though the trend overlaps from different literature; numerical values of nanomechanical readouts depict variations over a wide range. These anomalies are associated with the experimental setup under study. In this manuscript, we have identified heterogeneity in cell culture system in addition to the selection of AFM probe with specific tip geometry as the major contributors to the above mentioned anomalies. To test our hypothesis, we have used Panc1 cells, which is a pancreatic ductal adenocarcinoma cell type. Our results suggest that the cellular morphology, membrane roughness and NPs calculated from AFM study are distinctly influenced by cell cycle. Furthermore, we found that the NPs readout is also significantly associated with AFM tip geometries. The cells were found to be softer in their early resting phase when indented with pyramidal probe and became increasingly stiffer as they progressed through the cell cycles. On the contrary, when indented with the spherical probe, cells in G0/G1 phase were observed to be the stiffest. Such an exhaustive study of the role of cell cycle in influencing the NPs in Panc1 cell line along with the impact of tip geometry on NPs is the first of its kind, to the best of our knowledge.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alex Tam
- Electrical Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Pathology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Pathology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
7
|
Xie L, Sun Z, Hong Z, Brown NJ, Glinskii OV, Rittenhouse-Olson K, Meininger GA, Glinsky VV. Temporal and molecular dynamics of human metastatic breast carcinoma cell adhesive interactions with human bone marrow endothelium analyzed by single-cell force spectroscopy. PLoS One 2018; 13:e0204418. [PMID: 30235349 PMCID: PMC6147572 DOI: 10.1371/journal.pone.0204418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
Bone is a common site of metastasis for breast cancer and the mechanisms of metastasis are not fully elucidated. The purpose of our study was to characterize temporal and molecular dynamics of adhesive interactions between human breast cancer cells (HBCC) and human bone marrow endothelium (HBME) with piconewton resolution using atomic force microscopy (AFM). In adhesion experiments, a single breast cancer cell, MDA-MB-231 (MB231) or MDA-MB-435 (MB435) was attached to the AFM cantilever and brought into contact with a confluent HBME monolayer for different time periods (0.5 to 300 sec). The forces required to rupture individual molecular interactions and completely separate interacting cells were analyzed as measures of cell-cell adhesion. Adhesive interactions between HBME and either MB231 or MB435 cells increased progressively as cell-cell contact time was prolonged from 0.5 to 300 sec due to the time-dependent increase in the number and frequency of individual adhesive events, as well as to the involvement of stronger ligand-receptor interactions over time. Studies of the individual molecule involvement revealed that Thomsen-Friedenreich antigen (TF-Ag), galectin-3, integrin-β1, and integrin-α3 are all contributing to HBCC/HBME adhesion to various degrees in a temporally defined fashion. In conclusion, cell-cell contact time enhances adhesion of HBCC to HBME and the adhesion is mediated, in part, by TF-Ag, galectin-3, integrin-α3, and integrin-β1.
Collapse
Affiliation(s)
- Leike Xie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Microcirculation Research Group, Department of Oncology, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Olga V. Glinskii
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Kate Rittenhouse-Olson
- Department of Biotechnical & Clinical Laboratory Sciences, University at Buffalo, Buffalo, New York, United States of America
- For-Robin, Inc, Buffalo, New York, United States of America
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (VVG); (GAM)
| | - Vladislav V. Glinsky
- Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
- * E-mail: (VVG); (GAM)
| |
Collapse
|
8
|
Trache A, Xie L, Huang H, Glinsky VV, Meininger GA. Applications of Atomic Force Microscopy for Adhesion Force Measurements in Mechanotransduction. Methods Mol Biol 2018; 1814:515-528. [PMID: 29956252 DOI: 10.1007/978-1-4939-8591-3_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Adhesive interactions between living cells or ligand-receptor interactions can be studied at the molecular level using atomic force microscopy (AFM). Adhesion force measurements are performed with functionalized AFM probes. In order to measure single ligand-receptor interactions, a cantilever with a pyramidal tip is functionalized with a bio-recognized ligand (e.g., extracellular matrix protein). The ligand-functionalized probe is then brought into contact with a cell in culture to investigate adhesion between the respective probe-bound ligand and endogenously expressed cell surface receptors (e.g., integrins or other adhesion receptor). For experiments designed to examine cell-cell adhesions, a single cell is attached to a tipless cantilever which is then brought into contact with other cultured cells. Force curves are recorded to determine the forces necessary to rupture discrete adhesions between the probe-bound ligand and receptor, or to determine total adhesion force at cell-cell contacts. Here, we describe the procedures for measuring adhesions between (a) fibronectin and α5β1 integrin, and (b) breast cancer cells and bone marrow endothelial cells.
Collapse
Affiliation(s)
- Andreea Trache
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX, USA. .,Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| | - Leike Xie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Huang Huang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Vladislav V Glinsky
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Malek-Zietek KE, Targosz-Korecka M, Szymonski M. The impact of hyperglycemia on adhesion between endothelial and cancer cells revealed by single-cell force spectroscopy. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Katarzyna E. Malek-Zietek
- Center for Nanometer-scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science; Jagiellonian University; Łojasiewicza 11 30-348 Kraków Poland
| | - Marta Targosz-Korecka
- Center for Nanometer-scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science; Jagiellonian University; Łojasiewicza 11 30-348 Kraków Poland
| | - Marek Szymonski
- Center for Nanometer-scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science; Jagiellonian University; Łojasiewicza 11 30-348 Kraków Poland
| |
Collapse
|
10
|
Varga B, Fazakas C, Molnár J, Wilhelm I, Domokos RA, Krizbai IA, Szegletes Z, Váró G, Végh AG. Direct mapping of melanoma cell - endothelial cell interactions. J Mol Recognit 2016; 30. [PMID: 28008676 DOI: 10.1002/jmr.2603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/18/2016] [Accepted: 11/21/2016] [Indexed: 01/05/2023]
Abstract
The most life-threatening aspect of cancer is metastasis; cancer patient mortality is mainly due to metastasis. Among all metastases, presence of brain metastasis is one with the poorest prognosis; the median survival time can be counted in months. Therefore, prevention or decreasing their incidence would be highly desired both by patients and physicians. Metastatic cells invading the brain must breach the cerebral vasculature, primarily the blood-brain barrier. The key step in this process is the establishment of firm adhesion between the cancer cell and the cerebral endothelial layer. Using the atomic force microscope, a high-resolution force spectrograph, our aim was to explore the connections among the cell morphology, cellular mechanics, and biological function in the process of transendothelial migration of metastatic cancer cells. By immobilization of a melanoma cell to an atomic force microscope's cantilever, intercellular adhesion was directly measured at quasi-physiological conditions. Hereby, we present our latest results by using this melanoma-decorated probe. Binding characteristics to a confluent layer of brain endothelial cells was directly measured by means of single-cell force spectroscopy. Adhesion dynamics and strength were characterized, and we present data about spatial distribution of elasticity and detachment strength. These results highlight the importance of cellular mechanics in brain metastasis formation and emphasize the enormous potential toward exploration of intercellular dynamic-related processes.
Collapse
Affiliation(s)
- Béla Varga
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Laboratoire Charles Coulomb L2C, UMR 5221, CNRS, Université de Montpellier, Montpellier, France
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Judit Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Réka A Domokos
- Babes-Bolyai University, Faculty of Physics, Cluj-Napoca, Romania
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University, Arad, Romania
| | - Zsolt Szegletes
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - György Váró
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
11
|
Li Y, Gao A, Yu L. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device. Appl Biochem Biotechnol 2015; 178:114-25. [PMID: 26394790 DOI: 10.1007/s12010-015-1862-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 02/03/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - AnXiu Gao
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Rapid Diagnosis of Dread Disease, Southwest University, Chongqing, 400715, China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China. .,Chongqing Engineering Research Center for Rapid Diagnosis of Dread Disease, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Expression of cell adhesion molecules in laryngeal carcinoma - preliminary analysis. Contemp Oncol (Pozn) 2014; 18:403-8. [PMID: 25784838 PMCID: PMC4355661 DOI: 10.5114/wo.2014.47906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/28/2014] [Accepted: 10/08/2014] [Indexed: 11/21/2022] Open
Abstract
Aim of the study Intercellular adhesion molecules present in immunocompetent cells as well as endothelium and tumour cells can regulate cell migration, angiogenesis, apoptosis, proliferation, and metastases in solid tumours. The aim of this study was to analyse the sICAM-1 (soluble intercellular adhesion molecule 1) and sVCAM-1 (soluble vascular cell adhesion molecule 1) expression in peripheral blood mononuclear cell (PBMC) cultures, and to find their relationships with clinicomorphological characteristics in laryngeal cancer. Materials and methods The analysis included a group of 50 patients with verified squamous cell carcinoma of the larynx. The control group constituted 30 healthy volunteers. The pathological assessment included pTNM, stage, histological grade, and type of invasion according to the tumour front grading. The expression of adhesion molecules was assessed using the enzyme-linked immunosorbent assay (ELISA). Results Increased expression of sICAM-1 and sVCAM-1 was an indicator of more aggressive laryngeal carcinomas. More advanced local changes evaluated on the pT feature were connected with a higher sVCAM-1 (p = 0.017), but not sICAM-1 level. The presence of lymph node metastases correlated with a higher expression of adhesion molecules (p = 0.012 and p = 0.003, for sICAM-1 and sVCAM-1, respectively). Tumours with more diffuse growth and infiltrating with small cell groups (< 15/hpf) was characterised by the highest level of adhesive proteins (p = 0.001 and p = 0.02 for sICAM and sVCAM, respectively). Moreover, lower levels of sICAM-1 and sVCAM-1 were observed more frequently in patients who lived longer than five years after treatment. Conclusions The study indicates the importance of the sICAM and sVCAM expression as indicators of advanced changes and prognosis in patients with laryngeal carcinoma.
Collapse
|