1
|
da Costa Valente ML, Uehara LM, Lisboa Batalha R, Bolfarini C, Trevisan RLB, Fernandes RR, Beloti MM, Dos Reis AC. Current Perspectives on Additive Manufacturing and Titanium Surface Nanotopography in Bone Formation. J Biomed Mater Res B Appl Biomater 2025; 113:e35554. [PMID: 40062797 DOI: 10.1002/jbm.b.35554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 05/13/2025]
Abstract
This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD-WT), Additive-manufactured Discs (AD), and Additive-manufactured Discs with Treatment (AD-WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3-E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm-Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD-WT and AD-WT showed patterns from chemical treatment (H3PO4 + NaOH). EDS identified additional ions in MD-WT and AD-WT. XRD patterns indicated crystal lattice orientation differences. MD-WT and AD-WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD-WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD-WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD-WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.
Collapse
Affiliation(s)
- Mariana Lima da Costa Valente
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Lívia Maiumi Uehara
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Rodolfo Lisboa Batalha
- Department of Research, Development and Innovation, Instituto de Soldadura e Qualidade, Portugal
| | - Claudemiro Bolfarini
- Materials Engineering Department, Federal University of São Carlos, São Carlos, Brazil
| | | | - Roger Rodrigo Fernandes
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Kunrath MF, Farina G, Sturmer LBS, Teixeira ER. TiO 2 nanotubes as an antibacterial nanotextured surface for dental implants: Systematic review and meta-analysis. Dent Mater 2024; 40:907-920. [PMID: 38714394 DOI: 10.1016/j.dental.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVES Nanotechnology is constantly advancing in dental science, progressing several features aimed at improving dental implants. An alternative for surface treatment of dental implants is electrochemical anodization, which may generate a nanotubular surface (TiO2 nanotubes) with antibacterial potential and osteoinductive features. This systematic review and meta-analysis aims to elucidate the possible antibacterial properties of the surface in question compared to the untreated titanium surface. SOURCES For that purpose, was performed a systematic search on the bases PubMed, Lilacs, Embase, Web Of Science, Cinahl, and Cochrane Central, as well as, manual searches and gray literature. STUDY SELECTION The searches resulted in 742 articles, of which 156 followed for full-text reading. Then, 37 were included in the systematic review and 8 were included in meta-analysis. RESULTS Fifteen studies revealed significant antibacterial protection using TiO2 nanotube surfaces, while 15 studies found no statistical difference between control and nanotextured surfaces. Meta-analysis of in vitro studies demonstrated relevant bacterial reduction only for studies investigating Staphylococcus aureus in a period of 6 h. Meta-analysis of in vivo studies revealed three times lower bacterial adhesion and proliferation on TiO2 nanotube surfaces. CONCLUSIONS TiO2 nanotube topography as a surface for dental implants in preclinical research has demonstrated a positive relationship with antibacterial properties, nevertheless, factors such as anodization protocols, bacteria strains, and mono-culture methods should be taken into consideration, consequently, further studies are necessary to promote clinical translatability.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Georgia Farina
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza B S Sturmer
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Liu T, Yang G, Li T, Wang Q, Liu H, He F. Preparation of Ag@3D-TiO 2 Scaffolds and Determination of its Antimicrobial Properties and Osteogenesis-promoting Ability. Orthop Surg 2024; 16:1445-1460. [PMID: 38706035 PMCID: PMC11144495 DOI: 10.1111/os.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES The micro-nano structure of 3D-printed porous titanium (Ti) alloy with excellent performance in avoiding stress shielding and promoting bone tissue differentiation provides a new opportunity for the development of bone implants, but it necessitates higher requirements for bone tissue differentiation and the antibacterial properties of bone implants in clinical practice. METHODS This study investigated the preparation, antimicrobial properties, and osteogenesis-promoting ability of the 3D printed porous Ti alloy anodic oxidized Ag-carrying (Ag@3D-TiO2) scaffolds. The 3D printed porous Ti alloy (3D-Ti), anodized 3D printed porous Ti alloy (3D-TiO2), and Ag@3D-TiO2 scaffolds were synthesized using electron beam melting. The antimicrobial properties of the scaffolds were examined using antibacterial tests and their cytocompatibility was assessed using a cell proliferation assay and acridine orange/ethidium bromide (AO/EB) staining. In vitro cellular assays were used to investigate the effects of the scaffold microstructural features on cell activity, proliferation, and osteogenesis-related genes and proteins. In vivo animal experiments were used to evaluate the anti-inflammatory and osteogenesis-promoting abilities of the scaffolds. RESULTS The Ag@3D-TiO2 scaffolds exhibited sustained anti-microbial activity over time, enhanced cell proliferation, facilitated osteogenic differentiation, and increased extracellular matrix mineralization. In addition, alkaline phosphatase (ALP), collagen type I (COL-I), and osteocalcin (OCN)-related genes and proteins were upregulated. In vivo animal implantation experiments, the anti-inflammatory effect of the Ag@3D-TiO2 scaffolds were observed using histology, and a large amount of fibrous connective tissue was present around it; the Ag@3D-TiO2 scaffolds were more bio-compatible with the surrounding tissues compared with 3D-Ti and 3D-TiO2; a large amount of uniformly distributed neoplastic bone tissue existed in their pores, and the chronic systemic toxicity test showed that the 3D-Ti, 3D-TiO2, and Ag@3D-TiO2 scaffolds are biologically safe. CONCLUSION The goal of this study was to create a scaffold that exhibits antimicrobial properties and can aid bone growth, making it highly suitable for use in bone tissue engineering.
Collapse
Affiliation(s)
- Tiansheng Liu
- Department of OrthopaedicsTianjin Hospital, Tianjin UniversityTianjinChina
| | - Guijun Yang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin UniversityTianjinChina
| | - Tong Li
- Department of Training and Sports MedicineCharacteristic Medical Center of Chinese People's Armed Police ForceTianjinChina
| | - Qi Wang
- Department of Training and Sports MedicineCharacteristic Medical Center of Chinese People's Armed Police ForceTianjinChina
| | - Houjiang Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin UniversityTianjinChina
| | - Fang He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin UniversityTianjinChina
| |
Collapse
|
4
|
Afrasiabi S, Partoazar A. Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Front Microbiol 2024; 15:1387114. [PMID: 38841057 PMCID: PMC11150612 DOI: 10.3389/fmicb.2024.1387114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Persistent infection caused by biofilm is an urgent in medicine that should be tackled by new alternative strategies. Low efficiency of classical treatments and antibiotic resistance are the main concerns of the persistent infection due to biofilm formation which increases the risk of morbidity and mortality. The gene expression patterns in biofilm cells differed from those in planktonic cells. One of the promising approaches against biofilms is nanoparticle (NP)-based therapy in which NPs with multiple mechanisms hinder the resistance of bacterial cells in planktonic or biofilm forms. For instance, NPs such as silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (Cu), and iron oxide (Fe3O4) through the different strategies interfere with gene expression of bacteria associated with biofilm. The NPs can penetrate into the biofilm structure and affect the expression of efflux pump, quorum-sensing, and adhesion-related genes, which lead to inhibit the biofilm formation or development. Therefore, understanding and targeting of the genes and molecular basis of bacterial biofilm by NPs point to therapeutic targets that make possible control of biofilm infections. In parallel, the possible impact of NPs on the environment and their cytotoxicity should be avoided through controlled exposure and safety assessments. This study focuses on the biofilm-related genes that are potential targets for the inhibition of bacterial biofilms with highly effective NPs, especially metal or metal oxide NPs.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Heydariyan Z, Soofivand F, Dawi EA, Abd Al-Kahdum SA, Hameed NM, Salavati-Niasari M. A comprehensive review: Different approaches for encountering of bacterial infection of dental implants and improving their properties. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Mansoor A, Khurshid Z, Khan MT, Mansoor E, Butt FA, Jamal A, Palma PJ. Medical and Dental Applications of Titania Nanoparticles: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203670. [PMID: 36296859 PMCID: PMC9611494 DOI: 10.3390/nano12203670] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 05/25/2023]
Abstract
Currently, titanium oxide (TiO2) nanoparticles are successfully employed in human food, drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and bio-compatible nature when used in direct close contact with the human body. These NPs are the most versatile oxides as a result of their acceptable chemical stability, lower cost, strong oxidation properties, high refractive index, and enhanced aesthetics. These NPs are fabricated by conventional (physical and chemical) methods and the latest biological methods (biological, green, and biological derivatives), with their advantages and disadvantages in this epoch. The significance of TiO2 NPs as a medical material includes drug delivery release, cancer therapy, orthopedic implants, biosensors, instruments, and devices, whereas their significance as a dental biomaterial involves dentifrices, oral antibacterial disinfectants, whitening agents, and adhesives. In addition, TiO2 NPs play an important role in orthodontics (wires and brackets), endodontics (sealers and obturating materials), maxillofacial surgeries (implants and bone plates), prosthodontics (veneers, crowns, bridges, and acrylic resin dentures), and restorative dentistry (GIC and composites).
Collapse
Affiliation(s)
- Afsheen Mansoor
- Department of Dental Material Sciences, School of Dentistry, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44080, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Talal Khan
- Department of Dental Biomaterials, Bakhtawar Amin Medical and Dental College, Multan 60650, Pakistan;
| | - Emaan Mansoor
- Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan;
| | - Faaz Ahmad Butt
- Department of Materials Engineering, NED University of Engineering & Technology, Karachi 74200, Pakistan;
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Paulo J. Palma
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
7
|
Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater 2021; 127:80-101. [PMID: 33744499 DOI: 10.1016/j.actbio.2021.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Nanoscale surface modification of titanium-based orthopaedic and dental implants is routinely applied to augment bioactivity, however, as is the case with other cells, bacterial adhesion is increased on nano-rough surfaces. Electrochemically anodized Ti implants with titania nanotubes (TNTs) have been proposed as an ideal implant surface with desirable bioactivity and local drug release functions to target various conditions. However, a comprehensive state of the art overview of why and how such TNTs-Ti implants acquire antibacterial functions, and an in-depth knowledge of how topography, chemistry and local elution of potent antibiotic agents influence such functions has not been reported. This review discusses and details the application of nano-engineered Ti implants modified with TNTs for maximum local antibacterial functions, deciphering the interdependence of various characteristics and the fine-tuning of different parameters to minimize cytotoxicity. An ideal implant surface should cater simultaneously to ossoeintegration (and soft-tissue integration for dental implants), immunomodulation and antibacterial functions. We also evaluate the effectiveness and challenges associated with such synergistic functions from modified TNTs-implants. Particular focus is placed on the metallic and semi-metallic modification of TNTs towards enabling bactericidal properties, which is often dose dependent. Additionally, there are concerns over the cytotoxicity of these therapies. In that light, research challenges in this domain and expectations from the next generation of customizable antibacterial TNTs implants towards clinical translation are critically evaluated. STATEMENT OF SIGNIFICANCE: One of the major causes of titanium orthopaedic/dental implant failure is bacterial colonization and infection, which results in complete implant failure and the need for revision surgery and re-implantation. Using advanced nanotechnology, controlled nanotopographies have been fabricated on Ti implants, for instance anodized nanotubes, which can accommodate and locally elute potent antibiotic agents. In this pioneering review, we shine light on the topographical, chemical and therapeutic aspects of antibacterial nanotubes towards achieving desirable tailored antibacterial efficacy without cytotoxicity concerns. This interdisciplinary review will appeal to researchers from the wider scientific community interested in biomaterials science, structure and function, and will provide an improved understanding of controlling bacterial infection around nano-engineered implants, aimed at bridging the gap between research and clinics.
Collapse
|
8
|
Zhao Y, Lu R, Wang X, Huai X, Wang C, Wang Y, Chen S. Visible light-induced antibacterial and osteogenic cell proliferation properties of hydrogenated TiO 2 nanotubes/Ti foil composite. NANOTECHNOLOGY 2021; 32:195101. [PMID: 33513586 DOI: 10.1088/1361-6528/abe156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We successfully fabricated the hydrogenated TiO2 nanotubes/Ti foil (H-TNTs/f-Ti) composite via one-step anodization and two-step annealing. H-TNTs/f-Ti composite had a higher visible light-induced photoelectric response and more hydroxyl functional groups compared with Ti foil and unmodified TiO2 nanotubes/Ti foil composite, which contributed to limiting the proliferation of Streptococcus mutans and Porphyromonas gingivalis, promoting the proliferation of MC3T3-E1 cell on the hydroxylated surface, and improving the biocompatibility with osteogenic cells. Our study provides a simple and effective method for significantly improving dental implant efficacy.
Collapse
Affiliation(s)
- Yu Zhao
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Ran Lu
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xin Wang
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xiaochen Huai
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Caiyun Wang
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, People's Republic of China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
9
|
Silver-Deposited Nanoparticles on the Titanium Nanotubes Surface as a Promising Antibacterial Material into Implants. METALS 2021. [DOI: 10.3390/met11010092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main disadvantage of the implants is the associated infections. Therefore, in the long term, the possibility of improving the antibacterial capacity of different types of implants (dental, orthopedic) is being researched. The severity of the problem lies in the increasing bacterial resistance and finding appropriate alternative treatments for infectious diseases, which is an important research field nowadays. The purpose of this review is to draw a parallel between different studies analyzing the antibacterial activity and mechanism of silver nanoparticles (NP Ag) deposited on the titanium nanotubes (NTT), as well as the analysis of the NP Ag toxicity. This review also provides an overview of the synthesis and characterization of TiO2-derived nanotubes (NT). Thus, the analysis aims to present the existing knowledge to better understand the NP Ag implants benefits and their antibacterial activity.
Collapse
|
10
|
Zheng X, Sun J, Li W, Dong B, Song Y, Xu W, Zhou Y, Wang L. Engineering nanotubular titania with gold nanoparticles for antibiofilm enhancement and soft tissue healing promotion. J Electroanal Chem (Lausanne) 2020; 871:114362. [DOI: 10.1016/j.jelechem.2020.114362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Aguirre Ocampo R, Echeverry-Rendón M, DeAlba-Montero I, Robledo S, Ruiz F, Echeverría Echeverría F. Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose. J Biomed Mater Res A 2020; 109:104-121. [PMID: 32441468 DOI: 10.1002/jbm.a.37010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Nanotubular structures were produced on a commercially pure titanium surface by anodization in an aqueous electrolyte that contained carboxymethyl cellulose and sodium fluoride. The internal diameters obtained were about 100, 48, and 9.5 nm, respectively. Several heat treatments at 200, 350, and 600°C were made to produce nanotubes with different titanium dioxide polymorphs (anatase, rutile). All tested surfaces were superhydrophilic, this behavior was maintained after at least 30 days, regardless of the heat treatment. Although in previous works the nanotube features effect on the bacteria behavior had been studied; this item still unclear. For the best of our knowledge, the effect of small internal diameters (about 10 nm) with and without heat treatment and with and without ultraviolet (UV) irradiation on the bacteria strains comportment has not been reported. From our results, both the internal diameter and the postanodized treatments have an effect on the bacteria strains comportment. All nanotubular coatings UV treated and heat treated at 350 and 600°C; despite they have different inner diameters, inhibit the bacteria growth of both Staphylococcus aureus and Pseudomonas aeruginosa strains. The nanotubular coatings obtained at 20 V and heat treated at 350°C produced the lower bacteria adhesion against both strains evaluated.
Collapse
Affiliation(s)
- Robinson Aguirre Ocampo
- Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mónica Echeverry-Rendón
- Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Medellín, Colombia.,Programa de Estudio y Control de Enfermedades Tropicales (PECET), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Idania DeAlba-Montero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Facundo Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Félix Echeverría Echeverría
- Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
12
|
Dai T, He W, Yao C, Ma X, Ren W, Mai Y, Wu A. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. Biomater Sci 2020; 8:3784-3799. [PMID: 32469010 DOI: 10.1039/d0bm00196a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic progressive disease, which may result in serious clinical outcomes, such as acute heart events or stroke with high mortality. At present, the clinical problems of atherosclerosis mainly consist of the difficulty in confirming the plaques or identifying the stability of the plaques in the early phase and the shortage of valid treatments. Fortunately, with the development of nanotechnology, various inorganic nanoparticles with imaging enhancement and noninvasive therapy functions have been studied in the imaging and treatment of atherosclerosis, which has brought new hope to patients. This review focuses on the recent progress in the use of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis, including the key processes in the development of atherosclerosis and the mainly involved cells, inorganic nanoparticle-based dual-mode imaging methods classified by the types of targeting cells, and inorganic nanoparticle-based therapeutic approaches, such as photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), drug delivery, gene therapy and imaging-guided therapy for atherosclerosis. Finally, this review discusses the challenges and directions of inorganic nanoparticles in potential clinical translation of anti-atherosclerosis in future. We believe this review will enable readers to systematically understand the progress of the inorganic nanoparticle-based imaging and therapy of atherosclerosis and therefore promote the further development of anti-atherosclerosis.
Collapse
Affiliation(s)
- Ting Dai
- Department of Cardiology, The Affiliated Hospital of Medical school of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical Applications of TiO 2 Nanostructures: Recent Advances. Int J Nanomedicine 2020; 15:3447-3470. [PMID: 32523343 PMCID: PMC7234979 DOI: 10.2147/ijn.s249441] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Titanium dioxide (TiO2) nanostructures are one of the most plentiful compounds that have emerged in various fields of technology such as medicine, energy and biosensing. Various TiO2 nanostructures (nanotubes [NTs] and nanowires) have been employed in photoelectrochemical (PEC) biosensing applications, greatly enhancing the detection of targets. TiO2 nanostructures, used as reinforced material or coatings for the bare surface of titanium implants, are excellent additive materials to compensate titanium implants deficiencies-like poor surface interaction with surrounding tissues-by providing nanoporous surfaces and hierarchical structures. These nanostructures can also be loaded by diversified drugs-like osteoporosis drugs, anticancer and antibiotics-and used as local drug delivery systems. Furthermore, TiO2 nanostructures and their derivatives are new emerging antimicrobial agents to overcome human pathogenic microorganisms. However, like all other nanomaterials, toxicity and biocompatibility of TiO2 nanostructures must be considered. This review highlights recent advances, along with the properties and numerous applications of TiO2-based nanostructure compounds in nano biosensing, medical implants, drug delivery and antibacterial fields. Moreover, in the present study, some recent advances accomplished on the pharmaceutical applications of TiO2 nanostructures, as well as its toxicity and biocompatibility, are presented.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Baharak Mahyad
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Hadi Hashemzadeh
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Sajjad Janfaza
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
14
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
15
|
Hu C, Wang L, Lin Y, Liang H, Zhou S, Zheng F, Feng X, Rui Y, Shao L. Nanoparticles for the Treatment of Oral Biofilms: Current State, Mechanisms, Influencing Factors, and Prospects. Adv Healthc Mater 2019; 8:e1901301. [PMID: 31763779 DOI: 10.1002/adhm.201901301] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Due to their excellent size, designability, and outstanding targeted antibacterial effects, nanoparticles have become a potential option for controlling oral biofilm-related infections. However, the formation of an oral biofilm is a dynamic process, and factors affecting the performance of antibiofilm treatments are complex. As such, when examining the existing literature on the antibiofilm effects of nanoparticles, attention should be paid to the specific mechanisms of action at different stages of oral biofilm formation, as well as relevant influencing factors, in order to achieve an objective and comprehensive evaluation. This review is intended to detail the antibacterial mechanisms of nanoparticles during the four stages of the formation of oral biofilms: 1) acquired film formation; 2) bacterial adhesion; 3) early biofilm development; and 4) biofilm maturation. In addition, factors influencing the antibiofilm properties of nanoparticles are summarized from the aspects of nanoparticles themselves, biofilm models, and host factors. The limitations of current research and possible trends for future research are also discussed. In summary, nanoparticles are a promising antioral biofilm strategy. It is hoped that this review can serve as a reference and inspire ideas for further research on the application of nanoparticles for effectively targeting and treating oral biofilms.
Collapse
Affiliation(s)
- Chen Hu
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Lin‐Lin Wang
- Department of StomatologyHainan General Hospital Haikou Hainan 570311 China
| | - Yu‐Qing Lin
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Hui‐Min Liang
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Shan‐Yu Zhou
- Department of StomatologyThe People's Hospital of Longhua Shenzhen 518109 China
| | - Fen Zheng
- Laboratory Medicine CenterNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Laboratory MedicineFoshan Women and Children Hospital Foshan Guangdong 528000 China
| | - Xiao‐Li Feng
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Yong‐Yu Rui
- Laboratory Medicine CenterNanfang HospitalSouthern Medical University Guangzhou 510515 China
| | - Long‐Quan Shao
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| |
Collapse
|
16
|
Qi M, Li X, Sun X, Li C, Tay FR, Weir MD, Dong B, Zhou Y, Wang L, Xu HHK. Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium. Dent Mater 2019; 35:1665-1681. [PMID: 31551152 DOI: 10.1016/j.dental.2019.08.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/30/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Periodontal tissue destruction and tooth loss are increasingly a worldwide problem as the population ages. Periodontitis is caused by bacterial infection and biofilm plaque buildup. Therefore, the objectives of this study were to: (1) develop a near-infrared light (NIR)-triggered core-shell nanostructure of upconversion nanoparticles and TiO2 (UCNPs@TiO2), and (2) investigate its inhibitory effects via antibacterial photodynamic therapy (aPDT) against periodontitis-related pathogens. METHODS The core β-NaYF4:Yb3+,Tm3+ were synthesized via thermal decomposition and further modified with the TiO2 shell via a hydrothermal method. The core-shell structure and the upconversion fluorescence-induced aPDT treatment via 980nm laser were studied. Three periodontitis-related pathogens Streptococcus sanguinis (S. sanguinis), Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) were investigated. The killing activity against planktonic bacteria was detected by a time-kill assay. Single species 4-day biofilms on dentin were tested by live/dead staining, colony-forming units (CFU), and metabolic activity. RESULTS The hexagonal shaped UCNPs@TiO2 had an average diameter of 39.7nm. UCNPs@TiO2 nanoparticles had positively charged (+12.4mV) surface and were biocompatible and non-cytotoxic. Under the excitation of NIR light (980nm), the core NaYF4:Yb3+,Tm3+ UCNPs could emit intense ultraviolet (UV) light, which further triggered the aPDT function of the shell TiO2 via energy transfer, thereby realizing the remarkable antibacterial effects against planktons and biofilms of periodontitis-associated pathogens. NIR-triggered UCNPs@TiO2 achieved much greater reduction in biofilms than control (p<0.05). Biofilm CFU was reduced by 3-4 orders of magnitude via NIR-triggered aPDT, which is significantly greater than that of negative control and commercial aPDT control groups. The killing efficacy of UCNPs@TiO2-based aPDT against the three species was ranked to be: S. sanguinis<F. nucleatum=P. gingivalis. Metabolic activities of biofilms were also greatly reduced via NIR-triggered aPDT (p<0.05). SIGNIFICANCE Upconversion fluorescence-based aPDT achieved strong inhibiting effects against all three species of periodontitis-related pathogens. This novel nanotechnology demonstrated a high promise to inhibit periodontitis, with exciting potential to combat other oral infectious diseases such as deep endodontic infections.
Collapse
Affiliation(s)
- Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Deng C, Xu C, Zhou Q, Cheng Y. Advances of nanotechnology in osteochondral regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1576. [PMID: 31329375 DOI: 10.1002/wnan.1576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
In the past few decades, nanotechnology has proven to be one of the most powerful engineering strategies. The nanotechnologies for osteochondral tissue engineering aim to restore the anatomical structures and physiological functions of cartilage, subchondral bone, and osteochondral interface. As subchondral bone and articular cartilage have different anatomical structures and the physiological functions, complete healing of osteochondral defects remains a great challenge. Considering the limitation of articular cartilage to self-healing and the complexity of osteochondral tissue, osteochondral defects are in urgently need for new therapeutic strategies. This review article will concentrate on the most recent advancements of nanotechnologies, which facilitates chondrogenic and osteogenic differentiation for osteochondral regeneration. Moreover, this review will also discuss the current strategies and physiological challenges for the regeneration of osteochondral tissue. Specifically, we will summarize the latest developments of nanobased scaffolds for simultaneously regenerating subchondral bone and articular cartilage tissues. Additionally, perspectives of nanotechnology in osteochondral tissue engineering will be highlighted. This review article provides a comprehensive summary of the latest trends in cartilage and subchondral bone regeneration, paving the way for nanotechnologies in osteochondral tissue engineering. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Xu
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Quan Zhou
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Aliakbari F, Haji Hosseinali S, Khalili Sarokhalil Z, Shahpasand K, Akbar Saboury A, Akhtari K, Falahati M. Reactive oxygen species generated by titanium oxide nanoparticles stimulate the hemoglobin denaturation and cytotoxicity against human lymphocyte cell. J Biomol Struct Dyn 2019; 37:4875-4881. [DOI: 10.1080/07391102.2019.1568305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fakhteh Aliakbari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ziba Khalili Sarokhalil
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Koorosh Shahpasand
- Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 2019; 83:37-54. [PMID: 30541702 DOI: 10.1016/j.actbio.2018.10.036] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Implanted biomaterials play a key role in the current success of orthopedic and dental procedures. Pure titanium and its alloys are the most commonly used materials for permanent implants in contact with bone. However, implant-related infections remain among the leading reasons for failure. The most critical pathogenic event in the development of infection on biomaterials is biofilm formation, which starts immediately after bacterial adhesion. In the last decade, numerous studies reported the ability of titanium surface modifications and coatings to minimize bacterial adhesion, inhibit biofilm formation and provide effective bacterial killing to protect implanted biomaterials. In the present review, the different strategies to prevent infection onto titanium surfaces are reported: surface modification and coatings by antibiotics, antimicrobial peptides, inorganic antibacterial metal elements and antibacterial polymers. STATEMENT OF SIGNIFICANCE: Implanted biomaterials play a key role in the current success of orthopedic and dental procedures. Pure titanium and its alloys are the most commonly used materials for permanent implants in contact with bone. Microbial infection is one of the main causes of implant failure. Currently, the global infection risk is 2-5% in orthopedic surgery. Numerous solutions exist to render titanium surfaces antibacterial. The LBPS team is an expert on the functionalization of titanium surfaces by using bioactive polymers to improve the biologiocal response. In this review, the different strategies to prevent infection are reported onto titanium and titanium alloy surfaces such as surface modification by antibiotics, antimicrobial peptides, inorganic antibacterial metal elements and antibacterial polymers.
Collapse
|
20
|
A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater 2018; 79:1-22. [PMID: 30121373 DOI: 10.1016/j.actbio.2018.08.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Evolution of metal implants progressively shifted the focus from adequate mechanical strength to improved biocompatibility and absence of toxicity and, finally, to fast osseointegration. Recently, new frontiers and challenges of Ti implants have been addressed to improvement of bioactivity, fighting of bacterial infection and biofilm formation, as well as modulation of inflammation. This is closely related to the clinical demand of multifunctional implants able to simultaneously have a number of specific responses with respect to body fluids, cells (osteoblasts, fibroblasts, macrophages) and pathogenic agents (bacteria, viruses). This complex system of multiple biological stimuli and surface responses is a major arena of the current research on biomaterials and biosurfaces. This review covers the strategies explored to this purpose since 2010 in the case of Ti and Ti alloys, considering that the number of related papers doubled about in the last seven years and no review has comprehensively covered this engaging research area yet. The different approaches followed for producing multifunctional Ti-based surfaces involve the use of thick and thin inorganic coatings, chemical surface treatments, and functionalization strategies coupled with organic coatings. STATEMENT OF SIGNIFICANCE According to the clinical demand of multifunctional implants able to simultaneously have a number of specific responses with respect to body fluids, cells and pathogenic agents, new frontiers of Ti implants have been addressed to improvement of bioactivity, fighting of bacterial infection and biofilm formation, as well as modulation of inflammation. Literature since 2010 is here reviewed. Several strategies for getting bioactive and antibacterial actions on Ti surfaces have been suggested, but they still need to be optimized with respect to several concerns. A further step will be to combine on the same surface a proven ability of modulation of inflammatory response. The achievement of multifunctional surfaces able to modulate inflammation and to promote osteogenesis is a grand challenge.
Collapse
|
21
|
Abdal Dayem A, Lee SB, Cho SG. The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E761. [PMID: 30261637 PMCID: PMC6215285 DOI: 10.3390/nano8100761] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
Nanotechnology has a wide range of medical and industrial applications. The impact of metallic nanoparticles (NPs) on the proliferation and differentiation of normal, cancer, and stem cells is well-studied. The preparation of NPs, along with their physicochemical properties, is related to their biological function. Interestingly, various mechanisms are implicated in metallic NP-induced cellular proliferation and differentiation, such as modulation of signaling pathways, generation of reactive oxygen species, and regulation of various transcription factors. In this review, we will shed light on the biomedical application of metallic NPs and the interaction between NPs and the cellular components. The in vitro and in vivo influence of metallic NPs on stem cell differentiation and proliferation, as well as the mechanisms behind potential toxicity, will be explored. A better understanding of the limitations related to the application of metallic NPs on stem cell proliferation and differentiation will afford clues for optimal design and preparation of metallic NPs for the modulation of stem cell functions and for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
22
|
Sun S, Zhang Y, Zeng D, Zhang S, Zhang F, Yu W. PLGA film/Titanium nanotubues as a sustained growth factor releasing system for dental implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:141. [PMID: 30120576 DOI: 10.1007/s10856-018-6138-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Ti-based implants sometimes fail to integrate with surrounding bone tissue due to insufficiency of new bone formation and surface bonding. To overcome this problem, this research focused on establishing a sustained bone growth factor delivery system by applying anodized TiO2 nanotube arrays and PLGA film on the titanium implant surface. TiO2 nanotube arrays were made by anodic oxidation method, and were then filled with rhBMP2 by vacuum freeze-drying. Next, PLGA was deposition on the surface of this material. The designed system was characterized, pharmacokinetic release rate of rhBMP2 was determined. Adhesion, proliferation, and differentiation activity of osteoblasts cultured on the new surfaces and traditional titanium surfaced were compared. SEM showed that a surface of TiO2 nanotube arrays were successfully generated. PLGA membranes of 50 nm, 250 nm, 800 nm thickness were successfully deposited on the surfaces of TiO2 nanotube layers by using 1%, 3%, 10% PLGA solutions. PLGA film of 250 nm thickness showed ideally controlled release of rhBMP2, lasting for 4 weeks. Furthermore, 250 nm thickness PLGA film improved osteoblast adhesion, proliferation, and levels of alkaline phosphatase. In conclusion, the PLGA film / TiO2 nanotube growth factor delivery system can effectively sustain the release of rhBMP-2, and promote proliferation and differentiation of MC3T3-E1 osteoblasts.
Collapse
Affiliation(s)
- Shengjun Sun
- Shandong Provincial Key Laboratory of Oral Biomedicine, College of Stomatology, Shandong University, No. 44-1, Wenhuaxilu Rd, Jinan, Shandong, 250012, People's Republic of China
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, zhizaoju Rd, Shanghai, 250011, People's Republic of China
| | - Yilin Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, zhizaoju Rd, Shanghai, 250011, People's Republic of China
- Department of Stomatology, Shandong Provincial Hospital affiliated to Shandong University, Yanshanxi Rd, Jinan, Shandong, 250001, People's Republic of China
| | - Deliang Zeng
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, zhizaoju Rd, Shanghai, 250011, People's Republic of China
| | - Songmei Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, zhizaoju Rd, Shanghai, 250011, People's Republic of China
- Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Avenue, Rochester, New York, 14620, USA
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, zhizaoju Rd, Shanghai, 250011, People's Republic of China.
| | - Weiqiang Yu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, zhizaoju Rd, Shanghai, 250011, People's Republic of China.
| |
Collapse
|
23
|
Zhang C, Liu W, Cao C, Zhang F, Tang Q, Ma S, Zhao J, Hu L, Shen Y, Chen L. Modulating Surface Potential by Controlling the β Phase Content in Poly(vinylidene fluoridetrifluoroethylene) Membranes Enhances Bone Regeneration. Adv Healthc Mater 2018; 7:e1701466. [PMID: 29675849 DOI: 10.1002/adhm.201701466] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/07/2018] [Indexed: 12/11/2022]
Abstract
Bioelectricity plays a vital role in living organisms. Although electrical stimulation is introduced in the field of bone regeneration, the concept of a dose-response relationship between surface potential and osteogenesis is not thoroughly studied. To optimize the osteogenic properties of different surface potentials, a flexible piezoelectric membrane, poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)], is fabricated by annealing treatment to control its β phases. The surface potential and piezoelectric coefficients (d33 ) of the membranes can be regulated by increasing β phase contents. Compared with d33 = 20 pC N-1 (surface potential = -78 mV) and unpolarized membranes, bone marrow mesenchymal stem cells (BM-MSCs) cultured on the d33 = 10 pC N-1 (surface potential = -53 mV) membranes have better osteogenic properties. In vivo, d33 = 10 pC N-1 membranes result in rapid bone regeneration and complete mature bone-structure formation. BM-MSCs on d33 = 10 pC N-1 membranes have the lowest reactive oxygen species level and the highest mitochondrial membrane electric potential, implying that these membranes provide the best electrical qunantity for BM-MSCs' proliferation and energy metabolism. This study establishes an effective method to control the surface potential of P(VDF-Trfe) membranes and highlights the importance of optimized electrical stimulation in bone regeneration.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Wenwen Liu
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Cen Cao
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Fengyi Zhang
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Qingming Tang
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Siqin Ma
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - JiaJia Zhao
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Li Hu
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Lili Chen
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| |
Collapse
|
24
|
Lu R, Wang C, Wang X, Wang Y, Wang N, Chou J, Li T, Zhang Z, Ling Y, Chen S. Effects of hydrogenated TiO 2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells. Int J Nanomedicine 2018; 13:2037-2049. [PMID: 29670348 PMCID: PMC5894653 DOI: 10.2147/ijn.s155532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Modified titanium (Ti) substrates with titanium dioxide (TiO2) nanotubes have broad usage as implant surface treatments and as drug delivery systems. Methods To improve drug-loading capacity and accelerate bone integration with titanium, in this study, we hydrogenated anodized titanium dioxide nanotubes (TNTs) by a thermal treatment. Three groups were examined, namely: hydrogenated TNTs (H2-TNTs, test), unmodified TNTs (air-TNTs, control), and Ti substrates (Ti, control). Results Our results showed that oxygen vacancies were present in all the nanotubes. The quantity of -OH groups greatly increased after hydrogenation. Furthermore, the protein adsorption and loading capacity of the H2-TNTs were considerably enhanced as compared with the properties of the air-TNTs (P<0.05). Additionally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to investigate the interactions of TNTs with proteins. During the protein-loading process, the H2-TNTs not only enabled rapid protein adsorption, but also decreased the rate of protein elution compared with that of the air-TNTs. We found that the H2-TNTs exhibited better biocompatibility than the air-TNT and Ti groups. Both cell adhesion activity and alkaline phosphatase activity were significantly improved toward MG-63 human osteoblast-like cells as compared with the control groups (P<0.05). Conclusion We conclude that hydrogenated TNTs could greatly improve the loading capacity of bioactive molecules and MG-63 cell proliferation.
Collapse
Affiliation(s)
- Ran Lu
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University.,Laboratory of Advanced Functional Materials, Department of Materials Science and Engineering, Tsinghua University.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Caiyun Wang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University.,Laboratory of Advanced Functional Materials, Department of Materials Science and Engineering, Tsinghua University.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xin Wang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Na Wang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University
| | - Joshua Chou
- Advanced Tissue Regeneration and Drug Delivery Group, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Tao Li
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University.,Laboratory of Advanced Functional Materials, Department of Materials Science and Engineering, Tsinghua University
| | - Zhenting Zhang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University
| | - Yunhan Ling
- Laboratory of Advanced Functional Materials, Department of Materials Science and Engineering, Tsinghua University
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University
| |
Collapse
|
25
|
Liu C, Geng L, Yu Y, Zhang Y, Zhao B, Zhao Q. Mechanisms of the enhanced antibacterial effect of Ag-TiO 2 coatings. BIOFOULING 2018; 34:190-199. [PMID: 29374981 DOI: 10.1080/08927014.2017.1423287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
It has been demonstrated that Ag-TiO2 nanocomposite coatings with excellent antimicrobial activity and biocompatibility have the potential to reduce infection problems. However, the mechanism of the synergistic effect of Ag-TiO2 coatings on antibacterial efficiency is still not well understood. In this study, five types of Ag-TiO2 nanocomposited coatings with different TiO2 contents were prepared on a titanium substratum. Leaching tests indicated that the incorporation of TiO2 nanoparticles into an Ag matrix significantly promoted Ag ion release. Surface energy measurements showed that the addition of TiO2 nanoparticles also significantly increased the electron donor surface energy of the coatings. Bacterial adhesion assays with Escherichia coli and Staphylococcus aureus demonstrated that the number of adhered bacteria decreased with increasing electron donor surface energy. The increased Ag ion release rate and the increased electron donor surface energy contributed to an enhanced antibacterial efficiency of the coatings.
Collapse
Affiliation(s)
- Chen Liu
- a Department of Chemistry, School of Pharmaceutical Science , Capital Medical University , Beijing , PR China
| | - Lei Geng
- a Department of Chemistry, School of Pharmaceutical Science , Capital Medical University , Beijing , PR China
| | - YiFan Yu
- a Department of Chemistry, School of Pharmaceutical Science , Capital Medical University , Beijing , PR China
| | - Yutong Zhang
- a Department of Chemistry, School of Pharmaceutical Science , Capital Medical University , Beijing , PR China
| | - Buyun Zhao
- b Medical Research Council Laboratory of Molecular Biology , University of Cambridge , Cambridge , UK
| | - Qi Zhao
- c Division of Mechanical Engineering , University of Dundee , Dundee , UK
| |
Collapse
|
26
|
Fernandez-Moure JS, Evangelopoulos M, Colvill K, Van Eps JL, Tasciotti E. Nanoantibiotics: a new paradigm for the treatment of surgical infection. Nanomedicine (Lond) 2017; 12:1319-1334. [PMID: 28520517 DOI: 10.2217/nnm-2017-0401] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infections following orthopedic device implantations often impose a substantial health burden and result in high medical costs. Currently, preventative methods are often employed following an orthopedic implant to reduce risk of infection; however, contamination of the surgical site can still occur. Although antibiotics have demonstrated a substantial reduction in bacterial growth and maintenance, biofilm formation around the implant can often minimize efficacy of the antibiotic. Recently, nanotechnology has garnered significant interest, resulting in the development of several antibiotic delivery strategies that exhibit extended release and increased efficacy. In this review, treatment methods of orthopedic-device-related infections will be discussed and an overview of antimicrobial-based nanotechnologies will be provided. Specifically, nonmetal-, metal- and oxide-based nanotechnologies, incorporating antibacterial strategies, will be discussed.
Collapse
Affiliation(s)
- Joseph S Fernandez-Moure
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | | - Kayla Colvill
- University of Texas McGovern Medical School, Houston, TX, USA
| | - Jeffrey L Van Eps
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
27
|
Augustine R, Nethi SK, Kalarikkal N, Thomas S, Patra CR. Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. J Mater Chem B 2017; 5:4660-4672. [DOI: 10.1039/c7tb00518k] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PCL-EHNs scaffolds enhance endothelial cell proliferation, adhesion and blood vessel formation in a VEGFR2/Akt dependent signaling cascade.
Collapse
Affiliation(s)
- Robin Augustine
- School of Nano Science and Technology
- National Institute of Technology Calicut
- Kozhikode
- India
| | - Susheel Kumar Nethi
- Department of Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology
- Mahatma Gandhi University
- Kottayam – 686 560
- India
- School of Pure and Applied Physics
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology
- Mahatma Gandhi University
- Kottayam – 686 560
- India
- School of Chemical Sciences
| | - Chitta Ranjan Patra
- Department of Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
28
|
Gulati K, Ivanovski S. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges. Expert Opin Drug Deliv 2016; 14:1009-1024. [PMID: 27892717 DOI: 10.1080/17425247.2017.1266332] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The transmucosal nature of dental implants presents a unique therapeutic challenge, requiring not only rapid establishment and subsequent maintenance of osseointegration, but also the formation of resilient soft tissue integration. Key challenges in achieving long-term success are sub-optimal bone integration in compromised bone conditions and impaired trans-mucosal tissue integration in the presence of a persistent oral microbial biofilm. These challenges can be targeted by employing a drug-releasing implant modification such as TiO2 nanotubes (TNTs), engineered on titanium surfaces via electrochemical anodization. Areas covered: This review focuses on applications of TNT-based dental implants towards achieving optimal therapeutic efficacy. Firstly, the functions of TNT implants will be explored in terms of their influence on osseointegration, soft tissue integration and immunomodulation. Secondly, the developmental challenges associated with such implants are reviewed including sterilization, stability and toxicity. Expert opinion: The potential of TNTs is yet to be fully explored in the context of the complex oral environment, including appropriate modulation of alveolar bone healing, immune-inflammatory processes, and soft tissue responses. Besides long-term in vivo assessment under masticatory loading conditions, investigating drug-release profiles in vivo and addressing various technical challenges are required to bridge the gap between research and clinical dentistry.
Collapse
Affiliation(s)
- Karan Gulati
- a School of Dentistry and Oral Health , Griffith University , Gold Coast , Australia.,b Tissue Engineering and Regenerative Medicine (TERM) Group, Understanding Chronic Conditions (UCC) Program, Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| | - Sašo Ivanovski
- a School of Dentistry and Oral Health , Griffith University , Gold Coast , Australia.,b Tissue Engineering and Regenerative Medicine (TERM) Group, Understanding Chronic Conditions (UCC) Program, Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| |
Collapse
|
29
|
GRISCHKE J, EBERHARD J, STIESCH M. Antimicrobial dental implant functionalization strategies —A systematic review. Dent Mater J 2016; 35:545-58. [DOI: 10.4012/dmj.2015-314] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jasmin GRISCHKE
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| | - Jörg EBERHARD
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| | - Meike STIESCH
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| |
Collapse
|
30
|
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Molecular, Cell & Systems Biology, CMVLS, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Manus JP Biggs
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| |
Collapse
|