1
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
2
|
Donkor M, Choe JY, Reid DM, Fiadjoe HK, Quinn B, Ranjan A, Pulse M, Chaudhary P, Basha R, Jones HP. Surgical Primary Tumor Resection Reduces Accumulation of CD11b + Myeloid Cells in the Lungs Augmenting the Efficacy of an Intranasal Cancer Vaccination against Secondary Lung Metastasis. Pharmaceuticals (Basel) 2023; 17:51. [PMID: 38256885 PMCID: PMC10821475 DOI: 10.3390/ph17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
A hallmark of effective cancer treatment is the prevention of tumor reoccurrence and metastasis to distal organs, which are responsible for most cancer deaths. However, primary tumor resection is expected to be curative as most solid tumors have been shown both experimentally and clinically to accelerate metastasis to distal organs including the lungs. In this study, we evaluated the efficacy of our engineered nasal nano-vaccine (CpG-NP-Tag) in reducing accelerated lung metastasis resulting from primary tumor resection. Cytosine-phosphate-guanine oligonucleotide [CpG ODN]-conjugated nanoparticle [NP] encapsulating tumor antigen [Tag] (CpG-NP-Tag) was manufactured and tested in vivo using a syngeneic mouse mammary tumor model following intranasal delivery. We found that our nasal nano-vaccine (CpG-NP-Tag), compared to control NPs administered after primary mammary tumor resection, significantly reduced lung metastasis in female BALB/c mice subjected to surgery (surgery mice). An evaluation of vaccine efficacy in both surgery and non-surgery mice revealed that primary tumor resection reduces CD11b+ monocyte-derived suppressor-like cell accumulation in the lungs, allowing increased infiltration of vaccine-elicited T cells (IFN-γ CD8+ T cells) in the lungs of surgery mice compared to non-surgery mice. These findings suggest that the combination of the target delivery of a nasal vaccine in conjunction with the standard surgery of primary tumors is a plausible adjunctive treatment against the establishment of lung metastasis.
Collapse
Affiliation(s)
- Michael Donkor
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA (D.M.R.); (H.K.F.); (A.R.); (P.C.)
| | - Jamie Y. Choe
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA (D.M.R.); (H.K.F.); (A.R.); (P.C.)
| | - Danielle Marie Reid
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA (D.M.R.); (H.K.F.); (A.R.); (P.C.)
| | - Hope K. Fiadjoe
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA (D.M.R.); (H.K.F.); (A.R.); (P.C.)
| | - Byron Quinn
- Department of Biology, Langston University, Langston, OK 73050, USA
| | - Amalendu Ranjan
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA (D.M.R.); (H.K.F.); (A.R.); (P.C.)
| | - Mark Pulse
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA;
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA (D.M.R.); (H.K.F.); (A.R.); (P.C.)
| | - Riyaz Basha
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA (D.M.R.); (H.K.F.); (A.R.); (P.C.)
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA (D.M.R.); (H.K.F.); (A.R.); (P.C.)
- Institute for Health Disparities UNTHC 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Liposomal Formulations of a Polyleucine-Antigen Conjugate as Therapeutic Vaccines against Cervical Cancer. Pharmaceutics 2023; 15:pharmaceutics15020602. [PMID: 36839923 PMCID: PMC9965676 DOI: 10.3390/pharmaceutics15020602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Human papilloma virus (HPV) is responsible for all cases of cervical cancer. While prophylactic vaccines are available, the development of peptide-based vaccines as a therapeutic strategy is still under investigation. In comparison with the traditional and currently used treatment strategies of chemotherapy and surgery, vaccination against HPV is a promising therapeutic option with fewer side effects. A peptide derived from the HPV-16 E7 protein, called 8Qm, in combination with adjuvants showed promise as a therapeutic vaccine. Here, the ability of polymerized natural amino acids to act as a self-adjuvating delivery system as a therapeutic vaccine was investigated for the first time. Thus, 8Qm was conjugated to polyleucine by standard solid-phase peptide synthesis and self-assembled into nanoparticles or incorporated in liposomes. The liposome bearing the 8Qm conjugate significantly increased mice survival and decreased tumor growth after a single immunization. Further, these liposomes eradicated seven-day-old well-established tumors in mice. Dendritic cell (DC)-targeting moieties were introduced to further enhance vaccine efficacy, and the newly designed liposomal vaccine was tested in mice bearing 11-day-old tumors. Interestingly, these DCs-targeting moieties did not significantly improve vaccine efficacy, whereas the simple liposomal formulation of 8Qm-polyleucine conjugate was still effective in tumor eradication. In summary, a peptide-based anticancer vaccine was developed that stimulated strong cellular immune responses without the help of a classical adjuvant.
Collapse
|
4
|
Donkor M, Choe J, Reid DM, Quinn B, Pulse M, Ranjan A, Chaudhary P, Jones HP. Nasal Tumor Vaccination Protects against Lung Tumor Development by Induction of Resident Effector and Memory Anti-Tumor Immune Responses. Pharmaceutics 2023; 15:445. [PMID: 36839766 PMCID: PMC9958580 DOI: 10.3390/pharmaceutics15020445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Lung metastasis is a leading cause of cancer-related deaths. Here, we show that intranasal delivery of our engineered CpG-coated tumor antigen (Tag)-encapsulated nanoparticles (NPs)-nasal nano-vaccine-significantly reduced lung colonization by intravenous challenge of an extra-pulmonary tumor. Protection against tumor-cell lung colonization was linked to the induction of localized mucosal-associated effector and resident memory T cells as well as increased bronchiolar alveolar lavage-fluid IgA and serum IgG antibody responses. The nasal nano-vaccine-induced T-cell-mediated antitumor mucosal immune response was shown to increase tumor-specific production of IFN-γ and granzyme B by lung-derived CD8+ T cells. These findings demonstrate that our engineered nasal nano-vaccine has the potential to be used as a prophylactic approach prior to the seeding of tumors in the lungs, and thereby prevent overt lung metastases from existing extra pulmonary tumors.
Collapse
Affiliation(s)
- Michael Donkor
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jamie Choe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Danielle Marie Reid
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Byron Quinn
- Department of Biology, Langston University, Langston, OK 73050, USA
| | - Mark Pulse
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amalendu Ranjan
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Chen W, Jiang M, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. CpG-Based Nanovaccines for Cancer Immunotherapy. Int J Nanomedicine 2021; 16:5281-5299. [PMID: 34385817 PMCID: PMC8352601 DOI: 10.2147/ijn.s317626] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer has been a serious health hazard to the people all over the world with its high incidence and horrible mortality. In recent years, tumor vaccines in immunotherapy have become a hotspot in cancer therapy due to their many practical advantages and good therapeutic potentials. Among the various vaccines, nanovaccine utilized nanoparticles (NPs) as the carrier and/or adjuvant has presented significant therapeutic effect in cancer treatment. For tumor nanovaccines, unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) is a commonly used adjuvant. It has been reported that CpG ODN was the most effective immune stimulant among the currently known adjuvants. It could be recognized by toll-like receptor 9 (TLR9) to activate humoral and cellular immunity for preventing or treating cancer. In this review, the topic of CpG-based nanovaccines for cancer immunotherapy will be focused. The types and properties of different CpG will be introduced in detail first, and then some representative tumor nanovaccines will be reviewed according to the diverse loading modes of CpG, such as electrostatic adsorption, covalent bonding, hydrophilic and hydrophobic interaction, and DNA self-assembly, for summarizing the current progress of CpG-based tumor nanovaccines. Finally, the challenges and future perspectives will be discussed. It is hoped that this review will provide valuable references for the development of nanovaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Wenqiang Chen
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Wenjing Yu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiwei Xu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Xinyue Liu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Qingmiao Jia
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, People’s Republic of China
| |
Collapse
|
6
|
Grego EA, Siddoway AC, Uz M, Liu L, Christiansen JC, Ross KA, Kelly SM, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Curr Top Microbiol Immunol 2021; 433:29-76. [PMID: 33165869 PMCID: PMC8107186 DOI: 10.1007/82_2020_226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As vaccine formulations have progressed from including live or attenuated strains of pathogenic components for enhanced safety, developing new adjuvants to more effectively generate adaptive immune responses has become necessary. In this context, polymeric nanoparticles have emerged as a promising platform with multiple advantages, including the dual capability of adjuvant and delivery vehicle, administration via multiple routes, induction of rapid and long-lived immunity, greater shelf-life at elevated temperatures, and enhanced patient compliance. This comprehensive review describes advances in nanoparticle-based vaccines (i.e., nanovaccines) with a particular focus on polymeric particles as adjuvants and delivery vehicles. Examples of the nanovaccine approach in respiratory infections, biodefense, and cancer are discussed.
Collapse
Affiliation(s)
- Elizabeth A Grego
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alaric C Siddoway
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Metin Uz
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Luman Liu
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - John C Christiansen
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Kathleen A Ross
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Sean M Kelly
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
7
|
Fluorescence properties of doxorubicin in PBS buffer and PVA films. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:65-69. [PMID: 28390260 DOI: 10.1016/j.jphotobiol.2017.03.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
We studied steady-state and time-resolved fluorescence properties of an anticancer drug Doxorubicin in a saline buffer and poly-vinyl alcohol (PVA) film. Absorption of Doxorubicin, located at blue-green spectral region, allows a convenient excitation with visible light emitting diodes or laser diodes. Emission of Doxorubicin with maximum near 600nm can be easily detected with photomultipliers and CCD cameras. Both, absorption and fluorescence spectra in polymeric matrix show more pronounced vibronic structures than in solution. Also, the steady-state anisotropy in the polymer film is significantly higher than in the saline solution. In PVA film the fluorescence anisotropy is about 0.30 whereas in the saline buffer only 0.07. Quantum efficiencies of Doxorubicin were compared to a known standard Rhodamine 101 which has fluorescence emission in a similar spectral region. The quantum yield of Doxorubicin in PVA film is more than 10% and about twice higher than in the saline solution. Similarly, the lifetime of doxorubicin in PVA film is about 2ns whereas in the saline solution only about 1ns. The fluorescence anisotropy decays show that Doxorubicin molecules are freely rotating in the saline buffer with a correlation time of about 290ps, and are almost completely immobilized in the PVA film. The spectroscopic investigations presented in this manuscript are important, as they provide answers to changes in molecular properties of Doxorubicin depending changes in the local environment, which is useful when synthesizing nanoparticles for Doxorubicin entrapment.
Collapse
|
8
|
Chib R, Requena S, Mummert M, Strzhemechny YM, Gryczynski I, Borejdo J, Gryczynski Z, Fudala R. Fluorescence lifetime imaging with time-gated detection of hyaluronidase using a long lifetime azadioxatriangulenium (ADOTA) fluorophore. Methods Appl Fluoresc 2016; 4:047001. [PMID: 28192308 DOI: 10.1088/2050-6120/4/4/047001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A fluorescence lifetime imaging probe with a long lifetime was used in combination with time-gating for the detection of hyaluronidase using hyaluronic acid as the probe template. This probe was developed by heavily labeling hyaluronic acid with long lifetime azadioxatriangulenium fluorophores (ADOTA). We used this probe to image hyaluronidase produced by DU-145 prostate cancer cells.
Collapse
Affiliation(s)
- Rahul Chib
- Institute of Molecular Medicine, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cellular biodistribution of polymeric nanoparticles in the immune system. J Control Release 2016; 227:82-93. [DOI: 10.1016/j.jconrel.2016.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
|
10
|
Kokate RA, Chaudhary P, Sun X, Thamake SI, Maji S, Chib R, Vishwanatha JK, Jones HP. Rationalizing the use of functionalized poly-lactic-co-glycolic acid nanoparticles for dendritic cell-based targeted anticancer therapy. Nanomedicine (Lond) 2016; 11:479-94. [PMID: 26892440 DOI: 10.2217/nnm.15.213] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Delivery of PLGA (poly [D, L-lactide-co-glycolide])-based biodegradable nanoparticles (NPs) to antigen presenting cells, particularly dendritic cells, has potential for cancer immunotherapy. MATERIALS & METHODS Using a PLGA NP vaccine construct CpG-NP-Tag (CpG-ODN-coated tumor antigen [Tag] encapsulating NP) prepared using solvent evaporation technique we tested the efficacy of ex vivo and in vivo use of this construct as a feasible platform for immune-based therapy. RESULTS CpG-NP-Tag NPs were avidly endocytosed and localized in the endosomal compartment of bone marrow-derived dendritic cells. Bone marrow-derived dendritic cells exposed to CpG-NP-Tag NPs exhibited an increased maturation (higher CD80/86 expression) and activation status (enhanced IL-12 secretion levels). In vivo results demonstrated attenuation of tumor growth and angiogenesis as well as induction of potent cytotoxic T-lymphocyte responses. CONCLUSION Collectively, results validate dendritic cells stimulatory response to CpG-NP-Tag NPs (ex vivo) and CpG-NP-Tag NPs' tumor inhibitory potential (in vivo) for therapeutic applications, respectively.
Collapse
Affiliation(s)
- Rutika A Kokate
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Pankaj Chaudhary
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Xiangle Sun
- Department of Cell Biology & Immunology, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Sanjay I Thamake
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA.,RadioMedix Inc., 9701 Richmond Avenue, Suite 222, Houston, TX 77042, USA
| | - Sayantan Maji
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Rahul Chib
- Department of Cell Biology & Immunology, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Jamboor K Vishwanatha
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| | - Harlan P Jones
- Department of Molecular & Medical Genetics, University of North Texas Health Science Center (UNTHSC), 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.,Institute of Cancer Research, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX 76107, USA
| |
Collapse
|