1
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Dutta S, Muraganadan T, Vasudevan M. Evaluation of lamin A/C mechanotransduction under different surface topography in LMNA related muscular dystrophy. Cytoskeleton (Hoboken) 2024. [PMID: 39091017 DOI: 10.1002/cm.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
- Theomics International Private Limited, Bengaluru, India
| | - T Muraganadan
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
3
|
Majidi M, Pakzad S, Salimi M, Azadbakht A, Hajighasemlou S, Amoupour M, Nokhbedehghan Z, Bonakdar S, Sineh Sepehr K, Pal Singh Chauhan N, Gholipourmalekabadi M. Macrophage cell morphology-imprinted substrates can modulate mesenchymal stem cell behaviors and macrophage M1/M2 polarization for wound healing applications. Biotechnol Bioeng 2023; 120:3638-3654. [PMID: 37668186 DOI: 10.1002/bit.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Mesenchymal stem cells and macrophages (MQ) are two very important cells involved in the normal wound healing process. It is well understood that topological cues and mechanical factors can lead to different responses in stem cells and MQ by influencing their shape, cytoskeleton proliferation, migration, and differentiation, which play an essential role in the success or failure of biomaterial implantation and more importantly wound healing. On the other hand, the polarization of MQ from proinflammatory (M1) to prohealing (M2) phenotypes has a critical role in the acceleration of wound healing. In this study, the morphology of different MQ subtypes (M0, M1, and M2) was imprinted on a silicon surface (polydimethylsiloxane [PDMS]) to prepare a nano-topography cell-imprinted substrate with the ability to induce anti-inflammatory effects on the mouse adipose-derived stem cells (ADSCs) and RAW264.7 monocyte cell line (MO). The gene expression profiles and flow cytometry of MQ revealed that the cell shape microstructure promoted the MQ phenotypes according to the specific shape of each pattern. The ELISA results were in agreement with the gene expression profiles. The ADSCs on the patterned PDMS exhibited remarkably different shapes from no-patterned PDMS. The MOs grown on M2 morphological patterns showed a significant increase in expression and section of anti-inflammatory cytokine compared with M0 and M1 patterns. The ADSCs homing in niches heavily deformed the cytoskeletal, which is probably why the gene expression and phenotype unexpectedly changed. In conclusion, wound dressings with M2 cell morphology-induced surfaces are suggested as excellent anti-inflammatory and antiscarring dressings.
Collapse
Affiliation(s)
- Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedreza Pakzad
- Food and Drug Laboratory Research Center, Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolnaser Azadbakht
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saieh Hajighasemlou
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nokhbedehghan
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sattarov R, Toresson H, Orbjörn C, Mattsson-Carlgren N. Direct Conversion of Fibroblast into Neurons for Alzheimer's Disease Research: A Systematic Review. J Alzheimers Dis 2023; 95:805-828. [PMID: 37661882 PMCID: PMC10578293 DOI: 10.3233/jad-230119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without a cure. Innovative disease models, such as induced neurons (iNs), could enhance our understanding of AD mechanisms and accelerate treatment development. However, a review of AD human iN studies is necessary to consolidate knowledge. OBJECTIVE The objective of this review is to examine the current body of literature on AD human iN cells and provide an overview of the findings to date. METHODS We searched two databases for relevant studies published between 2010 and 2023, identifying nine studies meeting our criteria. RESULTS Reviewed studies indicate the feasibility of generating iNs directly from AD patients' fibroblasts using chemical induction or viral vectors. These cells express mature neuronal markers, including MAP-2, NeuN, synapsin, and tau. However, most studies were limited in sample size and primarily focused on autosomal dominant familial AD (FAD) rather than the more common sporadic forms of AD. Several studies indicated that iNs derived from FAD fibroblasts exhibited abnormal amyloid-β metabolism, a characteristic feature of AD in humans. Additionally, elevated levels of hyperphosphorylated tau, another hallmark of AD, were reported in some studies. CONCLUSION Although only a limited number of small-scale studies are currently available, AD patient-derived iNs hold promise as a valuable model for investigating AD pathogenesis. Future research should aim to conduct larger studies, particularly focusing on sporadic AD cases, to enhance the clinical relevance of the findings for the broader AD patient population. Moreover, these cells can be utilized in screening potential novel treatments for AD.
Collapse
Affiliation(s)
- Roman Sattarov
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Håkan Toresson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Camilla Orbjörn
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Handrea-Dragan IM, Botiz I, Tatar AS, Boca S. Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids Surf B Biointerfaces 2022; 218:112730. [DOI: 10.1016/j.colsurfb.2022.112730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
6
|
Bubble-Patterned Films by Inkjet Printing and Gas Foaming. COATINGS 2022. [DOI: 10.3390/coatings12060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The micropatterning of thin films represents a challenging task, even for additive manufacturing techniques. In this work, we introduce the use of inkjet-printing technology coupled with a gas-foaming process, to produce patterned porosities on polymeric thin films, to develop a bubble-writing method. Inkjet printing of an aqueous solution of poly (vinyl alcohol) (PVA), a well-known gas-barrier polymer, allows the selective coating of a thin poly (lactic acid) (PLA) film, which is, successively, exposed to a gas-foaming process. The foaming of the thin PLA film is effective, only when PVA is printed on top, since the PVA barrier hinders the premature loss of the gas, thus allowing the formation of cavities (bubbles) in the covered areas; then, removing the PVA coating by water washing forms a bubble pattern. As a proof of concept, the surface-morphology features of the patterned porous PLA films have been proven effective at driving endothelial cell growth. A new technological platform is, hence, introduced in the field of tissue engineering and, in general, in fields involving thin films, where a patterned porous structure may add value.
Collapse
|
7
|
Ermis M, Antmen E, Kuren O, Demirci U, Hasirci V. A Cell Culture Chip with Transparent, Micropillar-Decorated Bottom for Live Cell Imaging and Screening of Breast Cancer Cells. MICROMACHINES 2022; 13:mi13010093. [PMID: 35056257 PMCID: PMC8779566 DOI: 10.3390/mi13010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
In the recent years, microfabrication technologies have been widely used in cell biology, tissue engineering, and regenerative medicine studies. Today, the implementation of microfabricated devices in cancer research is frequent and advantageous because it enables the study of cancer cells in controlled microenvironments provided by the microchips. Breast cancer is one of the most common cancers in women, and the way breast cancer cells interact with their physical microenvironment is still under investigation. In this study, we developed a transparent cell culture chip (Ch-Pattern) with a micropillar-decorated bottom that makes live imaging and monitoring of the metabolic, proliferative, apoptotic, and morphological behavior of breast cancer cells possible. The reason for the use of micropatterned surfaces is because cancer cells deform and lose their shape and acto-myosin integrity on micropatterned substrates, and this allows the quantification of the changes in morphology and through that identification of the cancerous cells. In the last decade, cancer cells were studied on micropatterned substrates of varying sizes and with a variety of biomaterials. These studies were conducted using conventional cell culture plates carrying patterned films. In the present study, cell culture protocols were conducted in the clear-bottom micropatterned chip. This approach adds significantly to the current knowledge and applications by enabling low-volume and high-throughput processing of the cell behavior, especially the cell–micropattern interactions. In this study, two different breast cancer cell lines, MDA-MB-231 and MCF-7, were used. MDA-MB-231 cells are invasive and metastatic, while MCF-7 cells are not metastatic. The nuclei of these two cell types deformed to distinctly different levels on the micropatterns, had different metabolic and proliferation rates, and their cell cycles were affected. The Ch-Pattern chips developed in this study proved to have significant advantages when used in the biological analysis of live cells and highly beneficial in the study of screening breast cancer cell–substrate interactions in vitro.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Ezgi Antmen
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Ozgur Kuren
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Utkan Demirci
- Canary Center for Cancer Early Detection, Department of Radiology, Electrical Engineering Department, Stanford University, Palo Alto, CA 94305, USA;
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- ACU Biomaterials Center, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- Correspondence:
| |
Collapse
|
8
|
Li K, Yu G, Xu Y, Chu H, Zhong Y, Zhan H. Phenotypic and Functional Transformation in Smooth Muscle Cells Derived from a Superficial Thrombophlebitis-affected Vein Wall. Ann Vasc Surg 2021; 79:335-347. [PMID: 34648856 DOI: 10.1016/j.avsg.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Superficial thrombophlebitis (ST) is a frequent pathology, but its exact incidence remains to be determined. This study tested the hypothesis whether relationships exist among smooth muscle cells (SMCs) derived from ST, varicose great saphenous veins (VGSVs), and normal great saphenous veins (GSVs). METHODS Forty-one samples of ST, VGSVs, and GSVs were collected. SMCs were isolated and cultured. Proliferation, migration, adhesion, and senescence in SMCs from the three vein walls were compared by various methods. Bax, Bcl-2, caspase-3, matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2 messenger RNA (mRNA) and protein expressions were detected by fluorescence quantitative PCR and Western blot. RESULTS An obvious decrease in cytoskeletal filaments was observed in thrombophlebitic vascular smooth muscle cells (TVSMCs). The quantity of proliferation, migration, adhesion, and senescence in TVSMCs was significantly higher than in varicose vascular smooth muscle cells and normal vascular smooth muscle cells (NVSMCs) (all P < 0.05). Bax and caspase-3 mRNA and protein expression were decreased, while Bcl-2 mRNA and protein expression were increased in the TVSMCs compared with the varicose vascular smooth muscle cells and the NVSMCs (all P < 0.05). MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA and protein expression were significantly increased in the TVSMCs compared with the VVGSVs and the NVSMCs (all P < 0.05). CONCLUSION SMCs derived from ST are more dedifferentiated and demonstrate increased cell proliferation, migration, adhesion, and senescence, as well as obviously decreased cytoskeletal filaments. These results suggest that the phenotypic and functional differences could be related to the presence of atrophic and hypertrophic vein segments during the disease course among SMCs derived from ST, VGSVs, and GSVs.
Collapse
Affiliation(s)
- Kun Li
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guoting Yu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongbo Xu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Haibo Chu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China..
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China..
| | | |
Collapse
|
9
|
Norzain NA, Yu ZW, Lin WC, Su HH. Micropatterned Fibrous Scaffold Produced by Using Template-Assisted Electrospinning Technique for Wound Healing Application. Polymers (Basel) 2021; 13:2821. [PMID: 34451358 PMCID: PMC8400521 DOI: 10.3390/polym13162821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023] Open
Abstract
This paper describes the fabrication of a structural scaffold consisting of both randomly oriented nanofibers and triangular prism patterns on the scaffold surface using a combination technique of electrospinning and collector templates. The polycaprolactone (PCL) nanofibers were electrospun over a triangular prism pattern mold, which acted as a template. The deposited scaffold was removed from the template to produce a standalone structural scaffold of three-dimensional micropatterned nanofibers. The fabricated structural scaffold was compared with flat randomly oriented nanofibers based on in vitro and in vivo studies. The in vitro study indicated that the structural scaffold demonstrated higher fibroblast cell proliferation, cell elongation with a 13.48 ± 2.73 aspect ratio and 70% fibroblast cell orientation compared with flat random nanofibers. Among the treatment groups, the structural scaffold escalated the wound closure to 92.17% on day 14. Histological staining of the healed wound area demonstrated that the structural scaffold exhibited advanced epithelization of the epidermal layer accompanied by mild inflammation. The proliferated fibroblast cells and collagen fibers in the structural scaffold appeared denser and arranged more horizontally. These results determined the potential of micropatterned scaffolds for stimulating cell behavior and their application for wound healing.
Collapse
Affiliation(s)
- Norul Ashikin Norzain
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (N.A.N.); (Z.-W.Y.)
| | - Zhi-Wei Yu
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (N.A.N.); (Z.-W.Y.)
| | - Wei-Chih Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (N.A.N.); (Z.-W.Y.)
| | - Hsing-Hao Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| |
Collapse
|
10
|
Satpathy A, Mohanty R, Rautray TR. Bio-mimicked guided tissue regeneration/guided bone regeneration membranes with hierarchical structured surfaces replicated from teak leaf exhibits enhanced bioactivity. J Biomed Mater Res B Appl Biomater 2021; 110:144-156. [PMID: 34227233 DOI: 10.1002/jbm.b.34898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Bio-mimicked GTR/GBR membranes with hierarchical structured surfaces were developed by direct and indirect replication of teak leaf surface. The membranes were fabricated using solvent casting method with customized templates. The surfaces obtained were those with micro-trichomes (MTS) and micro-depression (MDS) that resembled a whorling pattern. Structural details of the fabricated membrane surfaces were studied under stereomicroscope and scanning electron microscopy. Surface roughness, water wetting angle, water uptake, and degradation properties of the membranes were examined. The effects of the micro-patterned hierarchical structure on in vitro bioactivities of human osteoblast-like cells (MG63) and human gingival fibroblast cells HGF1-RT1 were studied. In vivo study carried out on rat skulls to assess the response of surrounding tissues for 4 weeks showed that the bio-mimicked MTS and MDS membrane surfaces enhanced the cell proliferation. The proliferation significantly increased with increasing surface roughness and decreasing contact angle. There was also an evidence of rapid new bone maturation with membranes with MTS. It is thus suggested that the teak leaf mimicked whorling patterned hierarchical structured surface is an important design for enhancing bioactivity.
Collapse
Affiliation(s)
- Anurag Satpathy
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.,Biomaterials and Tissue Regeneration Lab, CETMS, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rinkee Mohanty
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tapash R Rautray
- Biomaterials and Tissue Regeneration Lab, CETMS, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Kanioura A, Constantoudis V, Petrou P, Kletsas D, Tserepi A, Gogolides E, Chatzichristidi M, Kakabakos S. Oxygen plasma micro-nanostructured PMMA plates and microfluidics for increased adhesion and proliferation of cancer versus normal cells: The role of surface roughness and disorder. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Tang SW, Yuen W, Kaur I, Pang SW, Voelcker NH, Lam YW. Capturing instructive cues of tissue microenvironment by silica bioreplication. Acta Biomater 2020; 102:114-126. [PMID: 31756551 DOI: 10.1016/j.actbio.2019.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023]
Abstract
Cells in tissues are enveloped by an instructive niche made of the extracellular matrix. These instructive niches contain three general types of information: topographical, biochemical and mechanical. While the combined effects of these three factors are widely studied, the functions of each individual one has not been systematically characterised, because it is impossible to alter a single factor in a tissue microenvironment without simultaneously affecting the other two. Silica BioReplication (SBR) is a process that converts biological samples into silica, faithfully preserving the original topography at the nano-scale. We explored the use of this technique to generate inorganic replicas of intact mammalian tissues, including tendon, cartilage, skeletal muscle and spinal cord. Scanning electron and atomic force microscopy showed that the resulting replicas accurately preserved the three-dimensional ultrastructure of each tissue, while all biochemical components were eradicated by calcination. Such properties allowed the uncoupling the topographical information of a tissue microenvironment from its biochemical and mechanical components. Here, we showed that human mesenchymal stem cells (MSC) cultured on the replicas of different tissues displayed vastly different morphology and focal adhesions, suggesting that the topography of the tissue microenvironment captured by SBR could profoundly affect MSC biology. MSC cultured on tendon replica elongated and expressed tenocytes marker, while MSC on the spinal cord replica developed into spheroids that resembled neurospheres, in morphology and in the expression of neurosphere markers, and could be further differentiated into neuron-like cells. This study reveals the significance of topographical cues in a cell niche, as tissue-specific topography was sufficient in initiating and directing differentiation of MSC, despite the absence of any biochemical signals. SBR is a convenient and versatile method for capturing this topographical information, facilitating the functional characterisation of cell niches. STATEMENT OF SIGNIFICANCE: Various studies have shown that three major factors, topographical, biochemical and mechanical, in a tissue microenvironment (TME) are essential for cellular homeostasis and functions. Current experimental models are too simplistic to represent the complexity of the TME, hindering the detailed understanding of its functions. In particular, the importance each factor in a tissue microenvironment have not been individually characterised, because it is challenging to alter one of these factors without simultaneously affecting the other two. Silica bioreplication (SBR) is a process that converts biological samples into silica replicas with high structural fidelity. SBR is a convenient and versatile method for capturing this topographical information on to a biologically inert material, allowing the functional characterisation of the architecture of a TME.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry, City University of Hong Kong, Hong Kong
| | - Wai Yuen
- HealthBaby Biotech (Hong Kong) Co., Ltd, Hong Kong
| | - Ishdeep Kaur
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Nicolas H Voelcker
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong.
| |
Collapse
|
13
|
Kanioura A, Petrou P, Kletsas D, Tserepi A, Chatzichristidi M, Gogolides E, Kakabakos S. Three-dimensional (3D) hierarchical oxygen plasma micro/nanostructured polymeric substrates for selective enrichment of cancer cells from mixtures with normal ones. Colloids Surf B Biointerfaces 2019; 187:110675. [PMID: 31810566 DOI: 10.1016/j.colsurfb.2019.110675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
The enrichment of cancer cell population when in mixtures with normal ones is of great importance for cancer diagnosis. In this work, poly(methyl methacrylate) films have been processed applying different oxygen plasma conditions to fabricate surfaces with structure height ranging from 22 to more than 2000 nm. The surfaces were then evaluated with respect to adhesion and proliferation of both normal and cancer human cells. In particular, normal skin and lung fibroblasts, and four different cancer cell lines, A431 (skin cancer), HT1080 (fibrosarcoma), A549 (lung cancer), and PC3 (prostate cancer), have been employed. It was found that adhesion and proliferation of cancer cells was favored when cultured onto the hierarchical micro/nanostructured surfaces as compared to untreated ones with the maximum values obtained for substrates treated at -100 V for 3 min. On the other hand, although the adhesion of normal fibroblasts was not influenced by the micro/nanostructured surfaces, their morphology and proliferation was significantly impaired, especially after 3-day culture on these surfaces. The reduced proliferation rate of adherent fibroblasts was linked to reduced focal points formation, as it was verified through vinculin staining, and not to apoptosis. The micro/nanostructured surfaces prepared with plasma treatment at -100 V for 3 min (hierarchical topography with mean height of ∼800 nm) were selected as substrates for normal and cancer cell co-culture experiments. It was found that 25-80 times enrichment of cancer over the normal cells was achieved on the nanostructured surfaces after 3-day culture, while it was 5-8 times lower on the untreated ones. It should be noticed that this is the first time such high enrichment ratios are achieved without implementing surfaces modified with binding molecules specific for cancer cells. Thus, the nanostructured surfaces hold a strong promise as culture substrates for separation and enrichment of cancer cells from mixtures with normal ones that should find application in cancer diagnostics.
Collapse
Affiliation(s)
- Anastasia Kanioura
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Panagiota Petrou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Dimitris Kletsas
- Institute of Biosciences and Applications, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Angeliki Tserepi
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | | | - Evangelos Gogolides
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Sotirios Kakabakos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece.
| |
Collapse
|
14
|
Square prism micropillars on poly(methyl methacrylate) surfaces modulate the morphology and differentiation of human dental pulp mesenchymal stem cells. Colloids Surf B Biointerfaces 2019; 178:44-55. [PMID: 30826553 DOI: 10.1016/j.colsurfb.2019.02.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
Use of soluble factors is the most common strategy to induce osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro, but it may raise potential side effects in vivo. The topographies of the substrate surfaces affect cell behavior, and this could be a promising approach to guide stem cell differentiation. Micropillars have been reported to modulate cellular and subcellular shape, and it is particularly interesting to investigate whether these changes in cell morphology can modulate gene expression and lineage commitment without chemical induction. In this study, poly(methyl methacrylate) (PMMA) films were decorated with square prism micropillars with different lateral dimensions (4, 8 and 16 μm), and the surface wettability of the substrates was altered by oxygen plasma treatment. Both, pattern dimensions and hydrophilicity, were found to affect the attachment, proliferation, and most importantly, gene expression of human dental pulp mesenchymal stem cells (DPSCs). Decreasing the pillar width and interpillar spacing of the square prism pillars enhanced cell attachment, cell elongation, and deformation of nuclei, but reduced early proliferation rate. Surfaces with 4 or 8 μm wide pillars/gaps upregulated the expression of early bone-marker genes and mineralization over 28 days of culture. Exposure to oxygen plasma increased wettability and promoted cell attachment and proliferation but delayed osteogenesis. Our findings showed that surface topography and chemistry are very useful tools in controlling cell behavior on substrates and they can also help create better implants. The most important finding is that hydrophobic micropillars on polymeric substrate surfaces can be exploited in inducing osteogenic differentiation of MSCs without any differentiation supplements.
Collapse
|
15
|
Ermis M, Antmen E, Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact Mater 2018; 3:355-369. [PMID: 29988483 PMCID: PMC6026330 DOI: 10.1016/j.bioactmat.2018.05.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
| | - Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
| |
Collapse
|
16
|
Hasturk O, Ermis M, Demirci U, Hasirci N, Hasirci V. Square prism micropillars improve osteogenicity of poly(methyl methacrylate) surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:53. [PMID: 29721618 DOI: 10.1007/s10856-018-6059-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Osteogenicity and osteointegration of materials is one of the key elements of the success of bone implants. Poly(methyl methacrylate) (PMMA) is the basic compound of bone cement and has been widely investigated for other orthopedic applications, but its poor osteointegration and the subsequent loosening of implant material limits its widespread use as bone implants. Micropillar features on substrate surfaces were recently reported to modulate cell behavior through alteration of cell morphology and promotion of osteogenesis. Utilization of this pillar-decorated topography may be an effective approach to enhance osteogenicity of polymeric surfaces. The aim of this study was to investigate the effect of cell morphology on the micropillar features on attachment, proliferation, and osteogenic activity of human osteoblast-like cells. A series of solvent cast PMMA films decorated with 8 µm high square prism micropillars with pillar width and interpillar distances of 4, 8 and 16 µm were prepared from photolithographic templates, and primary human osteoblast-like cells (hOB) isolated from bone fragments were cultured on them. Micropillars increased cell attachment and early proliferation rate compared to unpatterned surfaces, and triggered distinct morphological changes in cell body and nucleus. Surfaces with pillar dimensions and gap width of 4 µm presented the best osteogenic activity. Expression of osteogenic marker genes was upregulated by micropillars, and cells formed bone nodule-like aggregates rich in bone matrix proteins and calcium phosphate. These results indicated that micropillar features enhance osteogenic activity on PMMA films, possibly by triggering morphological changes that promote the osteogenic phenotype of the cells.
Collapse
Affiliation(s)
- O Hasturk
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - M Ermis
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey
| | - U Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 942304, USA
- Electrical Engineering Department (by courtesy), Stanford University, Stanford, CA, 94305, USA
| | - N Hasirci
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey
- Department of Chemistry, METU, Ankara, 06800, Turkey
| | - V Hasirci
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey.
- Department of Biological Sciences, METU, Ankara, 06800, Turkey.
| |
Collapse
|
17
|
Zhao C, Xia L, Zhai D, Zhang N, Liu J, Fang B, Chang J, Lin K. Designing ordered micropatterned hydroxyapatite bioceramics to promote the growth and osteogenic differentiation of bone marrow stromal cells. J Mater Chem B 2015; 3:968-976. [DOI: 10.1039/c4tb01838a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HAp bioceramics with micropatterned surfaces significantly enhance cell responses.
Collapse
Affiliation(s)
- Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Na Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Bing Fang
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
18
|
Cipriano AF, Sallee A, Guan RG, Zhao ZY, Tayoba M, Sanchez J, Liu H. Investigation of magnesium-zinc-calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomater 2015; 12:298-321. [PMID: 25449917 DOI: 10.1016/j.actbio.2014.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/23/2014] [Accepted: 10/15/2014] [Indexed: 11/17/2022]
Abstract
Crystalline Mg-Zn-Ca ternary alloys have recently attracted significant interest for biomedical implant applications due to their promising biocompatibility, bioactivity, biodegradability and mechanical properties. The objective of this study was to characterize as-cast Mg-xZn-0.5Ca (x=0.5, 1.0, 2.0, 4.0wt.%) alloys, and determine the adhesion and morphology of bone marrow derived mesenchymal stem cells (BMSCs) at the interface with the Mg-xZn-0.5Ca alloys. The direct culture method (i.e. seeding cells directly onto the surface of the sample) was established in this study to probe the highly dynamic cell-substrate interface and thus to elucidate the mechanisms of BMSC responses to dynamic alloy degradation. The results showed that the BMSC adhesion density on these alloys was similar to the cell-only positive control and the BMSC morphology appeared more anisotropic on the rapidly degrading alloy surfaces in comparison with the cell-only positive control. Importantly, neither culture media supplemented with up to 27.6mM Mg(2+) ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on BMSC responses. We speculated that degradation-induced dynamic surface topography played an important role in modulating cell morphology at the interface. This study presents a clinically relevant in vitro model for screening bioresorbable alloys, and provides useful design guidelines for determining the degradation rate of implants made of Mg-Zn-Ca alloys.
Collapse
Affiliation(s)
- Aaron F Cipriano
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; Materials Science & Engineering Program, University of California, Riverside, CA 92521, USA
| | - Amy Sallee
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Ren-Guo Guan
- School of Materials and Metallurgy, Northeastern University, Shenyang 110004, People's Republic of China
| | - Zhan-Yong Zhao
- School of Materials and Metallurgy, Northeastern University, Shenyang 110004, People's Republic of China
| | - Myla Tayoba
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Jorge Sanchez
- Department of Chemical Engineering, University of California, Riverside, CA 92521, USA
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; Materials Science & Engineering Program, University of California, Riverside, CA 92521, USA; Stem Cell Center, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
19
|
Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films. Colloids Surf B Biointerfaces 2014; 122:79-84. [PMID: 25016547 DOI: 10.1016/j.colsurfb.2014.06.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/31/2014] [Accepted: 06/23/2014] [Indexed: 11/23/2022]
Abstract
Silk fibroin is an ideal blood vessel substitute due to its advantageous qualities including variable size, good suture retention, low thrombogenicity, non-toxicity, non-immunogenicity, biocompatibility, and controllable biodegradation. In this study, silk fibroin films with a variety of surface patterns (e.g. square wells, round wells plus square pillars, square pillars, and gratings) were prepared for in vitro characterization of human umbilical vein endothelial cell's (HUVEC) response. The affects of biomimetic length-scale topographic cues on the cell orientation/elongation, proliferation, and cell-substrate interactions have been investigated. The density of cells is significantly decreased in response to the grating patterns (70±3nm depth, 600±8nm pitch) and the square pillars (333±42nm gap). Most notably, we observed the contact guidance response of filopodia of cells cultured on the surface of round wells plus square pillars. Overall, our data demonstrates that the patterned silk fibroin films have an impact on the behaviors of human umbilical vein endothelial cells.
Collapse
|
20
|
Li Y, Shao W, Jin S, Xu T, Jiang X, Yang S, Wang Z, Dai J, Wu Q. Microgrooved poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) affects the phenotype of vascular smooth muscle cells through let-7a-involved regulation of actin dynamics. Biotechnol Lett 2014; 36:2125-33. [DOI: 10.1007/s10529-014-1562-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022]
|
21
|
Phenotypic modulation of primary vascular smooth muscle cells by short-term culture on micropatterned substrate. PLoS One 2014; 9:e88089. [PMID: 24505388 PMCID: PMC3913720 DOI: 10.1371/journal.pone.0088089] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/05/2014] [Indexed: 12/12/2022] Open
Abstract
Loss of contractility and acquisition of an epithelial phenotype of vascular smooth muscle cells (VSMCs) are key events in proliferative vascular pathologies such as atherosclerosis and post-angioplastic restenosis. There is no proper cell culture system allowing differentiation of VSMCs so that it is difficult to delineate the molecular mechanism responsible for proliferative vasculopathy. We investigated whether a micropatterned substrate could restore the contractile phenotype of VSMCs in vitro. To induce and maintain the differentiated VSMC phenotype in vitro, we introduced a micropatterned groove substrate to modulate the morphology and function of VSMCs. Later than 7(th) passage of VSMCs showed typical synthetic phenotype characterized by epithelial morphology, increased proliferation rates and corresponding gene expression profiles; while short-term culture of these cells on a micropatterned groove induced a change to an intermediate phenotype characterized by low proliferation rates, increased migration, a spindle-like morphology associated with cytoskeletal rearrangement and expression of muscle-specific genes. Microarray analysis showed preferential expression of contractile and smooth muscle cell-specific genes in cells cultured on the micropatterned groove. Culture on a patterned groove may provide a valuable model for the study the role of VSMCs in normal vascular physiology and a variety of proliferative vascular diseases.
Collapse
|
22
|
Lai Y, Chen J, Zhang T, Gu D, Zhang C, Li Z, Lin S, Fu X, Schultze-Mosgau S. Effect of 3D microgroove surface topography on plasma and cellular fibronectin of human gingival fibroblasts. J Dent 2013; 41:1109-21. [PMID: 23948393 DOI: 10.1016/j.jdent.2013.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Fibronectin (FN), an extracellular matrix (ECM) glycoprotein, is a key factor in the compatibility of dental implant materials. Our objective was to determine the optimal dimensions of microgrooves in the transmucosal part of a dental implant, for optimal absorption of plasma FN and expression of cellular FN by human gingival fibroblasts (HGFs). METHODS Microgroove titanium surfaces were fabricated by photolithography with parallel grooves: 15μm, 30μm, or 60μm in width and 5μm or 10μm in depth. Smooth titanium surfaces were used as controls. Surface hydrophilicity, plasma FN adsorption and cellular FN expression by HGFs were measured for both microgroove and control samples. RESULTS We found that narrower and deeper microgrooves amplified surface hydrophobicity. A 15-μm wide microgroove was the most hydrophobic surface and a 60-μm wide microgroove was the most hydrophilic. The latter had more expression of cellular FN than any other surface, but less absorption of plasma FN than 15-μm wide microgrooves. Variation in microgroove depth did not appear to effect FN absorption or expression unless the groove was narrow (∼15 or 30μm). In those instances, the shallower depths resulted in greater expression of cellular FN. CONCLUSIONS Our microgrooves improved expression of cellular FN, which functionally compensated for plasma FN. A microgroove width of 60μm and depth of 5 or 10μm appears to be optimal for the transmucosal part of the dental implant.
Collapse
Affiliation(s)
- Yingzhen Lai
- School of Stomatology, Fujian Medical University, Fuzhou, Fujian 350000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu X, Fan X, Ju G, Cheng M, An Q, Nie J, Shi F. A facile method to immobilize cucurbituril on surfaces through photocrosslinking with azido groups. Chem Commun (Camb) 2013; 49:8093-5. [DOI: 10.1039/c3cc44580a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|