1
|
Kashyap A, Kumari M, Singh A, Mukherjee K, Maity D. Current development of theragnostic nanoparticles for women's cancer treatment. Biomed Mater 2024; 19:042001. [PMID: 38471150 DOI: 10.1088/1748-605x/ad3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical industry, nanoparticles (NPs-exclusively small particles with size ranging from 1-100 nanometres) are recently employed as powerful tools due to their huge potential in sophisticated and enhanced cancer theragnostic (i.e. therapeutics and diagnostics). Cancer is a life-threatening disease caused by carcinogenic agents and mutation in cells, leading to uncontrolled cell growth and harming the body's normal functioning while affecting several factors like low levels of reactive oxygen species, hyperactive antiapoptotic mRNA expression, reduced proapoptotic mRNA expression, damaged DNA repair, and so on. NPs are extensively used in early cancer diagnosis and are functionalized to target receptors overexpressing cancer cells for effective cancer treatment. This review focuses explicitly on how NPs alone and combined with imaging techniques and advanced treatment techniques have been researched against 'women's cancer' such as breast, ovarian, and cervical cancer which are substantially occurring in women. NPs, in combination with numerous imaging techniques (like PET, SPECT, MRI, etc) have been widely explored for cancer imaging and understanding tumor characteristics. Moreover, NPs in combination with various advanced cancer therapeutics (like magnetic hyperthermia, pH responsiveness, photothermal therapy, etc), have been stated to be more targeted and effective therapeutic strategies with negligible side effects. Furthermore, this review will further help to improve treatment outcomes and patient quality of life based on the theragnostic application-based studies of NPs in women's cancer treatment.
Collapse
Affiliation(s)
- Ananya Kashyap
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Madhubala Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Arnika Singh
- Department of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, IN 46202, United States of America
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, IN 46202, United States of America
| |
Collapse
|
2
|
Chinnappan R, Ramadan Q, Zourob M. Isolation and Detection of Exosomal Mir210 Using Carbon Nanomaterial-Coated Magnetic Beads. J Funct Biomater 2023; 14:441. [PMID: 37754855 PMCID: PMC10531929 DOI: 10.3390/jfb14090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are found in various cellular compartments and play an important role in regulating gene expression. Extracellular miRNAs, such as those found within extracellular vesicles such as exosomes are involved in cell-to-cell communication. The intercellular transfer of miRNAs has been implicated in various diseases' pathogenesis including cancer and has been studied extensively as potential cancer biomarkers. However, the extraction of miRNA from exosomes is still a challenging task. The current nucleic acid extraction assays are expensive and labor-intensive. In this study, we demonstrated a microfluidic device for aptamer-based magnetic separation of the exosomes and subsequent detection of the miRNA using a fluorescence switching assay, which was enabled by carbon nanomaterials coated on magnetic beads. In the OFF state, the fluorophore-labelled cDNA is quenched using carbon nanomaterials. However, when the target miRNA210 is introduced, the cDNA detaches from the bead's surface, which leads to an increase in the fluorescence intensity (ON state). This increment was found to be proportional to miRNA concentration within the dynamic range of 0-100 nM with a detection limit of 5 pM. The assay was validated with spiked miRNA using the standard RT-PCR method. No notable cross-reactivity with other closely related miRNAs was observed. The developed method can be utilized for the minimally invasive detection of cancer biomarkers.
Collapse
Affiliation(s)
| | - Qasem Ramadan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
3
|
Vijayakanth V, Vinodhini V, Chintagumpala K. Biocompatible Carbon-Coated Magnetic Nanoparticles for Biomedical Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2023:955-986. [DOI: 10.1007/978-981-19-7188-4_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
5
|
Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14050917. [PMID: 35631503 PMCID: PMC9144228 DOI: 10.3390/pharmaceutics14050917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Image-guided nanotheranostics have the potential to represent a new paradigm in the treatment of cancer. Recent developments in modern imaging and nanoparticle design offer an answer to many of the issues associated with conventional chemotherapy, including their indiscriminate side effects and susceptibility to drug resistance. Imaging is one of the tools best poised to enable tailoring of cancer therapies. The field of image-guided nanotheranostics has the potential to harness the precision of modern imaging techniques and use this to direct, dictate, and follow site-specific drug delivery, all of which can be used to further tailor cancer therapies on both the individual and population level. The use of image-guided drug delivery has exploded in preclinical and clinical trials although the clinical translation is incipient. This review will focus on traditional mechanisms of targeted drug delivery in cancer, including the use of molecular targeting, as well as the foundations of designing nanotheranostics, with a focus on current clinical applications of nanotheranostics in cancer. A variety of specially engineered and targeted drug carriers, along with strategies of labeling nanoparticles to endow detectability in different imaging modalities will be reviewed. It will also introduce newer concepts of image-guided drug delivery, which may circumvent many of the issues seen with other techniques. Finally, we will review the current barriers to clinical translation of image-guided nanotheranostics and how these may be overcome.
Collapse
|
7
|
Bura C, Mocan T, Grapa C, Mocan L. Carbon Nanotubes-Based Assays for Cancer Detection and Screening. Pharmaceutics 2022; 14:pharmaceutics14040781. [PMID: 35456615 PMCID: PMC9028434 DOI: 10.3390/pharmaceutics14040781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Carbon nanotubes (CNTs) were considered a potential cargo for cancer therapy and diagnosis following researchers’ shared goal of finding a new delivery system to enhance the pharmacological performance of the administered drugs. To date, several excellent reviews have focused on the role of CNTs as drug delivery systems, although there is currently no existing study that gathers all the advances in research-connected carbon nanotubes-based assay development for the early detection of cancer. In this review article, we will focus on the emerging role of CNTs as anticancer detection agents.
Collapse
Affiliation(s)
- Cristina Bura
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology ‘’Octavian Fodor’’, 400008 Cluj-Napoca, Romania; (C.B.); (T.M.); (C.G.)
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology ‘’Octavian Fodor’’, 400008 Cluj-Napoca, Romania; (C.B.); (T.M.); (C.G.)
- Department of Physiology, University of Medicine and Pharmacy, “Iuliu Hatieganu”, 400008 Cluj-Napoca, Romania
| | - Cristiana Grapa
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology ‘’Octavian Fodor’’, 400008 Cluj-Napoca, Romania; (C.B.); (T.M.); (C.G.)
- Department of Physiology, University of Medicine and Pharmacy, “Iuliu Hatieganu”, 400008 Cluj-Napoca, Romania
| | - Lucian Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology ‘’Octavian Fodor’’, 400008 Cluj-Napoca, Romania; (C.B.); (T.M.); (C.G.)
- Department of Surgery, University of Medicine and Pharmacy, “Iuliu Hatieganu”, 400008 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
8
|
Sarnatskaya V, Shlapa Y, Lykhova A, Brieieva O, Prokopenko I, Sidorenko A, Solopan S, Kolesnik D, Belous A, Nikolaev V. Structure and biological activity of particles produced from highly activated carbon adsorbent. Heliyon 2022; 8:e09163. [PMID: 35846471 PMCID: PMC9280586 DOI: 10.1016/j.heliyon.2022.e09163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Over the recent years, carbon particles have gained relevance in the field of biomedical application to diminish the level of endo-/exogenous intoxication and oxidative stress products, which occur at different pathological states. However, it is very important that such carbon particles, specially developed for parenteral administration or per oral usage, possess a high adsorption potential and can remove hazard toxic substances of the hydrophilic, hydrophobic and amphiphilic nature usually accumulated in the blood due to the disease, and be absolutely safe for normal living cells and tissues of organism. In this work, the stable monodisperse suspension containing very small-sized (Dhydro = 1125.3 ± 243.8 nm) and highly pure carbon particles with an excellent accepting ability were obtained. UV-spectra, fluorescence quenching constant and binding association constant were provided by the information about conformational alterations in an albumin molecule in presence of carbon particles, about the dynamic type of quenching process and low binding affinity between carbon and protein. The later was confirmed by DSC method. In vitro cell culture experiments showed that carbon particles did not possess any cytotoxic effect towards all testing the normal cell lines of different histogenesis, did not show genotoxic effects and were absolutely safe for experimental animals during and after their parenteral administration. These observations may provide more information about how to develop a safe preparation of carbon particles for different biomedical applications, in particular, as a mean for intracorporeal therapy of various heavy diseases accompanied by the increased endogenous intoxication and the level of oxidative stress.
Collapse
Affiliation(s)
- Veronika Sarnatskaya
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Yuliia Shlapa
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
- Corresponding author.
| | - Alexandra Lykhova
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Olga Brieieva
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Igor Prokopenko
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Alexey Sidorenko
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Serhii Solopan
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
| | - Denis Kolesnik
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Anatolii Belous
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
| | - Vladimir Nikolaev
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| |
Collapse
|
9
|
Zhu W, Wei Z, Han C, Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3346. [PMID: 34947695 PMCID: PMC8707825 DOI: 10.3390/nano11123346] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
In recent decades, with the rapid development of nanotechnology, nanomaterials have been widely used in the medical field, showing great potential due to their unique physical and chemical properties including minimal size and functionalized surface characteristics. Nanomaterials such as metal nanoparticles and polymeric nanoparticles have been extensively studied in the diagnosis and treatment of diseases that seriously threaten human life and health, and are regarded to significantly improve the disadvantages of traditional diagnosis and treatment platforms, such as poor effectiveness, low sensitivity, weak security and low economy. In this review, we report and discuss the development and application of nanomaterials in the diagnosis and treatment of diseases based mainly on published research in the last five years. We first briefly introduce the improvement of several nanomaterials in imaging diagnosis and genomic sequencing. We then focus on the application of nanomaterials in the treatment of diseases, and select three diseases that people are most concerned about and that do the most harm: tumor, COVID-19 and cardiovascular diseases. First, we introduce the characteristics of nanoparticles according to the excellent effect of nanoparticles as delivery carriers of anti-tumor drugs. We then review the application of various nanoparticles in tumor therapy according to the classification of nanoparticles, and emphasize the importance of functionalization of nanomaterials. Second, COVID-19 has been the hottest issue in the health field in the past two years, and nanomaterials have also appeared in the relevant treatment. We enumerate the application of nanomaterials in various stages of viral pathogenesis according to the molecular mechanism of the complete pathway of viral infection, pathogenesis and transmission, and predict the application prospect of nanomaterials in the treatment of COVID-19. Third, aiming at the most important causes of human death, we focus on atherosclerosis, aneurysms and myocardial infarction, three of the most common and most harmful cardiovascular diseases, and prove that nanomaterials could be involved in a variety of therapeutic approaches and significantly improve the therapeutic effect in cardiovascular diseases. Therefore, we believe nanotechnology will become more widely involved in the diagnosis and treatment of diseases in the future, potentially helping to overcome bottlenecks under existing medical methods.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
| | - Zhanqi Wei
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Chang Han
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Zhang C, Wu L, de Perrot M, Zhao X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front Oncol 2021; 11:693814. [PMID: 34386422 PMCID: PMC8353320 DOI: 10.3389/fonc.2021.693814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon nanotubes (CNTs) are nanomaterials with broad applications that are produced on a large scale. Animal experiments have shown that exposure to CNTs, especially one type of multi-walled carbon nanotube, MWCNT-7, can lead to malignant transformation. CNTs have characteristics similar to asbestos (size, shape, and biopersistence) and use the same molecular mechanisms and signaling pathways as those involved in asbestos tumorigenesis. Here, a comprehensive review of the characteristics of carbon nanotubes is provided, as well as insights that may assist in the design and production of safer nanomaterials to limit the hazards of currently used CNTs.
Collapse
Affiliation(s)
- Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Licun Wu
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Department Immunology, University of Toronto, Toronto, ON, Canada
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics 2021; 13:pharmaceutics13070948. [PMID: 34202660 PMCID: PMC8309086 DOI: 10.3390/pharmaceutics13070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid growth of nanotechnology and the development of novel nanomaterials with unique physicochemical characteristics provides potential for the utility of nanomaterials in theranostics, including neuroimaging, for identifying neurodegenerative changes or central nervous system malignancy. Here we present a systematic and thorough review of the current evidence pertaining to the imaging characteristics of various nanomaterials, their associated toxicity profiles, and mechanisms for enhancing tropism in an effort to demonstrate the utility of nanoparticles as an imaging tool in neuro-oncology. Particular attention is given to carbon-based and metal oxide nanoparticles and their theranostic utility in MRI, CT, photoacoustic imaging, PET imaging, fluorescent and NIR fluorescent imaging, and SPECT imaging.
Collapse
|
12
|
Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021; 22:4804. [PMID: 33946583 PMCID: PMC8124553 DOI: 10.3390/ijms22094804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β (TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Edinburgh Molecular Imaging Ltd. (EMI), Edinburgh EH16 4UX, UK
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Ilona A. Dekkers
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Anke M. Smits
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Marie José T. H. Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
13
|
Dugam S, Tade R, Dhole R, Nangare S. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-020-00176-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Microneedles (MNs) are the utmost unique, efficient, and minimally invasive inventions in the pharmaceutical field. Over the past decades, many scientists around the globe have reported MNs cautious because of their superb future in distinct areas. Concerning the wise use of MNs herein, we deal in depth with the present applications of MNs in drug delivery.
Main text
The present review comprises various fabrication materials and methods used for MN synthesis. The article also noted the distinctive advantages of these MNs, which holds huge potential for pharmaceutical and biomedical applications. The role of MNs in serving as a platform to treat various ailments has been explained accompanied by unusual approaches. The review also inculcates the pharmacokinetics of MNs, which includes permeation, absorption, and bioavailability enhancement. Besides this, the in vitro/in vivo toxicity, biosafety, and marketed product of MNs have been reviewed. We have also discussed the clinical trials and patents on the pharmaceutical applications of MNs in brief.
Conclusion
To sum up, this article gives insight into the MNs and provides a recent advancement in MNs, which pave the pathway for future pharmaceutical and biomedical applications.
Graphical abstract
Pharmaceutical and biomedical applications of MNs
Collapse
|
14
|
Nangare S, Dugam S. Smart invasome synthesis, characterizations, pharmaceutical applications, and pharmacokinetic perspective: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00145-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Scientists are constantly looking for the introduction of unique drug delivery systems for the existing drug molecule. Since the skin is one of the primary and essential organs of the human body, it needs successful research development for the delivery of the drug. While the skin is assumed a human body’s multifunctional organ, it has minimal permeability across the stratum corneum (SC). Since this is an influential barrier for the active agent, several carrier platforms to surmount this obstacle have been created. Invasomes are the liposomal vesicles, which incorporate small quantities of ethanol and terpenes or a mixture of terpenes, as potentials for improved penetration of the skin. The rate of penetration of invasomes through the skin is significantly greater than that of liposomes and ethosomes. Invasomes focus on providing a series of benefits namely enhanced drug effectiveness, increased conformity, and ease for patients.
Main body
The present article portrays insights of invasomes which include composition and preparation methods of invasomes. The article gives a brief review of the penetration mechanism, synthesis process, and characterizations of invasomes. The article gives a point by point audit about pharmaceutical applications, viz. anticancer, antihypertensive, anti-acne, vitamin analog, anticholinergic, antioxidant, etc. The pharmacokinetic properties of invasomes have also been described.
Conclusion
The key goal of an invasome-based delivery system is not only to strengthen the efficacy and safety of the drug but also to dramatically increase patient conformity and the therapeutic value to a significant extent. The delivery of drugs via the skin membrane in advanced drug delivery systems is a fascinating fact. Many pharmaceutical studies have shown that plentiful drug molecules are less soluble, have less bioavailability and stability, have less penetration, etc. Therefore, a new form of dosage with exceptional characteristics like invasomes can be created.
Graphical abstract
Collapse
|
15
|
Chinnappan R, Al Faraj A, Abdel Rahman AM, Abu-Salah KM, Mouffouk F, Zourob M. Anti-VCAM-1 and Anti-IL4Rα Aptamer-Conjugated Super Paramagnetic Iron Oxide Nanoparticles for Enhanced Breast Cancer Diagnosis and Therapy. Molecules 2020; 25:E3437. [PMID: 32751068 PMCID: PMC7435411 DOI: 10.3390/molecules25153437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/03/2022] Open
Abstract
The surface protein overexpressed on cancer cells can be used as biomarkers for early detection of specific diseases. Anti-VCAM-1 and anti-IL4Rα DNA aptamers specific to VCAM-1 and IL4Rα receptors that are overexpressed in 4T1 tumor-bearing mice could be used as potential biomarker for both diagnostic and therapeutic applications in cancer biology. Cell Viability and luciferase assay of 4T1-Luc2 cancer cells in the presence of anti-VCAM-1 ssDNA or anti-IL4Rα RNA aptamers was assessed by monitoring the changes in the absorbance and the fluorescence of Alamar blue dye. The aptamer-conjugated SPIO magnetic beads, used for the selective targeting to tumor sites, were monitored using noninvasive MRI and Bioluminescence imaging (BLI). Cell viability and luciferase assays showed that both anti-VCAM-1 and anti-IL4Rα aptamers favor the depletion of cancer cells and limit tumor progression. Microscopic analyses confirmed that the target specific aptamers significantly trigger tumor cell apoptosis and limit cancer cell growth in vitro. The intravenous injection of SPIO nanoparticle-conjugated aptamers were further confirmed using noninvasive MRI and Bioluminescence imaging. Anti-VCAM1 and anti-IL4Rα aptamers, specific to VCAM-1 and IL4Rα receptors overexpressed in 4T1-Luc2 tumor-bearing mice, were used as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
| | - Achraf Al Faraj
- Department of Radiologic Sciences, Faculty of Health Sciences, American University of Science and Technology, Ashrafieh, Alfred Naccash Avenue, Beirut 1100, Lebanon
| | - Anas M. Abdel Rahman
- Department of Genentics, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Khalid M. Abu-Salah
- Department of Nanomedicine, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia;
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
- Department of Genentics, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia;
| |
Collapse
|
16
|
Haider N, Fatima S, Taha M, Rizwanullah M, Firdous J, Ahmad R, Mazhar F, Khan MA. Nanomedicines in Diagnosis and Treatment of Cancer: An Update. Curr Pharm Des 2020; 26:1216-1231. [DOI: 10.2174/1381612826666200318170716] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
Abstract
:
Nanomedicine has revolutionized the field of cancer detection and treatment by enabling the delivery
of imaging agents and therapeutics into cancer cells. Cancer diagnostic and therapeutic agents can be either encapsulated
or conjugated to nanosystems and accessed to the tumor environment through the passive targeting
approach (EPR effect) of the designed nanomedicine. It may also actively target the tumor exploiting conjugation
of targeting moiety (like antibody, peptides, vitamins, and hormones) to the surface of the nanoparticulate system.
Different diagnostic agents (like contrast agents, radionuclide probes and fluorescent dyes) are conjugated with
the multifunctional nanoparticulate system to achieve simultaneous cancer detection along with targeted therapy.
Nowadays targeted drug delivery, as well as the early cancer diagnosis is a key research area where nanomedicine
is playing a crucial role. This review encompasses the significant recent advancements in drug delivery as well as
molecular imaging and diagnosis of cancer exploiting polymer-based, lipid-based and inorganic nanoparticulate
systems.
Collapse
Affiliation(s)
- Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Sana Fatima
- Department of Ilmul Saidla, National Institute of Unani Medicine, Bengaluru-560091, India
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Jamia Firdous
- Department of Pharmacy, Institute of Bio-Medical Education and Research, Mangalayatan University, Aligarh, India
| | - Rafeeque Ahmad
- The New York School of Medical and Dental Assistants, Long Island City, NY 11101, United States
| | - Faizan Mazhar
- Department of Bio-medical and Clinical Science, University of Milan, Italy
| | - Mohammad A. Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
17
|
Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem Biol Interact 2019; 307:206-222. [PMID: 31054282 DOI: 10.1016/j.cbi.2019.04.036] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Application of nanomaterials in our daily life is increasing, day in day out and concerns have raised about their toxicity for human and other organisms. In this manner, carbon-based nanomaterials have been applied to different products due to their unique physicochemical, electrical, mechanical properties, and biological compatibility. But, there are several reports about the negative effects of these materials on biological systems and cellular compartments. This review article describes the various types of carbon-based nanomaterials and methods that use for determining these toxic effects that are reported recently in the papers. Then, extensively discussed the toxic effects of these materials on the human and other living organisms and also their toxicity routs including Neurotoxicity, Hepatotoxicity, Nephrotoxicity, Immunotoxicity, Cardiotoxicity, Genotoxicity and epigenetic toxicity, Dermatotoxicity, and Carcinogenicity.
Collapse
|
18
|
Shandilya R, Bhargava A, Bunkar N, Tiwari R, Goryacheva IY, Mishra PK. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 2019; 130:147-165. [PMID: 30735948 DOI: 10.1016/j.bios.2019.01.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022]
Abstract
Early cancer diagnosis is of prime importance as it paves the way for effective treatment and possible patient survival. The recent advancements in the field of biosensorics have facilitated the development of functionalized nanobiosensors which have the potential to provide a cost-effective, reliable and rapid diagnostic strategy for cancers. These nanoscaled sensing systems utilize electrochemical, optical, mass and calorimetric sensing mechanisms to specifically identify the disease-specific biomarkers. Because of clinical translational utility, the present review aims to describe the recent developments and status of the nanobiosensors as a point-of-care approach for cancer diagnosis. The review also offers important insights into the design, preparation and characterization of these nano-frameworks. In particular, the state-of-art nanobiosensors based on carbon nanostructures, metal nanoparticles, magnetic nanoparticles, silica-based nanomaterials, conducting polymers based nanoparticles and quantum dots, which provide countless opportunities in the field of cancer biosensorics have been summarized. It also showcases the need to perform robust clinical validation of the emerging nanobiosensor strategies that would act as the ultimate point-of-care test for the personalized cancer therapeutics.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India.
| |
Collapse
|
19
|
Shaik AS, Shaik AP, Bammidi VK, Al Faraj A. Effect of polyethylene glycol surface charge functionalization of SWCNT on the in vitro and in vivo nanotoxicity and biodistribution monitored noninvasively using MRI. Toxicol Mech Methods 2019; 29:233-243. [PMID: 30480460 DOI: 10.1080/15376516.2018.1540674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current study evaluated in vitro and in vivo toxicity of carboxyl or amine polyethylene glycol (PEG) surface functionalization of single-walled carbon nanotubes (SWCNTs). Assessments of cytotoxicity, genotoxicity, immunotoxicity, and oxidative stress were performed in vitro and in vivo (in a 1-month follow-up study). The SWCNT biodistribution was investigated using noninvasive magnetic resonance imaging (MRI). Results confirmed the enhanced biocompatibility of PEG-functionalized SWCNTs compared to non-functionalized materials with significant decreases (p < 0.05) in the percentage of cell viability and increases in ROS generation, mitochondrial membrane potential, cell apoptosis, oxidative stress generation, and oxidative DNA damage in vitro. PEG-functionalized SWCNTs with amine terminals were found to induce prominent increases in ROS generation, mitochondrial membrane potential, and oxidative stress compared to carboxy functionalization. No significant difference in the biodistribution of either functionalized SWCNTs was observed in MRI. In vivo assessments revealed a statistically significant increase (p < 0.05) in oxidative stress as early as 24 h in serum and liver; however, all values normalized at 2 weeks' investigation time point. DNA damage was minimal with either PEG-COOH or PEG-NH2 functionalized SWCNTs after 2 weeks' exposure. The negatively charged SWCNTs caused lesser DNA damage compared to positively charged samples. Carboxy-functionalized SWCNTs did not cause substantial changes in inflammatory mediators and were found to be significantly safer than non-functionalized SWCNTs and may pave the way for novel biomedical applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Asma Sultana Shaik
- a Prince Naif Health Research Center , King Saud University , Riyadh , Saudi Arabia
| | - Abjal Pasha Shaik
- b Department of Clinical Lab Sciences , College of Applied Medical Sciences, King Saud University , Riyadh , Saudi Arabia
| | - Vamsee K Bammidi
- c The Unicare Group, Burton-on-Trent , Staffordshire , United Kingdom
| | - Achraf Al Faraj
- d Department of Radiologic Sciences, Faculty of Health Science , American University of Science and Technology , Beirut , Lebanon
| |
Collapse
|
20
|
Zhang Y, Wu M, Wu M, Zhu J, Zhang X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS OMEGA 2018; 3:9126-9145. [PMID: 31459047 PMCID: PMC6644613 DOI: 10.1021/acsomega.8b01071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 05/30/2023]
Abstract
Molecular imaging has been widely used not only as an important detection technology in the field of medical imaging for cancer diagnosis but also as a theranostic approach for cancer in recent years. Multifunctional carbon-based nanomaterials (MCBNs), characterized by unparalleled optical, electronic, and thermal properties, have attracted increasing interest and demonstrably hold the greatest promise in biomolecular imaging and therapy. As such, it should come as no surprise that MCBNs have already revealed a great deal of potential applications in biomedical areas, such as bioimaging, drug delivery, and tumor therapy. Carbon nanomaterials can be categorized as graphene, single-walled carbon nanotubes, mesoporous carbon, nanodiamonds, fullerenes, or carbon dots on the basis of their morphologies. In this article, reports of the use of MCBNs in various chemical conjugation/functionalization strategies, focusing on their applications in cancer molecular imaging and imaging-guided therapy, will be comprehensively summarized. MCBNs show the possibility to serve as optimal candidates for precise cancer biotheranostics.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Minghao Wu
- Department
of Radiology, Tianjin Medical University
Cancer Institute and Hospital, National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer Key Laboratory
of Cancer Prevention and Therapy, Tianjin 300060, P. R.
China
| | - Mingjie Wu
- Institut
National de la Recherche Scientifique-Énergie Matériaux
et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Jingyi Zhu
- School
of Pharmaceutical Science, Nanjing Tech
University, Nanjing 211816, P. R. China
| | - Xuening Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| |
Collapse
|
21
|
Gao Y. Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications. J Funct Biomater 2018; 9:E16. [PMID: 29415438 PMCID: PMC5872102 DOI: 10.3390/jfb9010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials have attracted significant attention in biomaterial research in recent decades due to their unique physical properties, versatile functionalization chemistry, as well as excellent biological compatibility. Researchers have employed various carbon nano-allotropes to develop hybrid MRI contrast agents for improved sensitivity. This review summarizes the new research progresses in carbon-based hybrid MRI contrast agents, especially those reported in the past five years. The review will only focus on T2-weighted MRI agents and will be categorized by the different carbon allotrope types and magnetic components. Considering the strong trend in recent bio-nanotechnology research towards multifunctional diagnosis and therapy, carbon-based MRI contrast agents integrated with other imaging modalities or therapeutic functions are also covered.
Collapse
Affiliation(s)
- Yunxiang Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
22
|
Bhavsar C, Momin M, Khan T, Omri A. Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opin Drug Deliv 2018; 15:641-663. [PMID: 29301448 DOI: 10.1080/17425247.2018.1424825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Tumor is a heterogeneous mass of malignant cells co-existing with non-malignant cells. This co-existence evolves from the initial developmental stages of the tumor and is one of the hallmarks of cancer providing a protumorigenic niche known as tumor microenvironment (TME). Proliferation, invasiveness, metastatic potential and maintenance of stemness through cross-talk between tumors and its stroma forms the basis of TME. AREAS COVERED The article highlights the developmental phases of a tumor from dysplasia to the formation of clinically detectable tumors. The authors discuss the mechanistic stages involved in the formation of TME and its contribution in tumor outgrowth and chemoresistance. The authors have reviewed various approaches for targeting TME and its hallmarks along with their advantages and pitfalls. The authors also highlight cancer stem cells (CSCs) that are resistant to chemotherapeutics and thus a primary reason for tumor recurrence thereby, posing a challenge for the oncologists. EXPERT OPINION Recent understanding of the cellular and molecular mechanisms involved in acquired chemoresistance has enabled scientists to target the tumor niche and TME and modulate and/or disrupt this communication leading to the transformation from a tumor-supportive niche environment to a tumor-non-supporting environment and give synergistic results towards an effective management of cancer.
Collapse
Affiliation(s)
- Chintan Bhavsar
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Munira Momin
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Tabassum Khan
- b Department of Quality Assurance and Pharmaceutical Chemistry, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Abdelwahab Omri
- c The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Laurentian University , Sudbury , ON , Canada
| |
Collapse
|
23
|
Ratemi E, Sultana Shaik A, Al Faraj A, Halwani R. Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin Exp Allergy 2017; 46:1033-42. [PMID: 27404025 DOI: 10.1111/cea.12771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite the various treatment options and international guidelines currently available for the appropriate therapeutic management of asthma, a large population of patients with asthma continues to have poorly controlled disease. There is therefore a need for novel approaches to achieve better asthma control, especially for severe asthmatics. This review discusses the use of nanoparticles for the specific targeting of inflammatory pathways as a promising approach for the effective control of severe persistent asthma as well as other chronic inflammatory diseases.
Collapse
Affiliation(s)
- E Ratemi
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - A Sultana Shaik
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - A Al Faraj
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - R Halwani
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Al Faraj A, Shaik AS, Halwani R, Alfuraih A. Magnetic Targeting and Delivery of Drug-Loaded SWCNTs Theranostic Nanoprobes to Lung Metastasis in Breast Cancer Animal Model: Noninvasive Monitoring Using Magnetic Resonance Imaging. Mol Imaging Biol 2017; 18:315-24. [PMID: 26486793 DOI: 10.1007/s11307-015-0902-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE In this study, we aimed to develop novel therapeutic and diagnostic approaches by improving the targeting of doxorubicin-loaded single-walled carbon nanotubes (SWCNTs) to metastatic regions, and monitor their preferential homing and enhanced therapeutic effect using noninvasive free-breathing magnetic resonance imaging (MRI) and bioluminescence imaging. PROCEDURES High-energy flexible magnets were specifically positioned over the metastatic tumor sites in the lungs. SWCNTs biodistribution, tumor progression, and subsequent treatment efficiency were assessed following administration of the magnetically attracted doxorubicin-loaded anti-CD105 conjugated nanocarriers. RESULTS The use of high-energy magnets offered improved theranostic effect of doxorubicin-loaded nanocarriers, by magnetically targeting them towards metastatic tumor sites in the lungs. MRI allowed sensitive monitoring of nanocarriers biodistribution in the abdominal organs, their preferential homing towards the metastatic sites, and their enhanced therapeutic effect. CONCLUSIONS Combination of noninvasive MRI to localize sensitively the tumor sites, with specific positioning of magnets that can enhance the magnetic targeting of nanocarriers, allowed increasing the treatment efficiency.
Collapse
Affiliation(s)
- Achraf Al Faraj
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, 11433, Saudi Arabia.
| | - Asma Sultana Shaik
- College of Medicine, Prince Naif Health Research Center, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Rabih Halwani
- College of Medicine, Prince Naif Health Research Center, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Abdulrahman Alfuraih
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
25
|
Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1289-1304. [DOI: 10.1016/j.msec.2017.02.132] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/18/2016] [Accepted: 02/24/2017] [Indexed: 12/25/2022]
|
26
|
Sanginario A, Miccoli B, Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. BIOSENSORS 2017; 7:E9. [PMID: 28212271 PMCID: PMC5371782 DOI: 10.3390/bios7010009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide nanowires, zinc oxide or mesoporous silica nanoparticles, for cancer and metastasis treatment with the advantage of operating directly at the bio-molecular scale. Among them, carbon nanotubes emerged as valid candidates not only for drug delivery, but also as a valuable tool in cancer imaging and physical ablation. Nevertheless, deep investigations about carbon nanotubes' potential bio-compatibility and cytotoxicity limits should be also critically addressed. In the present review, after introducing carbon nanotubes and their promising advantages and drawbacks for fighting cancer, we want to focus on the numerous and different ways in which they can assist to reach this goal. Specifically, we report on how they can be used not only for drug delivery purposes, but also as a powerful ally to develop effective contrast agents for tumors' medical or photodynamic imaging, to perform direct physical ablation of metastasis, as well as gene therapy.
Collapse
Affiliation(s)
- Alessandro Sanginario
- Electronics Design Laboratory (EDL), Istituto Italiano di Tecnologia, Via Melen 83b, 16152 Genova (GE), Italy.
| | - Beatrice Miccoli
- Department of Electronics and Telecommunications, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
27
|
Zeng Q, Liu YM, Jia YW, Wan LH, Liao X. PEGylation of magnetic multi-walled carbon nanotubes for enhanced selectivity of dispersive solid phase extraction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:186-194. [DOI: 10.1016/j.msec.2016.09.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/24/2016] [Accepted: 09/29/2016] [Indexed: 11/15/2022]
|
28
|
Hernández-Rivera M, Zaibaq NG, Wilson LJ. Toward carbon nanotube-based imaging agents for the clinic. Biomaterials 2016; 101:229-40. [DOI: 10.1016/j.biomaterials.2016.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/12/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
29
|
Boncel S, Herman AP, Budniok S, Jędrysiak RG, Jakóbik-Kolon A, Skepper JN, Müller KH. In Vitro Targeting and Selective Killing of T47D Breast Cancer Cells by Purpurin and 5-Fluorouracil Anchored to Magnetic CNTs: Nitrene-Based Functionalization versus Uptake, Cytotoxicity, and Intracellular Fate. ACS Biomater Sci Eng 2016; 2:1273-1285. [DOI: 10.1021/acsbiomaterials.6b00197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sławomir Boncel
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Artur P. Herman
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Sebastian Budniok
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Rafał G. Jędrysiak
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Agata Jakóbik-Kolon
- Department
of Inorganic Chemistry, Analytical Chemistry and Electrochemistry,
Faculty of Chemistry, Silesian University of Technology, Krzywoustego
6, Gliwice 44-100, Poland
| | - Jeremy N. Skepper
- Cambridge
Advanced Imaging Centre, Department of Physiology, Development and
Neuroscience, Anatomy Building, University of Cambridge, Downing
Street, Cambridge CB2 3DY, United Kingdom
| | - Karin H. Müller
- Cambridge
Advanced Imaging Centre, Department of Physiology, Development and
Neuroscience, Anatomy Building, University of Cambridge, Downing
Street, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
30
|
Al Faraj A. SWCNTs as novel theranostic nanocarriers for cancer diagnosis and therapy: towards safe translation to the clinics. Nanomedicine (Lond) 2016; 11:1431-45. [DOI: 10.2217/nnm-2016-0065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
With their unique physicochemical properties, single walled carbon nanotubes (SWCNTs) hold great promise for applications as drug delivery systems (DDS) for early and better diagnosis and therapy of cancer. While several in vitro and in vivo studies have validated their potential benefit, no SWCNT-based formulation has yet reached clinical trials. Towards prospective safe clinical applications, the main properties that were adopted to enhance the biocompatibility of SWCNTs were highlighted. Then, the recent progresses in the in vivo applications of SWCNTs as diagnostic nanoprobes using multimodality imaging techniques and as therapeutic nanocarriers delivering wide range of anticancer efficient drugs to tumors were reviewed. Finally, the efforts required for safe clinical applications of SWCNTs as DDS for cancer diagnosis and therapy were discussed.
Collapse
Affiliation(s)
- Achraf Al Faraj
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 2016; 501:278-99. [DOI: 10.1016/j.ijpharm.2016.01.064] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
32
|
Al Faraj A, Shaik AS, Ratemi E, Halwani R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release 2016; 225:240-51. [PMID: 26827662 DOI: 10.1016/j.jconrel.2016.01.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/24/2016] [Accepted: 01/27/2016] [Indexed: 01/06/2023]
Abstract
Targeting breast cancer and more specifically cancer stem cell (CSC) subpopulation, responsible for tumor growth, resistance and self-renewal, using combination of therapeutic drugs selectively delivered via biocompatible nanocarriers, provides a novel approach for effective therapy. Here, we propose to evaluate the potential therapeutic efficacy of combining Paclitaxel and Salinomycin drugs actively targeted to both breast cancer and CSCs in xenograft murine model after conjugation with biocompatible CD44 antibody conjugated SWCNTs via hydrazone linker allowing pH-responsive release mechanism near the acidic tumor microenvironment. Both in vitro investigations on MDA-MB-231, sorted CSC negative or CSC positive fractions and in vivo evaluations on tumor-bearing mice using noninvasive bioluminescence and magnetic resonance imaging confirmed the enhanced therapeutic effect of the combined therapy compared to treatment with individual drug-conjugated nanocarriers or free drug suspensions. Thus, confirmed the great promise of the developed SWCNTs drug delivery system for effective breast cancer treatment by targeting and eradicating both whole tumor cells and CSCs populations.
Collapse
Affiliation(s)
- Achraf Al Faraj
- King Saud University, College of Applied Medical Sciences, Department of Radiological Sciences, Riyadh, Saudi Arabia.
| | - Asma Sultana Shaik
- King Saud University, Prince Naif Health Research Center, Riyadh, Saudi Arabia
| | - Elaref Ratemi
- Jubail Industrial College, Department of Chemical and Process Engineering Technology, Jubail Industrial City, Saudi Arabia
| | - Rabih Halwani
- King Saud University, College of Medicine, Prince Naif Center for Immunology Research, Department of Pediatrics, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Al Faraj A, Shaik AS, Al Sayed B, Halwani R, Al Jammaz I. Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine (Lond) 2015; 11:31-46. [PMID: 26673059 DOI: 10.2217/nnm.15.182] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The limitation of current breast cancer treatments was elucidated by the presence of cancer stem cells (CSCs) that play essential role in cancer initiation, progression, resistance, recurrence and metastasis. Materials & methods: Biocompatible multimodality single-walled carbon nanotube (SWCNT) nanoprobes were developed. The biodistribution and preferential homing of CD44 antibody-conjugated SWCNTs toward the tumor site were monitored using MRI, single-photon emission computed tomography and near-infrared fluorescence imaging noninvasive imaging modalities. RESULTS Quantification of SWCNTs by sensitively measuring iron content in sorted CSC populations using inductively coupled plasma-mass spectrometry confirmed the enhanced selective targeting of anti-CD44 SWCNT and immunohistochemistry analyses revealed enhanced colocalization with areas rich in CD44 receptors. DISCUSSION & CONCLUSION This preclinical study provided encouraging results for efficient targeting of breast CSCs and perspectives for further clinical studies to confirm the efficacy and safety of the designed nanocarriers.
Collapse
Affiliation(s)
- Achraf Al Faraj
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Asma Sultana Shaik
- Prince Naif Health Research Center, King Saud University, Riyadh 12372, Saudi Arabia
| | - Baraa Al Sayed
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Rabih Halwani
- Prince Naif Center for Immunology Research & Asthma Research Chair, Pediatrics Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ibrahim Al Jammaz
- Cyclotron & Radiopharmaceutical Department, King Faisal Specialist Hospital & Research Centre, Riyadh 12713, Saudi Arabia
| |
Collapse
|
34
|
Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. Breast Cancer: Conventional Diagnosis and Treatment Modalities and Recent Patents and Technologies. Breast Cancer (Auckl) 2015; 9:17-34. [PMID: 26462242 PMCID: PMC4589089 DOI: 10.4137/bcbcr.s29420] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Breast cancer is the most prevalent cancer among women worldwide. However, increased survival is due to the dramatic advances in the screening methods, early diagnosis, and breakthroughs in treatments. Over the course of the last decade, many acquisitions have taken place in this critical field of research in the pharmaceutical industry. Advances in molecular biology and pharmacology aided in better understanding of breast cancer, enabling the design of smarter therapeutics able to target cancer and respond to its microenvironment efficiently. Patents and research papers investigating diagnosis and treatment strategies for breast cancer using novel technologies have been surveyed for the past 15 years. Various nanocarriers have been introduced to improve the therapeutic efficacy of anticancer drugs, including liposomes, polymeric micelles, quantum dots, nanoparticles, and dendrimers. This review provides an overview of breast cancer, conventional therapy, novel technologies in the management of breast cancer, and rational approaches for targeting breast cancer. HIGHLIGHTS Breast cancer is the most common cancer in women worldwide. However, survival rates vary widely, optimistically heading toward a positive trend. Increased survival is due to the drastic shift in the screening methods, early diagnosis, and breakthroughs in treatments.Different strategies of breast cancer classification and staging have evolved over the years. Intrinsic (molecular) subtyping is essential in clinical trials and well understanding of the disease.Many novel technologies are being developed to detect distant metastases and recurrent disease as well as to assess response to breast cancer management.Intensive research efforts are actively ongoing to take novel breast cancer therapeutics to potential clinical application.Most of the recent research papers and patents discuss one of the following strategies: the development of new drug entities that specifically target the breast tumor cells; tailor designing a novel carrier system that can multitask and multifunction as a drug carrier, targeting vehicle and even as a diagnostic tool, direct conjugation of a therapeutic drug moiety with a targeting moiety, diagnostic moiety or pharmacokinetics altering moiety; or the use of innovative nontraditional approaches such as genetic engineering, stem cells, or vaccinations.
Collapse
Affiliation(s)
- Mohamed I. Nounou
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fatema ElAmrawy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nada Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Kamilia Abdelraouf
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | |
Collapse
|
35
|
Al Faraj A, Shaik AP, Shaik AS. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomedicine 2014; 10:157-68. [PMID: 25565811 PMCID: PMC4278781 DOI: 10.2147/ijn.s75074] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Targeting doxorubicin (DOX) by means of single-walled carbon nanotube (SWCNT) nanocarriers may help improve the clinical utility of this highly active therapeutic agent. Active targeting of SWCNTs using tumor-specific antibody and magnetic attraction by tagging the nanotubes with iron oxide nanoparticles can potentially reduce the unnecessary side effects and provide enhanced theranostics. In the current study, the in vitro and in vivo efficacy of DOX-loaded SWCNTs as theranostic nanoprobes was evaluated in a murine breast cancer model. Methods Iron-tagged SWCNTs conjugated with Endoglin/CD105 antibody with or without DOX were synthetized and extensively characterized. Their biocompatibility was assessed in vitro in luciferase (Luc2)-expressing 4T1 (4T1-Luc2) murine breast cancer cells using TiterTACS™ Colorimetric Apoptosis Detection Kit (apoptosis induction), poly (ADP-ribose) polymerase (marker for DNA damage), and thiobarbituric acid-reactive substances (oxidative stress generation) assays, and the efficacy of DOX-loaded SWCNTs was evaluated by measuring the radiance efficiency using bioluminescence imaging (BLI). Tumor progression and growth were monitored after 4T1-Luc2 cells inoculation using noninvasive BLI and magnetic resonance imaging (MRI) before and after subsequent injection of SWCNT complexes actively and magnetically targeted to tumor sites. Results Significant increases in apoptosis, DNA damage, and oxidative stress were induced by DOX-loaded SWCNTs. In addition, a tremendous decrease in bioluminescence was observed in a dose- and time-dependent manner. Noninvasive BLI and MRI revealed successful tumor growth and subsequent attenuation along with metastasis inhibition following DOX-loaded SWCNTs injection. Magnetic tagging of SWCNTs was found to produce significant discrepancies in apparent diffusion coefficient values providing a higher contrast to detect treatment-induced variations as noninvasive imaging biomarker. In addition, it allowed their sensitive noninvasive diagnosis using susceptibility-weighted MRI and their magnetic targeting using an externally applied magnet. Conclusion Enhanced therapeutic efficacy of DOX delivered through antibody-conjugated magnetic SWCNTs was achieved. Further, the superiority of apparent diffusion coefficient measurements using diffusion-weighted MRI was found to be a sensitive imaging biomarker for assessment of treatment-induced changes.
Collapse
Affiliation(s)
- Achraf Al Faraj
- Department of Radiological Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abjal Pasha Shaik
- Department of Clinical Lab Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asma Sultana Shaik
- Department of Radiological Sciences, King Saud University, Riyadh, Saudi Arabia ; Prince Naif Health Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|