1
|
Vysakh VG, Sukumaran S, Gopalakrishnan A. Evaluating the effects of zinc oxide nanoparticles on a sentinel aquatic invertebrate species: Transcriptomic analysis and potential implications for ecosystem health. MARINE POLLUTION BULLETIN 2025; 212:117570. [PMID: 39824139 DOI: 10.1016/j.marpolbul.2025.117570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress. Disrupted pathways such as FOXO, Wnt, and TGFβ reveal complex toxicity mechanisms. These findings provide crucial insights into the environmental impact of nanoparticle pollution, emphasizing the need for stringent regulations. Furthermore, the shared molecular pathways suggest that similar mechanisms may occur in humans, highlighting potential health risks associated with nanoparticle exposure.
Collapse
Affiliation(s)
- V G Vysakh
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India; Mangalore University. Mangalagangotri, Mangalore 574199, Karnataka, India
| | - Sandhya Sukumaran
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India.
| | - A Gopalakrishnan
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India
| |
Collapse
|
2
|
Svenskaya YI, Verkhovskii RA, Zaytsev SM, Lademann J, Genina EA. Current issues in optical monitoring of drug delivery via hair follicles. Adv Drug Deliv Rev 2025; 217:115477. [PMID: 39615632 DOI: 10.1016/j.addr.2024.115477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Drug delivery via hair follicles has attracted much research attention due to its potential to serve for both local and systemic therapeutic purposes. Recent studies on topical application of various particulate formulations have demonstrated a great role of this delivery route for targeting numerous cell populations located in skin and transporting the encapsulated drug molecules to the bloodstream. Despite a great promise of follicle-targeting carriers, their clinical implementation is very rare, mostly because of their poorer characterization compared to conventional topical dosage forms, such as ointments and creams, which have a history spanning over a century. Gathering as complete information as possible on the intrafollicular penetration depth, storage, degradation/metabolization profiles of such carriers and the release kinetics of drugs they contain, as well as their impact on skin health would significantly contribute to understanding the pros and cons of each carrier type and facilitate the selection of the most suitable candidates for clinical trials. Optical imaging and spectroscopic techniques are extensively applied to study dermal penetration of drugs. Current paper provides the state-of-the-art overview of techniques, which are used in optical monitoring of follicular drug delivery, with a special focus on non-invasive in vivo methods. It discusses key features, advantages and limitations of their use, as well as provide expert perspectives on future directions in this field.
Collapse
Affiliation(s)
| | | | - Sergey M Zaytsev
- CRAN UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Juergen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elina A Genina
- Department of Optics and Biophotonics, Saratov State University, Saratov, Russia
| |
Collapse
|
3
|
Skin decontamination procedures against potential hazards substances exposure. Chem Biol Interact 2021; 344:109481. [PMID: 34051209 DOI: 10.1016/j.cbi.2021.109481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Decontamination of unprotected skin areas is crucial to prevent excessive penetration of chemical contaminants after criminal or accidental release. A review of literature studies was performed to identify the available decontamination methods adopted to treat skin contamination after chemical, radiological and metal exposures. In this bibliographic review, an overview of the old and recent works on decontamination procedures followed in case of potential hazards substances contaminations with a comparison between these systems are provided. Almost all data from our 95 selected studies conducted in vitro and in vivo revealed that a rapid skin decontamination process is the most efficient way to reduce the risk of intoxication. The commonly-used or recommended conventional procedures are simple rinsing with water only or soapy water. However, this approach has some limitations because an easy removal by flushing may not be sufficient to decontaminate all chemical deposited on the skin, and skin absorption can be enhanced by the wash-in effect. Other liquid solutions or systems as adsorbent powders, mobilizing agents, chelation therapy are also applied as decontaminants, but till nowadays does not exist a decontamination method which can be adopted in all situations. Therefore, there is an urgent need to develop more efficient and successful decontaminating formulations.
Collapse
|
4
|
Yamada M, Lin LL, Hang LYT, Belt PJ, Peter Soyer H, Raphael AP, Prow TW. A minimally invasive clinical model to test sunscreen toxicity based on oxidative stress levels using microbiopsy and confocal microscopy - a proof of concept study. Int J Cosmet Sci 2020; 42:462-470. [PMID: 32619281 DOI: 10.1111/ics.12646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This proof-of-concept study demonstrated that using minimally invasive skin microsampling could enable significantly higher throughput of cosmetic testing in volunteers than conventional biopsy. Nanoparticle sunscreen was used as a model to test toxicity based on oxidative stress using microbiopsy and confocal imaging. METHODS Six volunteers were recruited for this study (3 males and 3 females). Zinc oxide nanoparticle containing topical formulation was prepared at 10% w/v. Each volunteer had 3 areas of 4 cm2 each mapped on each inner forearm for a total of 6 treatment areas (intact/ tape-stripped and with/without treatment). The topical zinc-nanoparticle formulation was applied directly to volunteer skin (2mg/cm2 ) for 2 hrs. Microbiopsied tissue from each treatment group was stained for reactive oxygen and nitrogen species in addition to mitochondrial superoxide. The stained samples were then imaged using confocal microscopy prior to image analysis. RESULTS Skin exposed to zinc oxide nanoparticles did not show any significant increases in oxidative stress. Zinc oxide nanoparticle tape-stripped skin resulted in signal significantly lower (P < 0.001) oxidative stress levels than t-butylated hydroxytoluene treated tape-stripped skin for oxidative stress markers. Topically applied zinc oxide nanoparticles had no detectable effect on the oxidative status in volunteer skin. No adverse reactions or effects were observed after all treatments including microbiopsy. CONCLUSION The data support the hypothesis that microbiopsy is a viable approach to study cosmeceutical- skin interactions in volunteers with capacity for molecular assays and high throughput with very low risk to the volunteer.
Collapse
Affiliation(s)
- Miko Yamada
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Lynlee L Lin
- The University of Queensland Diamantina Institute, School of Medicine, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Lydia Y T Hang
- The University of Queensland Diamantina Institute, School of Medicine, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Paul J Belt
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, School of Medicine, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Anthony P Raphael
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Tarl W Prow
- Future Industries Institute, University of South Australia, Adelaide, Australia
| |
Collapse
|
5
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Zinc oxide nanoparticles are well-known metal oxide nanoparticles having numbers of applications in the field of cosmetology, medicine, and chemistry. However, the number of reports has indicated its toxicity also such as hepatotoxicity, pulmonary toxicity, neurotoxicity, and immunotoxicity. Thus, in this article, we have analyzed the potential risks and benefits of zinc oxide nanoparticles. The data related to risks and benefits of zinc oxide nanoparticles have been extracted from PubMed (from January 2007 to August 2019). A total of 3,892 studies have been published during this period regarding zinc oxide nanoparticles. On the basis of inclusion and exclusion criteria, 277 studies have been included for the analysis of risks and benefits. Emerging reports have indicated both risks and benefits of zinc oxide nanoparticles in concentration- and time-dependent manner under in vitro and in vivo conditions through different mechanism of action. In conclusion, zinc oxide nanoparticles could play a beneficial role in the treatment of various diseases but safety of these particles at particular effective concentration should be thoroughly evaluated.
Collapse
Affiliation(s)
- S Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Mohammed YH, Barkauskas DS, Holmes A, Grice J, Roberts MS. Noninvasive in vivo human multiphoton microscopy: a key method in proving nanoparticulate zinc oxide sunscreen safety. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-19. [PMID: 31939224 PMCID: PMC7008509 DOI: 10.1117/1.jbo.25.1.014509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 05/27/2023]
Abstract
We describe the contribution of our in vivo multiphoton microscopy (MPM) studies over the last ten years with DermaInspect;® (JenLab, Germany), a CE-certified medical tomograph based on detection of fluorescent biomolecules, to the assessment of possible penetration of nanoparticulate zinc oxide in sunscreen through human skin. At the time we started our work, there was a strong movement for the precautionary principle to be applied to the use of nanoparticles in consumer products due to a lack of knowledge. The combined application of different MPM modalities, including spectral imaging, fluorescence lifetime imaging, second harmonic fluorescence generation, and phosphorescence microscopy, has provided overwhelming evidence that nanoparticle zinc oxide particles do not penetrate human skin when applied to various skin types with a range of methods of topical sunscreen application. MPM has also been used to study the viable epidermal morphology and redox state in supporting the safe use of topical zinc oxide nanoparticles. The impact of this work is emphasized by the recent proposed rule by the United States FDA on Sunscreen Drug Products for Over-the-Counter Human Use, which listed only zinc oxide and titanium dioxide of the currently marketed products to be generally recognized as safe and effective.
Collapse
Affiliation(s)
- Yousuf H. Mohammed
- University of Queensland, University of Queensland Diamantina Institute, Therapeutics Research Group, Woolloongabba, Queensland, Australia
| | - Deborah S. Barkauskas
- University of Queensland, University of Queensland Diamantina Institute, Therapeutics Research Group, Woolloongabba, Queensland, Australia
| | - Amy Holmes
- University of South Australia, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, School of Pharmacy and Medical Sciences, Adelaide, Australia
| | - Jeffrey Grice
- University of Queensland, University of Queensland Diamantina Institute, Therapeutics Research Group, Woolloongabba, Queensland, Australia
| | - Michael S. Roberts
- University of Queensland, University of Queensland Diamantina Institute, Therapeutics Research Group, Woolloongabba, Queensland, Australia
- University of South Australia, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, School of Pharmacy and Medical Sciences, Adelaide, Australia
| |
Collapse
|
7
|
Lewinski NA, Berthet A, Maurizi L, Eisenbeis A, Hopf NB. Effectiveness of hand washing on the removal of iron oxide nanoparticles from human skin ex vivo. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2017; 14:D115-D119. [PMID: 28426382 DOI: 10.1080/15459624.2017.1296238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the effectiveness of washing with soap and water in removing nanoparticles from exposed skin was investigated. Dry, nanoscale hematite (α-Fe2O3) or maghemite (γ-Fe2O3) powder, with primary particle diameters between 20-30 nm, were applied to two samples each of fresh and frozen ex vivo human skin in two independent experiments. The permeation of nanoparticles through skin, and the removal of nanoparticles after washing with soap and water were investigated. Bare iron oxide nanoparticles remained primarily on the surface of the skin, without penetrating beyond the stratum corneum. Skin exposed to iron oxide nanoparticles for 1 and 20 hr resulted in removal of 85% and 90%, respectively, of the original dose after washing. In the event of dermal exposure to chemicals, removal is essential to avoid potential local irritation or permeation across skin. Although manufactured at an industrial scale and used extensively in laboratory experiments, limited data are available on the removal of engineered nanoparticles after skin contact. Our finding raises questions about the potential consequences of nanoparticles remaining on the skin and whether alternative washing methods should be proposed. Further studies on skin decontamination beyond use of soap and water are needed to improve the understanding of the potential health consequences of dermal exposure to nanoparticles.
Collapse
Affiliation(s)
- Nastassja A Lewinski
- a Institute for Work and Health , University of Lausanne , Lausanne , Switzerland
- b Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia
| | - Aurélie Berthet
- a Institute for Work and Health , University of Lausanne , Lausanne , Switzerland
| | - Lionel Maurizi
- c Powder Technology Laboratory , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Antoine Eisenbeis
- a Institute for Work and Health , University of Lausanne , Lausanne , Switzerland
| | - Nancy B Hopf
- a Institute for Work and Health , University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
8
|
Ruszkiewicz JA, Pinkas A, Ferrer B, Peres TV, Tsatsakis A, Aschner M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol Rep 2017; 4:245-259. [PMID: 28959646 PMCID: PMC5615097 DOI: 10.1016/j.toxrep.2017.05.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023] Open
Abstract
Sunscreen application is the main strategy used to prevent the maladies inflicted by ultraviolet (UV) radiation. Despite the continuously increasing frequency of sunscreen use worldwide, the prevalence of certain sun exposure-related pathologies, mainly malignant melanoma, is also on the rise. In the past century, a variety of protective agents against UV exposure have been developed. Physical filters scatter and reflect UV rays and chemical filters absorb those rays. Alongside the evidence for increasing levels of these agents in the environment, which leads to indirect exposure of wildlife and humans, recent studies suggest a toxicological nature for some of these agents. Reviews on the role of these agents in developmental and endocrine impairments (both pathology and related mechanisms) are based on both animal and human studies, yet information regarding the potential neurotoxicity of these agents is scant. In this review, data regarding the neurotoxicity of several organic filters: octyl methoxycinnamate, benzophenone-3 and −4, 4-methylbenzylidene camphor, 3-benzylidene camphor and octocrylene, and two allowed inorganic filters: zinc oxide and titanium dioxide, is presented and discussed. Taken together, this review advocates revisiting the current safety and regulation of specific sunscreens and investing in alternative UV protection technologies.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Adi Pinkas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Crete, Greece
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
9
|
Leite-Silva V, Sanchez W, Studier H, Liu D, Mohammed Y, Holmes A, Ryan E, Haridass I, Chandrasekaran N, Becker W, Grice J, Benson H, Roberts M. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment. Eur J Pharm Biopharm 2016; 104:140-7. [DOI: 10.1016/j.ejpb.2016.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 12/26/2022]
|
10
|
Leite-Silva VR, Liu DC, Sanchez WY, Studier H, Mohammed YH, Holmes A, Becker W, Grice JE, Benson HAE, Roberts MS. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles. Nanomedicine (Lond) 2016; 11:1193-205. [DOI: 10.2217/nnm-2016-0010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We assessed the effects of flexing and massage on human skin penetration and toxicity of topically applied coated and uncoated zinc oxide nanoparticles (˜75 nm) in vivo. Materials & methods: Noninvasive multiphoton tomography with fluorescence lifetime imaging was used to evaluate the penetration of nanoparticles through the skin barrier and cellular apoptosis in the viable epidermis. Results: All nanoparticles applied to skin with flexing and massage were retained in the stratum corneum or skin furrows. No significant penetration into the viable epidermis was seen and no cellular toxicity was detected. Conclusion: Exposure of normal in vivo human skin to these nanoparticles under common in-use conditions of flexing or massage is not associated with significant adverse events.
Collapse
Affiliation(s)
- Vânia R Leite-Silva
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema SP, Brazil
| | - David C Liu
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Washington Y Sanchez
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Hauke Studier
- School of Pharmacy & Medical Sciences, University of South Australia City East Campus, Adelaide, SA, Australia
| | - Yousuf H Mohammed
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Amy Holmes
- School of Pharmacy & Medical Sciences, University of South Australia City East Campus, Adelaide, SA, Australia
| | - Wolfgang Becker
- Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin, Germany
| | - Jeffrey E Grice
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Heather AE Benson
- School of Pharmacy, CHIRI, Curtin University of Technology, Perth, WA, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- School of Pharmacy & Medical Sciences, University of South Australia City East Campus, Adelaide, SA, Australia
| |
Collapse
|
11
|
Liu J, Feng X, Wei L, Chen L, Song B, Shao L. The toxicology of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol 2016; 46:348-84. [DOI: 10.3109/10408444.2015.1137864] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
|
13
|
A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol 2015; 89:1909-30. [DOI: 10.1007/s00204-015-1564-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022]
|
14
|
Formulation design for topical drug and nanoparticle treatment of skin disease. Ther Deliv 2015; 6:197-216. [PMID: 25690087 DOI: 10.4155/tde.14.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The skin has evolved to resist the penetration of foreign substances and particles. Topical therapeutic and cosmeceutical delivery is a growing field founded on selectively overcoming this barrier. Both the biology of the skin and the nature of the formulation/active ingredient must be aligned for efficient transcutaneous delivery. This review discusses the biological changes in the skin barrier that occur with common dermatological conditions. This context is the foundation for the discussion of formulation strategies to improve penetration profiles of common active ingredients in dermatology. Finally, we compare and contrast those approaches to recent advances described in the research literature with an eye toward the future of topical formulation design.
Collapse
|
15
|
Zhang J, Raphael AP, Yang Y, Popat A, Prow TW, Yu C. Nanodispersed UV blockers in skin-friendly silica vesicles with superior UV-attenuating efficiency. J Mater Chem B 2014; 2:7673-7678. [DOI: 10.1039/c4tb01332h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Jatana S, DeLouise LA. Understanding engineered nanomaterial skin interactions and the modulatory effects of ultraviolet radiation skin exposure. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:61-79. [PMID: 24123977 DOI: 10.1002/wnan.1244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/11/2013] [Accepted: 07/29/2013] [Indexed: 12/24/2022]
Abstract
The study of engineered nanomaterials for the development of technological applications, nanomedicine, and nano-enabled consumer products is an ever-expanding discipline as is the concern over the impact of nanotechnology on human environmental health and safety. In this review, we discuss the current state of understanding of nanomaterial skin interactions with a specific emphasis on the effects of ultraviolet radiation (UVR) skin exposure. Skin is the largest organ of the body and is typically exposed to UVR on a daily basis. This necessitates the need to understand how UVR skin exposure can influence nanomaterial skin penetration, alter nanomaterial systemic trafficking, toxicity, and skin immune function. We explore the unique dichotomy that UVR has on inducing both deleterious and therapeutic effects in skin. The subject matter covered in this review is broadly informative and will raise awareness of potential increased risks from nanomaterial skin exposure associated with specific occupational and life style choices. The UVR-induced immunosuppressive response in skin raises intriguing questions that motivate future research directions in the nanotoxicology and nanomedicine fields.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|