1
|
Brain endothelial STING1 activation by Plasmodium-sequestered heme promotes cerebral malaria via type I IFN response. Proc Natl Acad Sci U S A 2022; 119:e2206327119. [PMID: 36037380 PMCID: PMC9457060 DOI: 10.1073/pnas.2206327119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CM results from loss of blood–brain endothelial barrier function caused by unrestrained inflammatory response in the natural course of infection by Plasmodium parasites. However, the role of brain endothelium in triggering inflammatory mechanisms is still undetermined. We found that the innate immune sensor STING1 is crucial for production of IFNβ by brain endothelial cells in Plasmodium-infected mice. This in turn stimulates CXCL10-mediated recruitment of leukocytes and subsequent brain inflammation and tissue damage. We identified within extracellular particles released from Plasmodium-infected erythrocytes, a fraction containing products of hemoglobin degradation, namely, heme, which we show can bind STING1. Our results unravel a mechanism of CM immunopathogenesis: Heme contained in extracellular particles triggers the STING/IFNβ/CXCL10 axis in brain endothelial cells. Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnβ1 transcription in the brain of mice infected with Plasmodium berghei ANKA (Pba). This STING1/IFNβ-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood–brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN–driven brain inflammation was demonstrated in brain endothelial–specific IFNβ-reporter and STING1-deficient Pba-infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba-infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNβ in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNβ/CXCL10 axis crucial to CM pathogenesis and lethality.
Collapse
|
2
|
Lenart-Migdalska A, Drabik L, Kaźnica-Wiatr M, Tomkiewicz-Pająk L, Podolec P, Olszowska M. Flow Cytometric Assessment of Endothelial and Platelet Microparticles in Patients With Atrial Fibrillation Treated With Dabigatran. Clin Appl Thromb Hemost 2021; 26:1076029620972467. [PMID: 33237804 PMCID: PMC7787695 DOI: 10.1177/1076029620972467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prothrombotic state in patients with atrial fibrillation (AF) is related to
endothelial injury, the activation of platelets and the coagulation cascade. We
evaluated the levels of platelet- (CD42b) and endothelial-derived (CD144)
microparticles in the plasma patients with non-valvular AF treated with
dabigatran at the time of expected minimum and maximum drug plasma
concentrations. Following that, we determined the peak dabigatran plasma
concentration (cpeak ). CD42b increased after taking dabigatran
(median [IQR] 36.7 [29.4-53.3] vs. 45.6 [32.3-59.5] cells/µL; p = 0.025). The
concentration of dabigatran correlated negatively with the post-dabigatran
change in CD42b (ΔCD42b, r = -0.47, p = 0.021). In the multivariate model, the
independent predictors of ΔCD42b were: cpeak (HR -0.55; with a 95%
confidence interval, CI [-0.93, -0.16]; p = 0.007), coronary artery disease
(CAD) (HR -0.41; 95% CI [-0.79, -0.02]; p = 0.037) and peripheral artery disease
(PAD) (HR 0.42; 95% CI [0.07, 0.74]; p = 0.019). CD144 did not increase after
dabigatran administration. These data suggest that low concentrations of
dabigatran may be associated with platelet activation. PAD and CAD have distinct
effects on CD42b levels during dabigatran treatment.
Collapse
Affiliation(s)
- Aleksandra Lenart-Migdalska
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| | - Leszek Drabik
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland.,Department of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Magdalena Kaźnica-Wiatr
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| | - Lidia Tomkiewicz-Pająk
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| | - Maria Olszowska
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| |
Collapse
|
3
|
Lenart-Migdalska A, Drabik L, Kaźnica-Wiatr M, Tomkiewicz-Pająk L, Podolec P, Olszowska M. Increased Levels of Platelets and Endothelial-Derived Microparticles in Patients With Non-Valvular Atrial Fibrillation During Rivaroxaban Therapy. Clin Appl Thromb Hemost 2021; 27:10760296211019465. [PMID: 34032122 PMCID: PMC8155766 DOI: 10.1177/10760296211019465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is known that atrial fibrillation (AF) is associated with the procoagulant
state. Several studies have reported an increase of circulating microparticles
in AF, which may be linked to a hypercoagulable state, atrial thrombosis and
thromboembolism. We evaluated in our study alterations in both platelet (PMP,
CD42b) and endothelial-derived (EMP, CD144) microparticle levels on
anticoagulant therapy with rivaroxaban in nonvalvular AF. After administration
of rivaroxaban, PMP levels were increased (median, [IQR] 35.7 [28.8-47.3] vs.
48.4 [30.9-82.8] cells/µL; P = 0.012), along with an increase
in EMP levels (14.6 [10.0-18.6] vs. 18.3 [12.9-37.1] cells/µL,
P < 0.001). In the multivariable regression analysis,
the independent predictor of post-dose change in PMPs was statin therapy (HR
−0.43; 95% CI −0.75,−0.10, P = 0.011). The post-dose change in
EMPs was also predicted by statin therapy (HR −0.34; 95% CI −0.69, −0.01,
P = 0.046). This study showed an increase in both EMPs and
PMPs at the peak plasma concentration of rivaroxaban. Statins have promising
potential in the prevention of rivaroxaban-related PMP and EMP release. The
pro-thrombotic role of PMPs and EMPs during rivaroxaban therapy requires further
study.
Collapse
Affiliation(s)
- Aleksandra Lenart-Migdalska
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| | - Leszek Drabik
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland.,Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Kaźnica-Wiatr
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| | - Lidia Tomkiewicz-Pająk
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| | - Maria Olszowska
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| |
Collapse
|
4
|
Microvesicle Formation Induced by Oxidative Stress in Human Erythrocytes. Antioxidants (Basel) 2020; 9:antiox9100929. [PMID: 32998418 PMCID: PMC7650597 DOI: 10.3390/antiox9100929] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) released by different cell types play an important role in many physiological and pathophysiological processes. In physiological conditions, red blood cell (RBC)-derived EVs compose 4–8% of all circulating EVs, and oxidative stress (OS) as a consequence of different pathophysiological conditions significantly increases the amount of circulated RBC-derived EVs. However, the mechanisms of EV formation are not yet fully defined. To analyze OS-induced EV formation and RBC transformations, we used flow cytometry to evaluate cell esterase activity, caspase-3 activity, and band 3 clustering. Band 3 clustering was additionally analyzed by confocal microscopy. Two original laser diffraction-based approaches were used for the analysis of cell deformability and band 3 activity. Hemoglobin species were characterized spectrophotometrically. We showed that cell viability in tert-Butyl hydroperoxide-induced OS directly correlated with oxidant concentration to cell count ratio, and that RBC-derived EVs contained hemoglobin oxidized to hemichrome (HbChr). OS induced caspase-3 activation and band 3 clustering in cells and EVs. Importantly, we showed that OS-induced EV formation is independent of calcium. The presented data indicated that during OS, RBCs eliminated HbChr by vesiculation in order to sacrifice the cell itself, thereby prolonging lifespan and delaying the untimely clearance of in all other respects healthy RBCs.
Collapse
|
5
|
Freitas Leal J, Vermeer H, Lazari D, van Garsse L, Brock R, Adjobo-Hermans M, Bosman G. The impact of circulation in a heart-lung machine on function and survival characteristics of red blood cells. Artif Organs 2020; 44:892-899. [PMID: 32187389 PMCID: PMC7496153 DOI: 10.1111/aor.13682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/01/2023]
Abstract
Extracorporeal circulation is accompanied by changes in red blood cell morphology and structural integrity that affect cell function and survival, and thereby may contribute to the various side effects of heart–lung machine‐assisted surgery. Our main objectives were to determine the effect of circulation of red blood cells in a stand‐alone extracorporeal circuit on several parameters that are known to be affected by, as well as contribute to red blood cell aging. As a source of RBCs, we employed blood bank storage units of different ages. In order to assess the relevance of our in vitro observations for the characterization of extracorporal circulation technology, we compared these changes in those of patients undergoing extracorporeal circulation‐assisted cardiac surgery. Our results show that circulation in a heart–lung machine is accompanied by changes in red blood cell volume, an increase in osmotic fragility, changes in deformability and aggregation behavior, and alterations in the exposure of phosphatidylserine and in microvesicle generation. RBCs from 1‐week‐old concentrates showed the highest similarities with the in vivo situation. These changes in key characteristics of the red blood cell aging process likely increase the susceptibility of red blood cells to the various mechanical, osmotic, and immunological stress conditions encountered during and after surgery in the patient’s circulation, and thereby contribute to the side effects of surgery. Thus, aging‐related parameters in red blood cell structure and function provide a foundation for the validation and improvement of extracorporeal circulation technology.
Collapse
Affiliation(s)
| | - Harry Vermeer
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dan Lazari
- Department of Biochemistry, Radboudumc, Nijmegen, The Netherlands
| | - Leen van Garsse
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboudumc, Nijmegen, The Netherlands
| | | | - Giel Bosman
- Department of Biochemistry, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Freitas Leal JK, Lasonder E, Sharma V, Schiller J, Fanelli G, Rinalducci S, Brock R, Bosman G. Vesiculation of Red Blood Cells in the Blood Bank: A Multi-Omics Approach towards Identification of Causes and Consequences. Proteomes 2020; 8:proteomes8020006. [PMID: 32244435 PMCID: PMC7356037 DOI: 10.3390/proteomes8020006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
Microvesicle generation is an integral part of the aging process of red blood cells in vivo and in vitro. Extensive vesiculation impairs function and survival of red blood cells after transfusion, and microvesicles contribute to transfusion reactions. The triggers and mechanisms of microvesicle generation are largely unknown. In this study, we combined morphological, immunochemical, proteomic, lipidomic, and metabolomic analyses to obtain an integrated understanding of the mechanisms underlying microvesicle generation during the storage of red blood cell concentrates. Our data indicate that changes in membrane organization, triggered by altered protein conformation, constitute the main mechanism of vesiculation, and precede changes in lipid organization. The resulting selective accumulation of membrane components in microvesicles is accompanied by the recruitment of plasma proteins involved in inflammation and coagulation. Our data may serve as a basis for further dissection of the fundamental mechanisms of red blood cell aging and vesiculation, for identifying the cause-effect relationship between blood bank storage and transfusion complications, and for assessing the role of microvesicles in pathologies affecting red blood cells.
Collapse
Affiliation(s)
- Joames K. Freitas Leal
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
| | - Edwin Lasonder
- Department of Applied Sciences, Faculty of Life and Health Sciences, Northumbria University, Newcastle-Upon-Tyne NE1 8ST, UK;
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK;
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 4107 Leipzig, Germany;
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.); (S.R.)
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.); (S.R.)
| | - Roland Brock
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
| | - Giel Bosman
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
- Correspondence:
| |
Collapse
|
7
|
Čolić J, Matucci Cerinic M, Guiducci S, Damjanov N. Microparticles in systemic sclerosis, targets or tools to control fibrosis: This is the question! JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:6-20. [PMID: 35382401 PMCID: PMC8922594 DOI: 10.1177/2397198319857356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 07/25/2023]
Abstract
Systemic sclerosis is the main systemic fibrotic disease with unknown etiology characterized by peripheral microvascular injury, activation of immune system, and wide-spread progressive fibrosis. Microparticles can be derived from any cell type during normal cellular differentiation, senescence, and apoptosis, and also upon cellular activation. Carrying along a broad range of surface cytoplasmic and nuclear molecules of originating cells, microparticles are closely implicated in inflammation, thrombosis, angiogenesis, and immunopathogenesis. Recently, microparticles have been proposed as biomarkers of endothelial injury, which is the primary event in the genesis of tissue fibrosis. Microparticles may have a role in fostering endothelial to mesenchymal transition, thus giving a significant contribution to the development of myofibroblasts, the most important final effectors responsible for tissue fibrosis and fibroproliferative vasculopathy. Thanks to potent profibrotic mediators, such as transforming growth factor beta, platelet-derived growth factor, high mobility group box 1 protein, nicotinamide adenine dinucleotide phosphate oxidase 4, and antifibrotic agents, such as matrix metalloproteinases, microparticles may play an opposite role in fibrosis.
Collapse
Affiliation(s)
- Jelena Čolić
- Department of Rheumatology, Institute of
Rheumatology, Belgrade, Serbia
| | - Marco Matucci Cerinic
- Division of Rheumatology, Department of
Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC)
and Denothe Centre, University of Florence, Florence, Italy
| | - Serena Guiducci
- Division of Rheumatology, Department of
Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC)
and Denothe Centre, University of Florence, Florence, Italy
| | - Nemanja Damjanov
- Department of Rheumatology, Institute of
Rheumatology, Belgrade, Serbia
- School of Medicine, University of
Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Soni S, Tirlapur N, O'Dea KP, Takata M, Wilson MR. Microvesicles as new therapeutic targets for the treatment of the acute respiratory distress syndrome (ARDS). Expert Opin Ther Targets 2019; 23:931-941. [PMID: 31724440 DOI: 10.1080/14728222.2019.1692816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Acute respiratory distress syndrome (ARDS) is a heterogeneous and multifactorial disease; it is a common and devastating condition that has a high mortality. Treatment is limited to supportive measures hence novel pharmacological approaches are necessary. We propose a new direction in ARDS research; this means moving away from thinking about individual inflammatory mediators and instead investigating how packaged information is transmitted between cells. Microvesicles (MVs) represent a novel vehicle for inter-cellular communication with an emerging role in ARDS pathophysiology.Areas covered: This review examines current approaches to ARDS and emerging MV research. We describe advances in our understanding of microvesicles and focus on their pro-inflammatory roles in airway and endothelial signaling. We also offer reasons for why MVs are attractive therapeutic targets.Expert opinion: MVs have a key role in ARDS pathophysiology. Preclinical studies must move away from simple models toward more realistic scenarios while clinical studies must embrace patient heterogeneity. Microvesicles have the potential to aid identification of patients who may benefit from particular treatments and act as biomarkers of cellular status and disease progression. Understanding microvesicle cargoes and their cellular interactions will undoubtedly uncover new targets for ARDS.
Collapse
Affiliation(s)
- Sanooj Soni
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Nikhil Tirlapur
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
9
|
Utermöhlen O, Jakobshagen K, Blissenbach B, Wiegmann K, Merz T, Hefti JP, Krönke M. Emergence of AnnexinVpos CD31neg CD42blow/neg extracellular vesicles in plasma of humans at extreme altitude. PLoS One 2019; 14:e0220133. [PMID: 31369589 PMCID: PMC6675110 DOI: 10.1371/journal.pone.0220133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/09/2019] [Indexed: 12/02/2022] Open
Abstract
Background Hypobaric hypoxia has been reported to cause endothelial cell and platelet dysfunction implicated in the formation of microvascular lesions, and in its extremes may contribute to vascular leakage in high altitude pulmonary edema or blood brain barrier disruption leading to cerebral micro-hemorrhage (MH). Platelet function in the development of microvascular lesions remained ill defined, and is still incompletely understood. In this study platelet- and endothelial cell-derived extracellular vesicles (PEV and EEV, respectively) and cell adhesion molecules were characterized in plasma samples of members of a high altitude expedition to delineate the contribution of platelets and endothelial cells to hypobaric hypoxia-induced vascular dysfunction. Methods and findings In this observational study, platelet and endothelial cell-derived extracellular vesicles were analysed by flow-cytometry in plasma samples from 39 mountaineers participating in a medical research climbing expedition to Himlung Himal, Nepal, 7,050m asl. Megakaryocyte/platelet-derived AnnexinVpos, PECAM-1 (CD31) and glycoprotein-1b (GP1b, CD42b) positive extracellular vesicles (PEV) constituted the predominant fraction of EV in plasma samples up to 6,050m asl. Exposure to an altitude of 7,050m led to a marked decline of CD31pos CD42neg EEV as well as of CD31pos CD42bpos PEV at the same time giving rise to a quantitatively prevailing CD31neg CD42blow/neg subpopulation of AnnexinVpos EV. An almost hundredfold increase in the numbers of this previously unrecognized population of CD31neg CD42blow/neg EV was observed in all participants reaching 7,050m asl. Conclusions The emergence of CD31neg CD42blow/neg EV was observed in all participants and thus represents an early hypoxic marker at extreme altitude. Since CD31 and CD42b are required for platelet-endothelial cell interactions, these hypobaric hypoxia-dependent quantitative and phenotypic changes of AnnexinVpos EV subpopulations may serve as early and sensitive indicators of compromised vascular homeostasis.
Collapse
Affiliation(s)
- Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Kristin Jakobshagen
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
| | - Birgit Blissenbach
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tobias Merz
- Department of Intensive Care Medicine, University Hospital and University of Bern, Bern, Switzerland
- Cardiovascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Jacqueline Pichler Hefti
- Department of Intensive Care Medicine, University Hospital and University of Bern, Bern, Switzerland
- Department of Pneumology, University Hospital and University of Bern, Bern, Switzerland
- * E-mail: (MK); (JP)
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- * E-mail: (MK); (JP)
| |
Collapse
|
10
|
Freitas Leal JK, Preijers F, Brock R, Adjobo-Hermans M, Bosman G. Red Blood Cell Homeostasis and Altered Vesicle Formation in Patients With Paroxysmal Nocturnal Hemoglobinuria. Front Physiol 2019; 10:578. [PMID: 31156458 PMCID: PMC6529780 DOI: 10.3389/fphys.2019.00578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
A subset of the red blood cells (RBCs) of patients with paroxysmal nocturnal hemoglobinuria (PNH) lacks GPI-anchored proteins. Some of these proteins, such as CD59, inhibit complement activation and protect against complement-mediated lysis. This pathology thus provides the possibility to explore the involvement of complement in red blood cell homeostasis and the role of GPI-anchored proteins in the generation of microvesicles (MVs) in vivo. Detailed analysis of morphology, volume, and density of red blood cells with various CD59 expression levels from patients with PNH did not provide indications for a major aberration of the red blood cell aging process in patients with PNH. However, our data indicate that the absence of GPI-anchored membrane proteins affects the composition of red blood cell-derived microvesicles, as well as the composition and concentration of platelet-derived vesicles. These data open the way toward a better understanding on the pathophysiological mechanism of PNH and thereby to the development of new treatment strategies.
Collapse
Affiliation(s)
| | - Frank Preijers
- Laboratory for Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Merel Adjobo-Hermans
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giel Bosman
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
11
|
Abstract
Microparticles are a distinctive group of small vesicles, without nucleus, which are involved as significant modulators in several physiological and pathophysiological mechanisms. Plasma microparticles from various cellular lines have been subject of research. Data suggest that they are key players in development and manifestation of cardiovascular diseases and their presence, in high levels, is associated with chronic inflammation, endothelial damage and thrombosis. The strong correlation of microparticle levels with several outcomes in cardiovascular diseases has led to their utilization as biomarkers. Despite the limited clinical application at present, their significance emerges, mainly because their detection and enumeration methods are improving. This review article summarizes the evidence derived from research, related with the genesis and the function of microparticles in the presence of various cardiovascular risk factors and conditions. The current data provide a substrate for several theories of how microparticles influence various cellular mechanisms by transferring biological information.
Collapse
Affiliation(s)
- Christos Voukalis
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Eduard Shantsila
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Gregory Y H Lip
- b Liverpool Centre for Cardiovascular Science , University of Liverpool and Liverpool Heart & Chest Hospital , Liverpool , UK.,c Department of Clinical Medicine, Aalborg Thrombosis Research Unit , Aalborg University , Aalborg , Denmark
| |
Collapse
|
12
|
Loguinova M, Pinegina N, Kogan V, Vagida M, Arakelyan A, Shpektor A, Margolis L, Vasilieva E. Monocytes of Different Subsets in Complexes with Platelets in Patients with Myocardial Infarction. Thromb Haemost 2018; 118:1969-1981. [PMID: 30300910 DOI: 10.1055/s-0038-1673342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute myocardial infarction (AMI) is associated with activation of various cells, including platelets that form monocyte-platelet complexes (MPCs). Here, we analysed MPC in vivo and in vitro and investigated the abilities of different monocyte subclasses to form MPC, the characteristics of the cells involved in MPC formation and MPC changes in AMI. We identified MPC by co-staining for platelet antigen CD41a and monocyte antigens CD14 and CD16. Platelet activation was evaluated from expression of phosphatidylserine as revealed by annexin V. Our results confirm published data and provide new information regarding the patterns of MPC in AMI patients. We found that the patterns of platelet aggregation with monocytes were different in AMI patients and controls: (1) in AMI patients, MPC formed by intermediate monocytes carry more platelets whereas in healthy controls more platelets aggregated with classical monocytes; (2) the numbers of MPC in AMI patients, being already higher than in controls, were further increased if these patients suffered various in-hospital complications; (3) on the basis of the CD41a fluorescence of the antibody-stained MPC, some of the aggregates seem to consist of monocytes and platelet-derived extracellular vesicles (EVs); (4) aggregation of monocytes with platelet EV occurred in in vitro experiments; and (5) these experiments demonstrated that monocytes from AMI patients aggregate with both platelets and platelet EVs more efficiently than do monocytes from controls. MPC in AMI patients may play an important role in this pathology.
Collapse
Affiliation(s)
- Marina Loguinova
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Natalia Pinegina
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Valeria Kogan
- Ariel University, Institute for Translational Research, Ariel, Israel
| | - Murad Vagida
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States
| | - Alexander Shpektor
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
13
|
Hafiane A, Daskalopoulou SS. Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism 2018; 85:213-222. [PMID: 29727628 DOI: 10.1016/j.metabol.2018.04.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/06/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023]
Abstract
The term extracellular vesicles (EVs) describes membrane vesicles released into the extracellular space by most cell types. EVs have been recognized to play an important role in cell-to-cell communication. They are known to contain various bioactive molecules, including proteins, lipids, and nucleic acids. Although the nomenclature of EVs is not entirely standardized, they are considered to include exosomes, microparticles or microvesicles and apoptotic bodies. EVs are believed to play important roles in a wide range of biological processes. Although the pathogenic roles of EVs are largely documented, their protective roles are not as well established. Cardiovascular disease represents one of the most relevant and rapidly growing areas of the EV research. Circulating EVs released from platelets, erythrocytes, leukocytes, and endothelial cells may contain potentially valuable biological information for biomarker development in cardiovascular disease and could serve as a vehicle for therapeutic use. Herein, we provide an overview of the current knowledge in EV in cardiovascular disease, including a discussion on challenges in EV research, EV properties in various cell types, and their importance in atherosclerotic disease.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Stella S Daskalopoulou
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Abstract
Plasma biomarker discovery necessitates a method for deep proteomic profiling, as well as for highly accurate quantification of the proteins in the sample. Furthermore, to obtain strong candidates for potential biomarkers, the method should be high throughput to enable a large scale analysis. Here we describe in detail PROMIS-Quan (PROteomics of MIcroparticles using Super-SILAC Quantification), a method for a simple and robust fractionation of the plasma samples by extraction of plasma microparticles, followed by SILAC-based relative and absolute quantification.
Collapse
Affiliation(s)
- Michal Harel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
15
|
Thiyagarajan D, Pedersen HL, Seredkina N, Horvei KD, Arranz L, Sonneveld R, Nijenhuis T, van der Vlag J, Rekvig OP. IL-1β Promotes a New Function of DNase I as a Transcription Factor for the Fas Receptor Gene. Front Cell Dev Biol 2018; 6:7. [PMID: 29468159 PMCID: PMC5807897 DOI: 10.3389/fcell.2018.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022] Open
Abstract
Recently we described that endonuclease inactive DNase I translocated into the nucleus in response to increased endogenous IL-1β expression. Here, we demonstrate impact and function of translocated DNase I in tubular cells. Effect of cytokines on expression level and nuclear localisation of DNase I and corresponding levels of Fas receptor (FasR) and IL-1β were determined by confocal microscopy, qPCR and western blot analyses, in presence or absence of siRNA against IL-1β and DNase I mRNA. Nuclear DNase I bound to the FAS promotor region as determined by chromatin immuno-precipitation analysis. Data demonstrate that; (i) translocation of DNase I depended on endogenous de novo-expressed IL-1β, (ii) nuclear DNase I bound FAS DNA, (iii) FasR expression increased after translocation of DNase I, (iv) interaction of exogenous Fas ligand (FasL) with upregulated FasR induced apoptosis in human tubular cells stimulated with TNFα. Thus, translocated DNase I most probably binds the promoter region of the FAS gene and function as a transcription factor for FasR. In conclusion, DNase I not only executes chromatin degradation during apoptosis and necrosis, but also primes the cells for apoptosis by enhancing FasR expression.
Collapse
Affiliation(s)
- Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
| | - Hege L. Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
| | - Kjersti D. Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
| | - Lorena Arranz
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ramon Sonneveld
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ole P. Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, University Hospital of North Norway, Tromsø, Norway
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
16
|
IL-36 receptor deletion attenuates lung injury and decreases mortality in murine influenza pneumonia. Mucosal Immunol 2017; 10:1043-1055. [PMID: 27966554 PMCID: PMC5471142 DOI: 10.1038/mi.2016.107] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/31/2016] [Indexed: 02/04/2023]
Abstract
Influenza virus causes a respiratory disease in humans that can progress to lung injury with fatal outcome. The interleukin (IL)-36 cytokines are newly described IL-1 family cytokines that promote inflammatory responses via binding to the IL-36 receptor (IL-36R). The mechanism of expression and the role of IL-36 cytokines are poorly understood. Here, we investigated the role of IL-36 cytokines in modulating the innate inflammatory response during influenza virus-induced pneumonia in mice. The intranasal administration of influenza virus upregulated IL-36α mRNA and protein production in the lungs. In vitro, influenza virus-mediated IL-36α but not IL-36γ is induced and secreted from alveolar epithelial cells (AECs) through both a caspase-1 and caspase-3/7 dependent pathway. IL-36α was detected in microparticles shed from AECs and promoted the production of pro-inflammatory cytokines and chemokines in respiratory cells. IL-36R-deficient mice were protected from influenza virus-induced lung injury and mortality. Decreased mortality was associated with significantly reduced early accumulation of neutrophils and monocytes/macrophages, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines, and permeability of the alveolar-epithelial barrier in despite impaired viral clearance. Taken together, these data indicate that IL-36 ligands exacerbate lung injury during influenza virus infection.
Collapse
|
17
|
Abstract
Heart failure (HF) continues to have a sufficient impact on morbidity, mortality, and disability in developed countries. Growing evidence supports the hypothesis that microparticles (MPs) might contribute to the pathogenesis of the HF development playing a pivotal role in the regulation of the endogenous repair system, thrombosis, coagulation, inflammation, immunity, and metabolic memory phenomenon. Therefore, there is a large body of data clarifying the predictive value of MP numerous in circulation among subjects with HF. Although the determination of MP signature is better than measurement of single MP circulating level, there is not yet close confirmation that immune phenotype of cells produced MPs are important for HF prediction and development. The aim of the chapter is to summarize knowledge regarding the role of various MPs in diagnosis and prognosis of HF. The role of MPs as a delivery vehicle for drugs attenuated cardiac remodeling is considered.
Collapse
|
18
|
Laroche M, Dunois C, Vissac AM, Amiral J. Update on functional and genetic laboratory assays for the detection of platelet microvesicles. Platelets 2017; 28:235-241. [PMID: 28102740 DOI: 10.1080/09537104.2016.1265925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Functional and genetic assays for measuring platelet microvesicles (PMVs) are presented and discussed. Functional assays concern two groups of methods: a) homogeneous assays using the cofactor activity of phospholipids (PPLs) contained in PMVs and present in assayed plasmas, and a coagulation or a thrombin generation assay (TGA) as "end points"; b) capture-based assays, in which PMVs bind to an immobilized ligand, such as Annexin V in the presence of calcium, or monoclonal antibodies (MoAbs) specific for membrane proteins. Genetic assays aim to detect micro-RNA (miRNA) present in PMVs: miRNA must be extracted from plasma, and the expression pattern can be determined by various methods such as quantitative real-time PCR, microarray or sequencing. All these technical approaches introduce new exploration tools for measuring or quantitating PMVs or their associated activities, as biomarkers for disease evolution, their diagnosis or prognosis, and for monitoring of some antithrombotic or anti-inflammatory therapies. They offer invaluable analytical tools for research, drug discovery and epidemiological studies and have a strong potential as diagnostic tests.
Collapse
Affiliation(s)
- Maxime Laroche
- a R&D Department , HYPHEN BioMed , Neuville sur Oise , France
| | - Claire Dunois
- a R&D Department , HYPHEN BioMed , Neuville sur Oise , France
| | | | - Jean Amiral
- b Scientific Consultant for HYPHEN BioMed , Neuville sur Oise , France
| |
Collapse
|
19
|
Mitchell AJ, Gray WD, Schroeder M, Yi H, Taylor JV, Dillard RS, Ke Z, Wright ER, Stephens D, Roback JD, Searles CD. Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria. PLoS One 2016; 11:e0163582. [PMID: 27760197 PMCID: PMC5070825 DOI: 10.1371/journal.pone.0163582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 09/12/2016] [Indexed: 12/01/2022] Open
Abstract
Background Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine. Here, we investigated the possibility that these structures were bacteria. Results Flow cytometry, miRNA analysis, protein analysis, and additional electron microscopy studies strongly indicated that the pleomorphic structures in the supernatant of stored RBCs were RBC-derived microparticles (RMPs). Bacterial 16S rDNA PCR amplified from these samples were sequenced and was found to be highly similar to species that are known to commonly contaminate laboratory reagents. Conclusions These studies suggest that pleomorphic structures identified in human blood are RMPs and not bacteria, and they provide an example in which laboratory contaminants may can mislead investigators.
Collapse
Affiliation(s)
- Adam J. Mitchell
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Warren D. Gray
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Max Schroeder
- Division of Infectious Disease, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, United States of America
| | - Jeannette V. Taylor
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, United States of America
| | - Rebecca S. Dillard
- Division of Infectious Disease, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Zunlong Ke
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Elizabeth R. Wright
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Disease, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - David Stephens
- Division of Infectious Disease, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - John D. Roback
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Charles D. Searles
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Section of Cardiology, Atlanta VA Medical Center, Decatur, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Structural and functional characterization of endothelial microparticles released by cigarette smoke. Sci Rep 2016; 6:31596. [PMID: 27530098 PMCID: PMC4987682 DOI: 10.1038/srep31596] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Circulating endothelial microparticles (EMPs) are emerging as biomarkers of chronic obstructive pulmonary disease (COPD) in individuals exposed to cigarette smoke (CS), but their mechanism of release and function remain unknown. We assessed biochemical and functional characteristics of EMPs and circulating microparticles (cMPs) released by CS. CS exposure was sufficient to increase microparticle levels in plasma of humans and mice, and in supernatants of primary human lung microvascular endothelial cells. CS-released EMPs contained predominantly exosomes that were significantly enriched in let-7d, miR-191; miR-126; and miR125a, microRNAs that reciprocally decreased intracellular in CS-exposed endothelium. CS-released EMPs and cMPs were ceramide-rich and required the ceramide-synthesis enzyme acid sphingomyelinase (aSMase) for their release, an enzyme which was found to exhibit significantly higher activity in plasma of COPD patients or of CS-exposed mice. The ex vivo or in vivo engulfment of EMPs or cMPs by peripheral blood monocytes-derived macrophages was associated with significant inhibition of efferocytosis. Our results indicate that CS, via aSMase, releases circulating EMPs with distinct microRNA cargo and that EMPs affect the clearance of apoptotic cells by specialized macrophages. These targetable effects may be important in the pathogenesis of diseases linked to endothelial injury and inflammation in smokers.
Collapse
|
21
|
Carver KA, Yang D. N-Acetylcysteine Amide Protects Against Oxidative Stress-Induced Microparticle Release From Human Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2016; 57:360-71. [PMID: 26842754 PMCID: PMC4736743 DOI: 10.1167/iovs.15-17117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs.
Collapse
|
22
|
Bosman GJCGM. The involvement of erythrocyte metabolism in organismal homeostasis in health and disease. Proteomics Clin Appl 2016; 10:774-7. [PMID: 27068218 DOI: 10.1002/prca.201500129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/10/2016] [Accepted: 04/05/2016] [Indexed: 01/28/2023]
Abstract
Historically, study of erythrocyte homeostasis has focussed on the survival of erythrocytes in the blood bank and, especially in pathological circumstances, on the mechanisms leading to accelerated aging and removal from the circulation. Recent proteomic and metabolomic data suggest that erythrocyte metabolism involves more than ATP production and transport of oxygen and carbondioxide; is subject to regulation; and is likely to reflect organismal metabolism. Also, it has become clear that systemic diseases affect erythrocyte homeostasis. The perspectives emerging from these data include new possibilities to manipulate erythrocyte function and survival in vivo, and thereby organismal homeostasis.
Collapse
Affiliation(s)
- Giel J C G M Bosman
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 2016; 127:1976-86. [PMID: 26903549 DOI: 10.1182/blood-2015-04-640300] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
Self-tolerance and immune homeostasis are orchestrated by FOXP3(+)regulatory T cells (Tregs). Recent data have revealed that upon stimulation, Tregs may exhibit plasticity toward a proinflammatory phenotype, producing interleukin 17 (IL-17) and/or interferon γ (IFN-γ). Such deregulation of Tregs may contribute to the perpetuation of inflammatory processes, including graft-versus-host disease. Thus, it is important to identify immunomodulatory factors influencing Treg stability. Platelet-derived microparticles (PMPs) are involved in hemostasis and vascular health and have recently been shown to be intimately involved in (pathogenic) immune responses. Therefore, we investigated whether PMPs have the ability to affect Treg plasticity. PMPs were cocultured with healthy donor peripheral blood-derived Tregs that were stimulated with anti-CD3/CD28 monoclonal antibodies in the presence of IL-2, IL-15, and IL-1β. PMPs prevented the differentiation of peripheral blood-derived Tregs into IL-17- and IFN-γ-producing cells, even in the presence of the IL-17-driving proinflammatory cytokine IL-1β. The mechanism of action by which PMPs prevent Treg plasticity consisted of rapid and selective P-selectin-dependent binding of PMPs to a CCR6(+)HLA-DR(+)memory-like Treg subset and their ability to inhibit Treg proliferation, in part through CXCR3 engagement. The findings that ~8% of Tregs in the circulation of healthy individuals are CD41(+)P-selectin(+)and that distinct binding of patient plasma PMPs to Tregs was observed support in vivo relevance. These findings open the exciting possibility that PMPs actively regulate the immune response at sites of (vascular) inflammation, where they are known to accumulate and interact with leukocytes, consolidating the (vascular) healing process.
Collapse
|
24
|
Chandler WL. Measurement of microvesicle levels in human blood using flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 90:326-36. [PMID: 26606416 DOI: 10.1002/cyto.b.21343] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 11/08/2022]
Abstract
Microvesicles are fragments of cells released when the cells are activated, injured, or apoptotic. Analysis of microvesicle levels in blood has the potential to shed new light on the pathophysiology of many diseases. Flow cytometry is currently the only method that can simultaneously separate true lipid microvesicles from other microparticles in blood, determine the cell of origin and other microvesicle characteristics, and handle large numbers of clinical samples with a reasonable effort, but expanded use of flow cytometric measurement of microvesicle levels as a clinical and research tool requires improved, standardized assays. The goal of this review is to aid investigators in applying current best practices to microvesicle measurements. First pre-analytical factors are evaluated and data summarized for anticoagulant effects, sample transport and centrifugation. Next flow cytometer optimization is reviewed including interference from background in buffers and reagents, accurate microvesicle counting, swarm interference, and other types of coincidence errors, size calibration, and detection limits using light scattering, impedance and fluorescence. Finally current progress on method standardization is discussed and a summary of current best practices provided. © 2016 Clinical Cytometry Society.
Collapse
Affiliation(s)
- Wayne L Chandler
- Department of Laboratories, Seattle Children's Hospital, and Department of Laboratory Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Chakrabarti A, Halder S, Karmakar S. Erythrocyte and platelet proteomics in hematological disorders. Proteomics Clin Appl 2016; 10:403-14. [PMID: 26611378 DOI: 10.1002/prca.201500080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Erythrocytes undergo ineffective erythropoesis, hemolysis, and premature eryptosis in sickle cell disease and thalassemia. Abnormal hemoglobin variants associated with hemoglobinopathy lead to vesiculation, membrane instability, and loss of membrane asymmetry with exposal of phosphatidylserine. This potentiates thrombin generation resulting in activation of the coagulation cascade responsible for subclinical phenotypes. Platelet activation also results in the release of microparticles, which express and transfer functional receptors from platelet membrane, playing key roles in vascular reactivity and activation of intracellular signaling pathways. Over the last decade, proteomics had proven to be an important field of research in studies of blood and blood diseases. Blood cells and its fluidic components have been proven to be easy systems for studying differential expressions of proteins in hematological diseases encompassing hemoglobinopathies, different types of anemias, myeloproliferative disorders, and coagulopathies. Proteomic studies of erythrocytes and platelets reported from several groups have highlighted various factors that intersect the signaling networks in these anucleate systems. In this review, we have elaborated on the current scenario of anucleate blood cell proteomes in normal and diseased individuals and the cross-talk between the two major constituent cell types of circulating blood.
Collapse
Affiliation(s)
- Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Suchismita Halder
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
26
|
High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumour Biol 2015; 36:9739-52. [DOI: 10.1007/s13277-015-3741-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/30/2015] [Indexed: 01/06/2023] Open
|
27
|
Abnormal red cell structure and function in neuroacanthocytosis. PLoS One 2015; 10:e0125580. [PMID: 25933379 PMCID: PMC4416783 DOI: 10.1371/journal.pone.0125580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/24/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Panthothenate kinase-associated neurodegeneration (PKAN) belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA). This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation. OBJECTIVE The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences. This could shed light on the etiology of the neurodegeneration. METHODS We performed a qualitative and semi-quantitative morphological, immunofluorescent, biochemical and functional analysis of the red cells of several patients with PKAN and, for the first time, of the red cells of their family members. RESULTS We show that the blood of patients with PKAN contains not only variable numbers of acanthocytes, but also a wide range of other misshapen red cells. Immunofluorescent and immunoblot analyses suggest an altered membrane organization, rather than quantitative changes in protein expression. Strikingly, these changes are not limited to the red blood cells of PKAN patients, but are also present in the red cells of heterozygous carriers without neurological problems. Furthermore, changes are not only present in acanthocytes, but also in other red cells, including discocytes. The patients' cells, however, are more fragile, as observed in a spleen-mimicking device. CONCLUSION These morphological, molecular and functional characteristics of red cells in patients with PKAN and their family members offer new tools for diagnosis and present a window into the pathophysiology of neuroacanthocytosis.
Collapse
|
28
|
Microparticles release by adipocytes act as "find-me" signals to promote macrophage migration. PLoS One 2015; 10:e0123110. [PMID: 25849214 PMCID: PMC4388837 DOI: 10.1371/journal.pone.0123110] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/27/2015] [Indexed: 12/15/2022] Open
Abstract
Macrophage infiltration of adipose tissue during weight gain is a central event leading to the metabolic complications of obesity. However, what are the mechanisms attracting professional phagocytes to obese adipose tissue remains poorly understood. Here, we demonstrate that adipocyte-derived microparticles (MPs) are critical “find-me” signals for recruitment of monocytes and macrophages. Supernatants from stressed adipocytes stimulated the attraction of monocyte cells and primary macrophages. The activation of caspase 3 was required for release of these signals. Adipocytes exposed to saturated fatty acids showed marked release of MPs into the supernatant while common genetic mouse models of obesity demonstrate high levels of circulating adipocyte-derived MPs. The release of MPs was highly regulated and dependent on caspase 3 and Rho-associated kinase. Further analysis identified these MPs as a central chemoattractant in vitro and in vivo. In addition, intravenously transplanting circulating MPs from the ob/ob mice lead to activation of monocytes in circulation and adipose tissue of the wild type mice. These data identify adipocyte-derived MPs as novel “find me” signals that contributes to macrophage infiltration associated with obesity.
Collapse
|
29
|
Konokhova AI, Chernova DN, Moskalensky AE, Strokotov DI, Yurkin MA, Chernyshev AV, Maltsev VP. Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma. Cytometry A 2015; 89:159-68. [DOI: 10.1002/cyto.a.22621] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 01/10/2023]
Affiliation(s)
| | - Darya N. Chernova
- Institute of Chemical Kinetics and Combustion SB RAS; 630090 Novosibirsk Russia
- Novosibirsk State University; 630090 Novosibirsk Russia
| | - Alexander E. Moskalensky
- Institute of Chemical Kinetics and Combustion SB RAS; 630090 Novosibirsk Russia
- Novosibirsk State University; 630090 Novosibirsk Russia
| | - Dmitry I. Strokotov
- Institute of Chemical Kinetics and Combustion SB RAS; 630090 Novosibirsk Russia
- Novosibirsk State Medical University; 630091 Novosibirsk Russia
| | - Maxim A. Yurkin
- Institute of Chemical Kinetics and Combustion SB RAS; 630090 Novosibirsk Russia
- Novosibirsk State University; 630090 Novosibirsk Russia
| | - Andrei V. Chernyshev
- Institute of Chemical Kinetics and Combustion SB RAS; 630090 Novosibirsk Russia
- Novosibirsk State University; 630090 Novosibirsk Russia
| | - Valeri P. Maltsev
- Institute of Chemical Kinetics and Combustion SB RAS; 630090 Novosibirsk Russia
- Novosibirsk State University; 630090 Novosibirsk Russia
- Novosibirsk State Medical University; 630091 Novosibirsk Russia
| |
Collapse
|
30
|
Inglis H, Norris P, Danesh A. Techniques for the analysis of extracellular vesicles using flow cytometry. J Vis Exp 2015:52484. [PMID: 25867010 PMCID: PMC4401354 DOI: 10.3791/52484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular Vesicles (EVs) are small, membrane-derived vesicles found in bodily fluids that are highly involved in cell-cell communication and help regulate a diverse range of biological processes. Analysis of EVs using flow cytometry (FCM) has been notoriously difficult due to their small size and lack of discrete populations positive for markers of interest. Methods for EV analysis, while considerably improved over the last decade, are still a work in progress. Unfortunately, there is no one-size-fits-all protocol, and several aspects must be considered when determining the most appropriate method to use. Presented here are several different techniques for processing EVs and two protocols for analyzing EVs using either individual detection or a bead-based approach. The methods described here will assist with eliminating the antibody aggregates commonly found in commercial preparations, increasing signal-to-noise ratio, and setting gates in a rational fashion that minimizes detection of background fluorescence. The first protocol uses an individual detection method that is especially well suited for analyzing a high volume of clinical samples, while the second protocol uses a bead-based approach to capture and detect smaller EVs and exosomes.
Collapse
Affiliation(s)
| | - Philip Norris
- Blood Systems Research Institute; Department of Medicine, University of California, San Francisco; Department of Laboratory Medicine, University of California, San Francisco;
| | - Ali Danesh
- Blood Systems Research Institute; Department of Laboratory Medicine, University of California, San Francisco
| |
Collapse
|
31
|
Harel M, Oren-Giladi P, Kaidar-Person O, Shaked Y, Geiger T. Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification. Mol Cell Proteomics 2015; 14:1127-36. [PMID: 25624350 DOI: 10.1074/mcp.m114.043364] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
Unbiased proteomic analysis of plasma samples holds the promise to reveal clinically invaluable disease biomarkers. However, the tremendous dynamic range of the plasma proteome has so far hampered the identification of such low abundant markers. To overcome this challenge we analyzed the plasma microparticle proteome, and reached an unprecedented depth of over 3000 plasma proteins in single runs. To add a quantitative dimension, we developed PROMIS-Quan-PROteomics of MIcroparticles with Super-Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantification, a novel mass spectrometry-based technology for plasma microparticle proteome quantification. PROMIS-Quan enables a two-step relative and absolute SILAC quantification. First, plasma microparticle proteomes are quantified relative to a super-SILAC mix composed of cell lines from distinct origins. Next, the absolute amounts of selected proteins of interest are quantified relative to the super-SILAC mix. We applied PROMIS-Quan to prostate cancer and compared plasma microparticle samples of healthy individuals and prostate cancer patients. We identified in total 5374 plasma-microparticle proteins, and revealed a predictive signature of three proteins that were elevated in the patient-derived plasma microparticles. Finally, PROMIS-Quan enabled determination of the absolute quantitative changes in prostate specific antigen (PSA) upon treatment. We propose PROMIS-Quan as an innovative platform for biomarker discovery, validation, and quantification in both the biomedical research and in the clinical worlds.
Collapse
Affiliation(s)
- Michal Harel
- From the ‡Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pazit Oren-Giladi
- §Department of Molecular Pharmacology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | | | - Yuval Shaked
- §Department of Molecular Pharmacology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | - Tamar Geiger
- From the ‡Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel;
| |
Collapse
|
32
|
Maheshwari S, Singh AK, Arya RK, Pandey D, Singh A, Datta D. Exosomes: Emerging Players of Intercellular Communication in Tumor Microenvironment. Discoveries (Craiova) 2014; 2:e26. [PMID: 32309554 PMCID: PMC6941565 DOI: 10.15190/d.2014.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 01/08/2023] Open
Abstract
Seminal discoveries have established the role of complex tumor microenvironment (TME) in cancer progression; and later on also uncovered that vesiculation is an integral part of intercellular communication among various cell types in coordinating the tumor assembly in a dynamic manner. Exosomes are small membrane bound endosomal vesicles, which are classically known for their role in discarding cellular wastes; however, recent reports underlined their novel role in malignancy by their release from cells into the TME. Since then, the role of exosomes have been a subject of increasing interest, as exosome mediated intercellular communications offer a novel reciprocal relationship between cancer and stromal cells within the TME and modulate the fate and function of the recipient cells to finally shape the tumor progression. Exosomes are characterised by different features including size, content and mode of delivery; and its cargo delivers interesting bioactive components in the form of proteins, miRNAs or other molecules to the target cell. In the pursuit of further study of exosomes, it was found that with the help of its distinct bioactive components, exosomes specifically regulate tumor growth, angiogenesis, metastasis as well as drug resistance properties. In fact, it acts as a bridge between different signaling networks, present inside the spatially distant cells of the heterogeneous tumor population. In the current endeavour, we have highlighted the role of exosomes in modulating the intercellular crosstalk during tumor growth and progression, and proposed certain novel roles of exosomes to address the few enigmatic questions of cancer cell biology.
Collapse
Affiliation(s)
- Shrankhla Maheshwari
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anup Kumar Singh
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Rakesh Kumar Arya
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Deepti Pandey
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|