1
|
Moustafa HAM, El-Dakroury WA, Ashraf A, Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Rizk NI, Mageed SSA, Zaki MB, Mansour RM, Mohammed OA, Abd-Elmawla MA, Abdel-Reheim MA, Doghish AS. SNP's use as a potential chemotoxicity stratification tool in breast cancer: from bench to clinic. Funct Integr Genomics 2025; 25:93. [PMID: 40261508 DOI: 10.1007/s10142-025-01602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/22/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Breast cancer (BC) remains one of the most prevalent malignancies affecting women worldwide, necessitating ongoing research to improve treatment outcomes and minimize adverse effects associated with chemotherapy. This article explores the role of genetic variations, particularly single nucleotide polymorphisms (SNPs), in influencing the efficacy and toxicity of chemotherapeutic agents used in BC treatment. It highlights the impact of polymorphisms in drug metabolism and transport genes, such as UDP-glucuronosyltransferase 1A1 (UGT1A1), carbonyl reductase 1 (CBR1), and ATP-binding cassette multidrug transporter (ABCB1) on the risk of adverse effects, including cardiotoxicity and hematological toxicities. By identifying specific SNPs associated with drug response and toxicity, this research underscores the potential for personalized medicine approaches to optimize treatment regimens, enhance therapeutic efficacy, and minimize side effects in BC patients. The findings advocate for the integration of genetic screening in clinical practice to improve patient outcomes and tailor chemotherapy based on individual genetic profiles.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat, Sadat, City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo- Alexandria Agricultural Road, Menofia, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
2
|
Alonso Llorente A, Salgado Garrido J, Teijido Hermida Ó, González Andrade F, Valiente Martín A, Fanlo Villacampa AJ, Vicente Romero J. Genetic polymorphisms of CYP2C19 in ecuadorian population: An interethnic approach. Heliyon 2024; 10:e28566. [PMID: 38586400 PMCID: PMC10998100 DOI: 10.1016/j.heliyon.2024.e28566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction CYP2C19 is a highly polymorphic gene responsible for metabolizing commonly used drugs. CYP2C19*2,*3 (loss of activity alleles) and *17 (increased activity allele) are the principal alleles included in clinical guidelines, however their prevalence varies among different ethnicities. Ecuadorian population is formed by Mestizos, Afrodescendants and Native Americans and frequency of CYP2C19 alleles could be different among them. The objective of this study was to establish the frequency of these variants in the different populations of Ecuador and to compare them with other populations. Materials and methods DNA from 105 Afrodescendants, 75 Native Americans of the Kichwa ethnicity, and 33 Mestizos Ecuadorians was analyzed by nested-PCR to identify CYP2C19*17 carriers. CYP2C19*2 allele was analyzed in DNA from 78 Afrodescendants, 29 Native Americans of the Kichwa, and 16 Mestizos by TaqMan Allelic Discrimination Assay. CYP2C19*3 was analyzed in 33 Afrodescendants by nested-PCR. Results The global frequencies of the alternate alleles were 14.22% (CYP2C19*2) and 2.10% (CYP2C19*17). No differences (p > 0.05) were observed among the subgroups. No CYP2C19*3 carrier was identified. CYP2C19*2 frequencies in Ecuador were similar to the ones reported in Europe, Africa and Middle East countries and to some American populations. Low CYP2C19*17 frequencies, like the ones in our population, were also observed in East and South Asia and in Native American groups. Discussion Absence of differences in the ethnic groups in Ecuador for CYP2C19*2 and *17 could be due to either a bias in sample selection (ethnic group was assed by self-identification) or to a high interethnic admixture in the Ecuadorian population that would had diluted genetic differences. In addition, CYP2C19*2, *3, and *17 alleles frequencies in our study suggest that Ecuadorians ancestry is mostly of Native American origin.
Collapse
Affiliation(s)
- Alba Alonso Llorente
- Clinical Laboratory Department, Hospital Universitario Arnau de Vilanova, Lleida, Catalunya, Spain
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, Zaragoza, Aragón, Spain
- IRBLleida, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarre, Lleida, Catalunya, Spain
| | - Josefa Salgado Garrido
- Medical Genetics Department, Hospital Universitario de Navarra, Pamplona, Navarra, Spain
- Department of Biochemistry and Molecular Biology, Public University of Navarra (UPNA), Pamplona, Navarra, Spain
| | - Óscar Teijido Hermida
- Navarrabiomed, IdiSNA (Navarra Institute for Health Research), Public University of Navarra (UPNA), Pamplona, Navarra, Spain
| | | | | | - Ana Julia Fanlo Villacampa
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, Zaragoza, Aragón, Spain
| | - Jorge Vicente Romero
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, Zaragoza, Aragón, Spain
| |
Collapse
|
3
|
Tareen MU, Riaz S, Malik SS, Zahid S, Khursheed A, Tariq F, Abbas F, Malik MN, Anis RA, Anees M, Murtaza I, Sultan A. CYP2C19*17 association with higher plasma 4-hydroxy tamoxifen in Pakistani (estrogen-positive) breast cancer patients. Exp Biol Med (Maywood) 2023; 248:1507-1517. [PMID: 37688505 PMCID: PMC10666731 DOI: 10.1177/15353702231187640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/16/2023] [Indexed: 09/11/2023] Open
Abstract
Breast cancer (BC) continues to be the most common cancer in the women worldwide. Since estrogen receptor (ER)-positive BC accounts for the majority of newly diagnosed cases, endocrine therapy is advised to utilize either tamoxifen (Tam) or aromatase inhibitors. The use of Tam as a monotherapy or in conjunction with an aromatase inhibitor following two or three years of endocrine therapy has long been recommended. When used adjuvantly, Tam medication reduces BC mortality and relapses, while it extends survival times in metastatic BC when used in conjunction with other treatments. Unfortunately, the efficiency of Tam varies considerably. This study was conducted to explore the influence of genetic polymorphisms in CYP2C19 gene on Tam's pharmacogenetics and pharmacokinetics in estrogen-positive BC patients. Data from healthy, unrelated individuals (n = 410; control group) and ER-positive BC patients (n = 430) receiving 20 mg of Tam per day were recruited. Steady-state plasma concentrations of Tam and its three metabolites were quantified using the high-performance liquid chromatography in the patients. The CYP2C19 polymorphisms were genotyped using an Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR) approach. More than 65% of healthy individuals were extensive metabolizers (*1/*1) for CYP2C19, whereas more than 70% of ER-positive BC patients were rapid and ultrarapid metabolizers (*1/17*, *17/17*). The polymorphism CYP2C19*17 is significantly associated with higher 4-hydroxytamoxifen (4-OH-Tam). Patients with the *17/*17 genotype exhibited 1- to 1.5-fold higher 4-OH-Tam, which was also high in patients with the *1/*2 and *2/*2 genotypes.
Collapse
Affiliation(s)
| | - Sana Riaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saima Shakil Malik
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sana Zahid
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan
| | - Anum Khursheed
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fizza Tariq
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Faiza Abbas
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Riffat Aysha Anis
- Institute of Diet & Nutritional Sciences, The University of Lahore, Islamabad 54000, Pakistan
| | - Mariam Anees
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aneesa Sultan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
4
|
Association between genetic polymorphisms in cytochrome P450 enzymes and survivals in women with breast cancer receiving adjuvant endocrine therapy: a systematic review and meta-analysis. Expert Rev Mol Med 2022; 24:e1. [PMID: 34991754 PMCID: PMC9884795 DOI: 10.1017/erm.2021.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tamoxifen is commonly prescribed for preventing recurrence in patients with breast cancer. However, the responses of the patients on tamoxifen treatment are variable. Cytochrome P450 genetic variants have been reported to have a significant impact on the clinical outcomes of tamoxifen treatment but no tangible conclusion can be made up till now. The present review attempts to provide a comprehensive review on the associative relationship between genetic polymorphisms in cytochrome P450 enzymes and survival in breast cancer patients on adjuvant tamoxifen therapy. The literature search was conducted using five databases, resulting in the inclusion of 58 studies in the review. An appraisal of the reporting quality of the included studies was conducted using the assessment tool from the Effective Public Health Practice Project (EPHPP). Meta-analyses were performed on CYP2D6 studies using Review Manager 5.3 software. For other studies, descriptive analyses were performed. The results of meta-analyses demonstrated that shorter overall survival, disease-free survival and relapse-free survival were found in the patients with decreased metabolisers when compared to normal metabolisers. The findings also showed that varying and conflicting results were reported by the included studies. The possible explanations for the variable results are discussed in this review.
Collapse
|
5
|
Pang H, Zhang G, Yan N, Lang J, Liang Y, Xu X, Cui Y, Wu X, Li X, Shan M, Wang X, Meng X, Liu J, Tian G, Cai L, Yuan D, Wang X. Evaluating the Risk of Breast Cancer Recurrence and Metastasis After Adjuvant Tamoxifen Therapy by Integrating Polymorphisms in Cytochrome P450 Genes and Clinicopathological Characteristics. Front Oncol 2021; 11:738222. [PMID: 34868931 PMCID: PMC8639703 DOI: 10.3389/fonc.2021.738222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tamoxifen (TAM) is the most commonly used adjuvant endocrine drug for hormone receptor-positive (HR+) breast cancer patients. However, how to accurately evaluate the risk of breast cancer recurrence and metastasis after adjuvant TAM therapy is still a major concern. In recent years, many studies have shown that the clinical outcomes of TAM-treated breast cancer patients are influenced by the activity of some cytochrome P450 (CYP) enzymes that catalyze the formation of active TAM metabolites like endoxifen and 4-hydroxytamoxifen. In this study, we aimed to first develop and validate an algorithm combining polymorphisms in CYP genes and clinicopathological signatures to identify a subpopulation of breast cancer patients who might benefit most from TAM adjuvant therapy and meanwhile evaluate major risk factors related to TAM resistance. Specifically, a total of 256 patients with invasive breast cancer who received adjuvant endocrine therapy were selected. The genotypes at 10 loci from three TAM metabolism-related CYP genes were detected by time-of-flight mass spectrometry and multiplex long PCR. Combining the 10 loci with nine clinicopathological characteristics, we obtained 19 important features whose association with cancer recurrence was assessed by importance score via random forests. After that, a logistic regression model was trained to calculate TAM risk-of-recurrence score (TAM RORs), which is adopted to assess a patient's risk of recurrence after TAM treatment. The sensitivity and specificity of the model in an independent test cohort were 86.67% and 64.56%, respectively. This study showed that breast cancer patients with high TAM RORs were less sensitive to TAM treatment and manifested more invasive characteristics, whereas those with low TAM RORs were highly sensitive to TAM treatment, and their conditions were stable during the follow-up period. There were some risk factors that had a significant effect on the efficacy of TAM. They were tissue classification (tumor Grade < 2 vs. Grade ≥ 2, p = 2.2e-16), the number of lymph node metastases (Node-Negative vs. Node < 4, p = 5.3e-07; Node < 4 vs. Node ≥ 4, p = 0.003; Node-Negative vs. Node ≥ 4, p = 7.2e-15), and the expression levels of estrogen receptor (ER) and progesterone receptor (PR) (ER < 50% vs. ER ≥ 50%, p = 1.3e-12; PR < 50% vs. PR ≥ 50%, p = 2.6e-08). The really remarkable thing is that different genotypes of CYP2D6*10(C188T) show significant differences in prediction function (CYP2D6*10 CC vs. TT, p < 0.019; CYP2D6*10 CT vs. TT, p < 0.037). There are more than 50% Chinese who have CYP2D6*10 mutation. So the genotype of CYP2D6*10(C188T) should be tested before TAM therapy.
Collapse
Affiliation(s)
- Hui Pang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guoqiang Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Na Yan
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
- Department of Science, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jidong Lang
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
- Department of Science, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Yuebin Liang
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
- Department of Science, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Xinyuan Xu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaowen Cui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueya Wu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianjun Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Shan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoqin Wang
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
| | - Xiangzhi Meng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Tian
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
- Department of Science, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Li Cai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dawei Yuan
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Luo B, Yan D, Yan H, Yuan J. Cytochrome P450: Implications for human breast cancer. Oncol Lett 2021; 22:548. [PMID: 34093769 PMCID: PMC8170261 DOI: 10.3892/ol.2021.12809] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment options for breast cancer include endocrine therapy, targeted therapy and chemotherapy. However, some patients with triple-negative breast cancer cannot benefit from these methods. Therefore, novel therapeutic targets should be developed. The cytochrome P450 enzyme (CYP) is a crucial metabolic oxidase, which is involved in the metabolism of endogenous and exogenous substances in the human body. Some products undergoing the metabolic pathway of the CYP enzyme, such as hydroxylated polychlorinated biphenyls and 4-chlorobiphenyl, are toxic to humans and are considered to be potential carcinogens. As a class of multi-gene superfamily enzymes, the subtypes of CYPs are selectively expressed in breast cancer tissues, especially in the basal-like type. In addition, CYPs are essential for the activation or inactivation of anticancer drugs. The association between CYP expression and cancer risk, tumorigenesis, progression, metastasis and prognosis has been widely reported in basic and clinical studies. The present review describes the current findings regarding the importance of exploring metabolic pathways of CYPs and gene polymorphisms for the development of vital therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Mulder TAM, de With M, del Re M, Danesi R, Mathijssen RHJ, van Schaik RHN. Clinical CYP2D6 Genotyping to Personalize Adjuvant Tamoxifen Treatment in ER-Positive Breast Cancer Patients: Current Status of a Controversy. Cancers (Basel) 2021; 13:cancers13040771. [PMID: 33673305 PMCID: PMC7917604 DOI: 10.3390/cancers13040771] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Tamoxifen is an important adjuvant endocrine therapy in estrogen receptor (ER)-positive breast cancer patients. It is mainly catalyzed by the enzyme CYP2D6 into the most active metabolite endoxifen. Genetic variation in the CYP2D6 gene influences endoxifen formation and thereby potentially therapy outcome. However, the association between CYP2D6 genotype and clinical outcome on tamoxifen is still under debate, as contradictory outcomes have been published. This review describes the latest insights in both CYP2D6 genotype and endoxifen concentrations, as well CYP2D6 genotype and clinical outcome, from 2018 to 2020. Abstract Tamoxifen is a major option for adjuvant endocrine treatment in estrogen receptor (ER) positive breast cancer patients. The conversion of the prodrug tamoxifen into the most active metabolite endoxifen is mainly catalyzed by the enzyme cytochrome P450 2D6 (CYP2D6). Genetic variation in the CYP2D6 gene leads to altered enzyme activity, which influences endoxifen formation and thereby potentially therapy outcome. The association between genetically compromised CYP2D6 activity and low endoxifen plasma concentrations is generally accepted, and it was shown that tamoxifen dose increments in compromised patients resulted in higher endoxifen concentrations. However, the correlation between CYP2D6 genotype and clinical outcome is still under debate. This has led to genotype-based tamoxifen dosing recommendations by the Clinical Pharmacogenetic Implementation Consortium (CPIC) in 2018, whereas in 2019, the European Society of Medical Oncology (ESMO) discouraged the use of CYP2D6 genotyping in clinical practice for tamoxifen therapy. This paper describes the latest developments on CYP2D6 genotyping in relation to endoxifen plasma concentrations and tamoxifen-related clinical outcome. Therefore, we focused on Pharmacogenetic publications from 2018 (CPIC publication) to 2021 in order to shed a light on the current status of this debate.
Collapse
Affiliation(s)
- Tessa A. M. Mulder
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
| | - Mirjam de With
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands;
| | - Marzia del Re
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Romano Danesi
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands;
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Correspondence: ; Tel.: +31-10-703-3119
| |
Collapse
|
8
|
Sanchez-Spitman AB, Swen JJ, Dezentjé VO, Moes DJAR, Gelderblom H, Guchelaar HJ. Effect of CYP2C19 genotypes on tamoxifen metabolism and early-breast cancer relapse. Sci Rep 2021; 11:415. [PMID: 33432065 PMCID: PMC7801676 DOI: 10.1038/s41598-020-79972-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
CYP2C19*2 and CYP2C19*17 might influence tamoxifen metabolism and clinical outcome. Our aim was to investigate the effect of CYP2C19 genotypes on tamoxifen concentrations and metabolic ratios (MRs) and breast cancer recurrence in a large cohort of Caucasian women. Genetic variants (CYP2D6 and CYP2C19 genotypes), tamoxifen and metabolites concentrations, baseline characteristics, and breast cancer recurrence from the CYPTAM study (NTR1509) were used. CYP2C19*2 and CYP2C19*17 genotypes were evaluated as alleles and as groups based on CYP2D6 genotypes (high, intermediate and low activity). Log-rank test and Kaplan–Meier analysis were used to evaluate differences in recurrence defined as relapse-free survival (RFS). Classification tree analyses (CTAs) were conducted to assess the levels of interactions per polymorphism (CYP2D6 and CYP2C19 genotypes) on endoxifen concentrations. No differences in mean concentrations and MRs were observed when comparing CYP2C19 genotypes (CYP2C19*1/*1; CYP2C19*1/*2; CYP2C19*2/*2; CYP2C19*1/*17; CYP2C19*17/*17; CYP2C19*2/*17). Only significant differences (p value < 0.05) in mean concentrations and MRs were observed when comparing tamoxifen activity groups (high, intermediate and low activity). A log-rank test did not find an association across CYP2C19 genotypes (p value 0.898). CTAs showed a significant relationship between CYP2D6 and endoxifen (p value < 0.0001), but no association with CYP2C19 genotypes was found. CYP2C19 polymorphisms do not have a significant impact on tamoxifen metabolism or breast cancer relapse.
Collapse
Affiliation(s)
- A B Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - V O Dezentjé
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - H Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
CYP2C19 gene polymorphisms among Moroccan patients with breast cancer disease: A case-control study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Al-Eitan LN, Rababa'h DM, Alghamdi MA, Khasawneh RH. Association of CYP gene polymorphisms with breast cancer risk and prognostic factors in the Jordanian population. BMC MEDICAL GENETICS 2019; 20:148. [PMID: 31477036 PMCID: PMC6720417 DOI: 10.1186/s12881-019-0884-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
Background Single nucleotide polymorphisms (SNPs) in several CYP genes have been associated with altered breast cancer (BC) risk in different populations. Despite this, there is a dearth of information on the roles of these SNPs in Jordanian BC patients. Therefore, this study aims to determine if there is any single nucleotide polymorphism (SNP) within CYP19A1, CYP2C19, CYP2C9, CYP1B1, CYP3A4, and CYP1A2 genes associated with BC in the Jordanian population. In addition, this work investigates the association between selected BC prognostic factors and variants of the aforementioned CYP candidate genes. Methods Blood samples were withdrawn from 221 BC patients and 218 healthy volunteers recruited from the Jordanian population. Genomic DNA was withdrawn and, after quantification and quality control, was genotyped using the Sequenom MassARRAY® system (iPLEX GOLD). Statistical analysis was then carried out to assess allelic and genotypic frequencies as well as genetic association between cases and controls. Results The CYP19A1 SNP rs7176005 (p < 0.0045) and the CYP1A2 SNP rs762551 (p = 0.004) were significantly associated with BC risk. However, no such association was found for the screened SNPs of the CYP2C9, CYP1B1, CYP2C19 and CYP3A4 genes. Regarding the prognostic factors of BC, several of the screened SNPs were associated with different pathological and clinical features. Conclusions Certain CYP genes, particularly CYP19A1 and CYP1A2, were associated with BC risk and development in the Jordanian population.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan. .,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Doaa M Rababa'h
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | | | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman, 11118, Jordan
| |
Collapse
|
11
|
Sim S, Lövrot J, Lindh JD, Bergh J, Xie H. Effect of CYP2C19 and CYP2D6 genotype on tamoxifen treatment outcome indicates endogenous and exogenous interplay. Pharmacogenomics 2018; 19:1027-1037. [DOI: 10.2217/pgs-2018-0089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: We investigated the interaction of CYP2C19 and CYP2D6 genotype on clinical outcome in tamoxifen-treated breast cancer patients. Materials & methods: A cohort of 306 patients on tamoxifen treatment for a minimum of 1 year were employed to analyze the effect of genotype-predicted phenotype on relapse-free survival. Results & conclusion: We show that the group with worst outcome and highest risk of relapse is that of 2C19↑–2D6↓ (hazard ratio: 2.94), when adjusting for age, Nottingham prognostic index and adjuvant chemotherapy. Furthermore, the effect of 2C19↑–2D6↓genotype-predicted phenotype is greatly enhanced in premenopausal patients (hazard ratio: 21.08). We hypothesize that poor bioactivation of tamoxifen in patients with low CYP2D6 activity and high CYP2C19 metabolism represents a tamoxifen-treated patient group that has the worst clinical outcome.
Collapse
Affiliation(s)
- Sarah Sim
- Department of Physiology & Pharmacology, Karolinska Institutet, SE171-76 Stockholm, Sweden
| | - John Lövrot
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
| | - Jonatan D Lindh
- Department of Clinical Pharmacology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
- Department of Clinical Oncology, Karolinska University Hospital, SE171-76 Stockholm, Sweden
| | - Hanjing Xie
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
- Department of Clinical Oncology, Karolinska University Hospital, SE171-76 Stockholm, Sweden
- Department of Oncology, Capio S:t Görans Hospital, SE112-81 Stockholm, Sweden
| |
Collapse
|
12
|
Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, Symmans WF, McLeod HL, Ratain MJ, Zembutsu H, Gaedigk A, van Schaik RH, Ingle JN, Caudle KE, Klein TE. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin Pharmacol Ther 2018; 103:770-777. [PMID: 29385237 PMCID: PMC5931215 DOI: 10.1002/cpt.1007] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022]
Abstract
Tamoxifen is biotransformed by CYP2D6 to 4-hydroxytamoxifen and 4-hydroxy N-desmethyl tamoxifen (endoxifen), both with greater antiestrogenic potency than the parent drug. Patients with certain CYP2D6 genetic polymorphisms and patients who receive strong CYP2D6 inhibitors exhibit lower endoxifen concentrations and a higher risk of disease recurrence in some studies of tamoxifen adjuvant therapy of early breast cancer. We summarize evidence from the literature and provide therapeutic recommendations for tamoxifen based on CYP2D6 genotype.
Collapse
Affiliation(s)
- Matthew P. Goetz
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Michael Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - W. Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mark J. Ratain
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL
| | - Hitoshi Zembutsu
- Division of Human Genetics, National Cancer Center, Research Institute, Tokyo, Japan
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City and Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Ron H. van Schaik
- International Expertcenter Pharmacogenetics, Dept Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
- LKCH UMC Utrecht, The Netherlands
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Kelly E. Caudle
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| |
Collapse
|
13
|
Thota K, Prasad K, Basaveswara Rao MV. Detection of Cytochrome P450 Polymorphisms in Breast
Cancer Patients May Impact on Tamoxifen Therapy. Asian Pac J Cancer Prev 2018; 19:343-350. [PMID: 29479969 PMCID: PMC5980918 DOI: 10.22034/apjcp.2018.19.2.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Breast cancer is the most common cancer among women worldwide. Tamoxifen (TAM), a selective estrogen receptor modulator, is widely used in its treatment. TAM is metabolized by cytochrome P450 (CYP450) enzymes, including CYP2D6, CYP3A5 and CYP2C19, whose genetic variations may have clinicopathological importance. However, reports on the association of various P450 polymorphisms with certain cancers are contradictory. Methods: We here investigated whether the prevalence of the four most common polymorphism in the CYP2D6*4 (G1934A), CYP2D6*10 (C188T), CYP3A5*3 and CYP2C19*2 alleles has any link with breast cancer using genomic DNA and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis. Results: Prevalences of CYP2D6*4, CYP2D6*10 and CYP2C19*2 genotypes were differed significantly (P = 0.01 and P = 0.004) between breast cancer patients and controls. The CYP3A5*3 genotype did not demonstrate statistically significant variation. Conclusion: Polymorphisms in CYP2 appear to be associated with breast cancer risk. Our data taken together with other reports indicates that drug resistance gene polymorphisms might be indicators of response to tamoxifen therapy in breast cancer cases.
Collapse
Affiliation(s)
- Kanakaiah Thota
- Department of Pharmacology, Krishna University, Rajupeta, Machilipatnam, India.
| | | | | |
Collapse
|
14
|
Damkier P, Kjærsgaard A, Barker KA, Cronin-Fenton D, Crawford A, Hellberg Y, Janssen EAM, Langefeld C, Ahern TP, Lash TL. CYP2C19*2 and CYP2C19*17 variants and effect of tamoxifen on breast cancer recurrence: Analysis of the International Tamoxifen Pharmacogenomics Consortium dataset. Sci Rep 2017; 7:7727. [PMID: 28798474 PMCID: PMC5552748 DOI: 10.1038/s41598-017-08091-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
The role of cytochrome P450 drug metabolizing enzymes in the efficacy of tamoxifen treatment of breast cancer is subject to substantial interest and controversy. CYP2D6 have been intensively studied, but the role of CYP2C19 is less elucidated, and we studied the association of CYPC19 genotype and recurrence of breast cancer. We used outcome and genotyping data from the large publicly available International Tamoxifen Pharmacogenomics Consortium (ITPC) dataset. Cox regression was used to compute the hazard ratios (HRs) for recurrence. CYP2C19 genotype data was available for 2 423 patients and the final sample cohort comprised 2 102 patients. CYP2C19*2 or *19 alleles did not influence DFS. For the CYP2C19*2 allele, the HR was 1.05 (CI 0.78–1.42) and 0.79 (CI 0.32–1.94) for hetero- and homozygote carriers, respectively. The corresponding HR for hetero- and homozygote carriers of the CYP2C19*17 allele were 1.02 (CI 0.71–1.46) and 0.57 (CI 0.26–1.24), respectively. Accounting for CYP2D6 genotype status did not change these estimates. We found no evidence to support a clinically meaningful role of CYP2C19 polymorphisms and response to tamoxifen in breast cancer patients and, consequently, CYP2C19 genotype status should not be included in clinical decisions on tamoxifen treatment.
Collapse
Affiliation(s)
- Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Anders Kjærsgaard
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Kimberly A Barker
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Anatasha Crawford
- Department of Epidemiology, Rollins School of Public Health and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ylva Hellberg
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Carl Langefeld
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas P Ahern
- Departments of Surgery and Biochemistry, The Robert Larner, M.D. College of Medicine at The University of Vermont, Burlington, Vermont, USA
| | - Timothy L Lash
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark.,Department of Epidemiology, Rollins School of Public Health and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Huang W, Ji CM, Guo M, Ni WW, Meng L, Wei JF. Pharmacogenomics of proton pump inhibitors. Shijie Huaren Xiaohua Zazhi 2016; 24:4458-4466. [DOI: 10.11569/wcjd.v24.i33.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
At present, proton pump inhibitors (PPIs), as a class of strong antacid agents, are widely used in the clinical treatment of gastrointestinal diseases. PPIs achieved a strong effect of acid suppression with high specificity and long duration. However, the issue of PPI abuse exists worldwide because of the lack of relevant knowledge. Due to tremendous inter-individual differences in uptake, the clinical application of PPIs appears to be limited. Therefore, rational use of PPIs in daily clinical practice is an important research topic. In addition, PPIs were found with many side effects. CYP2C19, as one of the most important enzymes in cytochrome P450 enzyme family, is responsible for the metabolism of over 10% of drugs. The bioavailability and metabolism of PPIs are mainly affected by drug-metabolizing enzymes CYP2C19 and CYP3A4, which are located in the liver. By suppressing cytochrome P450 isoenzyme, PPIs may affect the metabolism of multiple drugs, thus leading to unwanted side effects in case of combined medication. What's more, the individual difference in PPI administration is derived from distinct molecular mechanisms mediated by CYP3A4 and/or CYP2C19. Non-genetic factors, such as combined medication and food pyramid, also impact on the effectiveness of PPIs. Gene mutations can also alter the enzymatic activity of CY2C19, thereby resulting in different blood concentrations of drugs metabolized by CYP2C19. In conclusion, PPIs have the advantages of safety and effectiveness; however, the problem of drug resistance still exists, which indicates their selective application in clinical practice. In this paper, we review the advances in pharmacogenomics of PPIs, with an aim to provide reference to individualized clinical medication.
Collapse
|
16
|
Ham AC, Ziere G, Broer L, Swart KMA, Enneman AW, van Dijk SC, van Wijngaarden JP, van der Zwaluw NL, Brouwer-Brolsma EM, Dhonukshe-Rutten RAM, van Schoor NM, Zillikens MC, van Gelder T, de Vries OJ, Lips P, Deeg DJH, de Groot LCPGM, Hofman A, Witkamp RF, Uitterlinden AG, Stricker BH, van der Velde N. CYP2C9 Genotypes Modify Benzodiazepine-Related Fall Risk: Original Results From Three Studies With Meta-Analysis. J Am Med Dir Assoc 2016; 18:88.e1-88.e15. [PMID: 27889507 DOI: 10.1016/j.jamda.2016.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate whether the CYP2C9*2 and *3 variants modify benzodiazepine-related fall risk. DESIGN Three prospective studies; the Rotterdam Study, B-PROOF, and LASA. SETTING Community-dwelling individuals living in or near five Dutch cities. PARTICIPANTS There were 11,485 participants aged ≥55 years. MEASUREMENTS Fall incidents were recorded prospectively. Benzodiazepine use was determined using pharmacy dispensing records or interviews. Cox proportional hazard models adjusted for age and sex were applied to determine the association between benzodiazepine use and fall risk stratified for CYP2C9 genotype and comparing benzodiazepine users to nonusers. The results of the three studies were combined applying meta-analysis. Within benzodiazepine users, the association between genotypes and fall risk was also assessed. RESULTS Three thousand seven hundred five participants (32%) encountered a fall during 91,996 follow-up years, and 4% to 15% (depending on the study population) used benzodiazepines. CYP2C9 variants had frequencies of 13% for the *2 allele and 6% for the *3 allele. Compared to nonusers, current benzodiazepine use was associated with an 18% to 36% increased fall risk across studies with a combined hazard ratio (HR) = 1.26 (95% confidence interval [CI], 1.13; 1.40). CYP2C9*2 or *3 allele variants modified benzodiazepine-related fall risk. Compared to nonusers, those carrying a CYP2C9*2 or *3 allele and using benzodiazepines had a 45% increased fall risk (HR, 1.45 95% CI, 1.21; 1.73), whereas CYP2C9*1 homozygotes using benzodiazepines had no increased fall risk (HR, 1.14; 95% CI, 0.90; 1.45). Within benzodiazepine users, having a CYP2C9*2 or *3 allele was associated with an increased fall risk (HR, 1.35; 95% CI, 1.06; 1.72). Additionally, we observed an allele dose effect; heterozygous allele carriers had a fall risk of (HR = 1.30; 95% CI, 1.05; 1.61), and homozygous allele carriers of (HR = 1.91 95% CI, 1.23; 2.96). CONCLUSIONS CYP2C9*2 and *3 allele variants modify benzodiazepine-related fall risk. Those using benzodiazepines and having reduced CYP2C9 enzyme activity based on their genotype are at increased fall risk. In clinical practice, genotyping might be considered for elderly patients with an indication for benzodiazepine use. However, because the exact role of CYP2C9 in benzodiazepine metabolism is still unclear, additional research is warranted.
Collapse
Affiliation(s)
- Annelies C Ham
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Gijsbertus Ziere
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Anke W Enneman
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Suzanne C van Dijk
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Oscar J de Vries
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Paul Lips
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; Department of Endocrinology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Dorly J H Deeg
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Harvard H.T. Chan School of Public Health, Boston, MA
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Bruno H Stricker
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; Inspectorate of Health Care, Utrecht, the Netherlands
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Centre, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Lim JSL, Sutiman N, Muerdter TE, Singh O, Cheung YB, Ng RCH, Yap YS, Wong NS, Ang PCS, Dent R, Schroth W, Schwab M, Chowbay B. Association of CYP2C19*2 and associated haplotypes with lower norendoxifen concentrations in tamoxifen-treated Asian breast cancer patients. Br J Clin Pharmacol 2016; 81:1142-52. [PMID: 26799162 DOI: 10.1111/bcp.12886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/25/2022] Open
Abstract
AIM The aim was to examine the influence of CYP2C19 variants and associated haplotypes on the disposition of tamoxifen and its metabolites, particularly norendoxifen (NorEND), in Asian patients with breast cancer. METHODS Sixty-six CYP2C19 polymorphisms were identified in healthy Asians (n = 240), of which 14 were found to be tightly linked with CYP2C19*2, CYP2C19*3 and CYP2C19*17. These 17 SNPs were further genotyped in Asian breast cancer patients receiving tamoxifen (n = 201). Steady-state concentrations of tamoxifen and its metabolites were quantified using liquid chromatography–mass spectrometry. Non-parametric tests and regression methods were implemented to evaluate genotypic–phenotypic associations and haplotypic effects of the SNPs. RESULTS CYP2C19 functional polymorphisms and their linked SNPs were not significantly associated with plasma concentrations of tamoxifen and its main metabolites N-desmethyltamoxifen, (Z)-4-hydroxytamoxifen and (Z)-Endoxifen. However, CYP2C19*2 and its seven linked SNPs were significantly associated with lower NorEND concentrations, MRNorEND/NDDM and MRNorEND/(Z)-END. Specifically, patients carrying the CYP2C19*2 variant allele A had significantly lower NorEND concentrations [median (range), GG vs. GA vs. AA: 1.51 (0.38–3.28) vs. 1.28 (0.30–3.36) vs. 1.15 ng ml−1 (0.26–2.45, P = 0.010)] as well as significantly lower MRNorEND/(Z)-END [GG vs. GA vs. AA: 9.40 (3.27–28.35) vs. 8.15 (2.67–18.9) vs. 6.06 (4.47–14.6), P < 0.0001] and MRNorEND/NDDM [GG vs. GA vs. AA: 2.75 (0.62–6.26) vs. 2.43 (0.96–4.18) vs. 1.75 (1.10–2.49), P < 0.00001]. CYP2C19 H2 haplotype, which included CYP2C19*2, was also significantly associated with lower NorEND concentrations (P = 0.0020), MRNorEND/NDDM (P < 0.0001) and MRNorEND/(Z)-END (P < 0.0001), indicating significantly lower formation rates of NorEND. CONCLUSION These data highlight the potential relevance of CYP2C19 pharmacogenetics in influencing NorEND concentrations in tamoxifen-treated patients, which may influence treatment outcomes.
Collapse
Affiliation(s)
- Joanne Siok Liu Lim
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | | | - Thomas E Muerdter
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University Tubingen, Germany
| | - Onkar Singh
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Yin Bun Cheung
- Center for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore.,Department of International Health, University of Tampere, Finland
| | | | - Yoon Sim Yap
- Division of Medical Oncology, National Cancer Centre, Singapore
| | - Nan Soon Wong
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore
| | | | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre, Singapore
| | - Werner Schroth
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University Tubingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and Department of Clinical Pharmacology, University Hospital, Tubingen, Germany
| | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore.,Clinical Pharmacology, SingHealth, Singapore.,Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
18
|
Shapiro SG, Knapp DW, Breen M. A cultured approach to canine urothelial carcinoma: molecular characterization of five cell lines. Canine Genet Epidemiol 2015; 2:15. [PMID: 26401343 PMCID: PMC4579363 DOI: 10.1186/s40575-015-0028-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023] Open
Abstract
Background Urothelial carcinoma (UC), also known as transitional cell carcinoma (TCC), of the bladder is the most common neoplasm affecting the canine urogenital system. To facilitate study of the disease in vitro, cell line models have been established from primary tumor biopsies. Their resemblance to the primary disease, however, has not been well defined. In the present study, we evaluated five canine UC cell lines via oligonucleotide array comparative genomic hybridization (oaCGH), fluorescence in situ hybridization (FISH), and gene expression analysis. Results Comparison of genome wide DNA copy number profiles of the cell lines with primary biopsy specimens revealed redundancies in genomic aberrations, indicating that the cell lines retain the gross genomic architecture of primary tumors. As in the primary tumors, gain of canine chromosomes 13 and 36 and loss of chromosome 19 were among the most frequent aberrations evident in the cell lines. FISH analysis revealed chromosome structural aberrations, including tandem duplications, bi-armed chromosomes, and chromosome fusions, suggesting genome instability during neoplastic transformation. Gene expression profiling highlighted numerous differentially expressed genes, including many previously shown as dysregulated in primary canine UC and human bladder cancer. Pathway enrichment analysis emphasized pathways suspected to be at the crux of UC pathogenesis, including xenobiotic and lipid compound metabolism. Conclusions These data support valid use of the canine UC cell lines evaluated by confirming they provide an accurate and practical means to interrogate the UC at a molecular level. Moreover, the cell lines may provide a valuable model for furthering our understanding of aberrant metabolic pathways in UC development. Electronic supplementary material The online version of this article (doi:10.1186/s40575-015-0028-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S G Shapiro
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - D W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, College of Veterinary Medicine, West Lafayette, IN USA ; Purdue University Center for Cancer Research, West Lafayette, IN USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA ; Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC USA ; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC USA ; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
19
|
Ciccolini J, Fanciullino R, Serdjebi C, Milano G. Pharmacogenetics and breast cancer management: current status and perspectives. Expert Opin Drug Metab Toxicol 2015; 11:719-29. [PMID: 25690018 DOI: 10.1517/17425255.2015.1008447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Breast cancer has benefited from a number of innovative therapeutics over the last decade. Cytotoxics, hormone therapy, targeted therapies and biologics can now be given to ensure optimal management of patients. As life expectancy of breast cancer patients has been significantly stretched and that several lines of treatment are now made available, determining the best drug or drug combinations to be primarily given and the best dosing and scheduling for each patient is critical for ensuring an optimal toxicity/efficacy balance. AREAS COVERED Defining patient's characteristics at the tumor level (pharmacogenomics) and the constitutional level (pharmacogenetics) is a rising trend in oncology. This review covers the latest strategies based upon the search of relevant biomarkers for efficacy, resistance and toxicity to be undertaken at the bedside to shift towards precision medicine in breast cancer patients. EXPERT OPINION In the expanding era of bioguided medicine, identifying relevant and clinically validated biomarkers from the plethora of published material remains an uneasy task. Sorting the variety of genetic and molecular markers that have been investigated over the last decade on their level of evidence and addressing the issue of drug exposure should help to improve the management of breast cancer therapy.
Collapse
Affiliation(s)
- Joseph Ciccolini
- SMARTc Pharmacokinetics Unit, UMR S_911 CRO2, AMU , Marseille , France
| | | | | | | |
Collapse
|
20
|
Bai L, He J, He GH, He JC, Xu F, Xu GL. Association of CYP2C19 Polymorphisms with Survival of Breast Cancer Patients Using Tamoxifen: Results of a Meta-analysis. Asian Pac J Cancer Prev 2014; 15:8331-5. [DOI: 10.7314/apjcp.2014.15.19.8331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Saber MM, Boroumand M, Behmanesh M. Investigation of CYP2C19 allele and genotype frequencies in Iranian population using experimental and computational approaches. Thromb Res 2013; 133:272-5. [PMID: 24315317 DOI: 10.1016/j.thromres.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 09/22/2013] [Accepted: 11/07/2013] [Indexed: 01/17/2023]
Abstract
CytochromeP4502C19 is a genetically polymorphic gene with prominent role in drug metabolism. Regarding its critical medical importance, this study was conducted to achieve accurate CYP2C19allele frequencies in Iranian population and hereby paving the way for a tailor-made CYP2C19 DNA test. Iran is a large multi-ethnic country, however, its population structure for CYP2C19 alleles is calculated as nearly zero (Fwc (st)=0.001). The Study was conducted on 691 individuals in Tehran, the conurbation in which total population structure is significantly eroded by massive immigration and DNA was analyzed by TaqMan SNP genotyping assay. A cumulative meta-analysis was then conducted to achieve less than five percent variation range in allele frequencies with 99.9% confidence level. High degree of Hardy-Weinberg equilibrium in pooled data proved the authenticity of meta-analysis. By cumulative meta-analysis the average frequencies of CYP2C19*2 and CYP2C19*3 alleles were calculated as 0.125[99.9% CI, 0.112-0.139] and 0.006[99.9% CI, 0.004-0.009], respectively. According to the solid frequency data obtained by pooling the data and meta-analysis and comparing with other ethnicities, Iranian population's CYP2C19 allele frequencies completely differ from other Asian ethnicities and matches African and European ethnicities the most. Since this is the biggest CYP2C19 allele frequency study in the Middle East, the results of this study will also be useful in cross-population and regional CYP2C19 genetic variation studies.
Collapse
Affiliation(s)
| | - Mohammadali Boroumand
- Department of Pathology, Tehran Heart Center, Tehran University of Medical Sciences.
| | - Mehrdad Behmanesh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University.
| |
Collapse
|
22
|
Saladores PH, Precht JC, Schroth W, Brauch H, Schwab M. Impact of metabolizing enzymes on drug response of endocrine therapy in breast cancer. Expert Rev Mol Diagn 2013; 13:349-65. [PMID: 23638818 DOI: 10.1586/erm.13.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Estrogen-receptor positive breast cancer accounts for 75% of diagnosed breast cancers worldwide. There are currently two major options for adjuvant treatment: tamoxifen and aromatase inhibitors. Variability in metabolizing enzymes determines their pharmacokinetic profile, possibly affecting treatment response. Therefore, prediction of therapy outcome based on genotypes would enable a more personalized medicine approach, providing optimal therapy for each patient. In this review, the authors will discuss the current evidence on the most important metabolizing enzymes in endocrine therapy, with a special focus on CYP2D6 and its role in tamoxifen metabolism.
Collapse
Affiliation(s)
- Pilar H Saladores
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
23
|
Chen Y, Dorjgochoo T, Bao PP, Zheng Y, Cai H, Lu W, Shu XO. Menopausal symptoms among breast cancer patients: a potential indicator of favorable prognosis. PLoS One 2013; 8:e75926. [PMID: 24098745 PMCID: PMC3786948 DOI: 10.1371/journal.pone.0075926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/22/2013] [Indexed: 01/15/2023] Open
Abstract
Menopausal symptoms have been suggested to be an indicator of better prognosis among patients treated for breast cancer, because women who experience these symptoms usually have a lower level of estrogen. We tested this hypothesis in a population-based, prospective cohort study involving 4,842 women with stage 0 to III primary breast cancer who were enrolled in the Shanghai Breast Cancer Survival Study between March 2002 and April 2006, were aged 20 to 75 years, and were recruited 6 months post-diagnosis. They were followed-up by in-person surveys and record linkages with the vital statistics registry. Cox regression analysis was used to evaluate the association of menopausal symptoms at baseline with breast cancer recurrence. Approximately 56% of patients experienced at least one menopausal symptom, including hot flashes, night sweats, and/or vaginal dryness at baseline. During a median follow-up period of 5.3 years, 720 women had a recurrence. Experiencing hot flashes or having ≥2 menopausal symptoms was associated with lower risk of recurrence among premenopausal women (hazard ratio [HR]=0.77, 95% confidence interval [CI]: 0.62-0.96 for hot flashes; 0.73, 0.56-0.96 for ≥2 menopausal symptoms). Lower recurrence risk in relation to hot flashes was also observed among women who were not overweight/obese (HR=0.78, 95% CI: 0.64-0.99), those with relatively low waist-to-hip ratio (WHR) (HR=0.77, 95% CI: 0.61-0.97), and those who used tamoxifen (HR=0.75, 95% CI: 0.58-0.98). Consistently experiencing multiple menopausal symptoms was associated with lower recurrence risk among women with low WHR or who used tamoxifen. This large, population-based cohort study of women with breast cancer confirms that experiencing menopausal symptoms is an indicator of favorable breast cancer prognosis.
Collapse
Affiliation(s)
- Yong Chen
- Department of Science & Education, Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Tsogzolmaa Dorjgochoo
- Division of Epidemiology, Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ping-Ping Bao
- Department of Cancer Prevention & Control, Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Ying Zheng
- Department of Cancer Prevention & Control, Shanghai Institute of Preventive Medicine, Shanghai, China
| | - Hui Cai
- Division of Epidemiology, Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Wei Lu
- Department of Cancer Prevention & Control, Shanghai Institute of Preventive Medicine, Shanghai, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
24
|
Markiewicz A, Wełnicka-Jaśkiewicz M, Skokowski J, Jaśkiewicz J, Szade J, Jassem J, Żaczek AJ. Prognostic significance of ESR1 amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 polymorphisms in breast cancer patients. PLoS One 2013; 8:e72219. [PMID: 23951298 PMCID: PMC3738574 DOI: 10.1371/journal.pone.0072219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/07/2013] [Indexed: 12/02/2022] Open
Abstract
Introduction Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in ESR1 gene and genes involved in tamoxifen metabolism. The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients. Materials and Methods Primary tumor samples from 281 stage I-III consecutive breast cancer patients were analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and overall survival (OS). Results ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients. Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype and UGT2B15 *2/*2 genotype. Conclusions ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or wt/*2 genotype.
Collapse
Affiliation(s)
- Aleksandra Markiewicz
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- PostgraduateSchool of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Jarosław Skokowski
- Bank of Frozen Tissues and Genetic Specimens, Department of Medical Laboratory Diagnostics, Medical University of Gdańsk, Gdańsk, Poland
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Janusz Jaśkiewicz
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jolanta Szade
- Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna J. Żaczek
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
25
|
CYP2C19 2 predicts substantial tamoxifen benefit in postmenopausal breast cancer patients randomized between adjuvant tamoxifen and no systemic treatment. Breast Cancer Res Treat 2013; 139:649-55. [PMID: 23736997 PMCID: PMC3695326 DOI: 10.1007/s10549-013-2568-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
Estrogen catabolism is a major function of CYP2C19. The effect of CYP2C19 polymorphisms on tamoxifen sensitivity may therefore not only be mediated by a variation in tamoxifen metabolite levels but also by an effect on breast cancer risk and molecular subtype due to variation in lifelong exposure to estrogens. We determined the association between these polymorphisms and tamoxifen sensitivity in the context of a randomized trial, which allows for the discernment of prognosis from prediction. We isolated primary tumor DNA from 535 estrogen receptor-positive, stages I–III, postmenopausal breast cancer patients who had been randomized to tamoxifen (1–3 years) or no adjuvant therapy. Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of CYP2C19*2 and CYP2C19*17. Hazard ratios and interaction terms were calculated using multivariate Cox proportional hazard models, stratified for nodal status. Tamoxifen benefit was not significantly affected by CYP2C19*17. Patients with at least one CYP2C19*2 allele derived significantly more benefit from tamoxifen (HR 0.26; p = 0.001) than patients without a CYP2C19*2 allele (HR 0.68; p = 0.18) (p for interaction 0.04). In control patients, CYP2C19*2 was an adverse prognostic factor. In conclusion, breast cancer patients carrying at least one CYP2C19*2 allele have an adverse prognosis in the absence of adjuvant systemic treatment, which can be substantially improved by adjuvant tamoxifen treatment.
Collapse
|
26
|
Important and critical scientific aspects in pharmacogenomics analysis: lessons from controversial results of tamoxifen and CYP2D6 studies. J Hum Genet 2013; 58:327-33. [PMID: 23657426 DOI: 10.1038/jhg.2013.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tamoxifen contributes to decreased recurrence and mortality of patients with hormone receptor-positive breast cancer. As this drug is metabolized by phase I and phase II enzymes, the interindividual variations of their enzymatic activity are thought to be associated with individual responses to tamoxifen. Among these enzymes, CYP2D6 is considered to be a rate-limiting enzyme in the generation of endoxifen, a principal active metabolite of tamoxifen, and the genetic polymorphisms of CYP2D6 have been extensively investigated in association with the plasma endoxifen concentrations and clinical outcome of tamoxifen therapy. In addition to CYP2D6, other genetic factors including polymorphisms in various drug-metabolizing enzymes and drug transporters have been implicated to their relations to clinical outcome of tamoxifen therapy, but their effects would be small. Although the results of association studies are controversial, accumulation of the evidence has revealed us the important and critical issues in the tamoxifen pharmacogenomics study, namely the quality of genotyping, the coverage of genetic variations, the criteria for sample collection and the source of DNAs, which are considered to be common problematic issues in pharmacogenomics studies. This review points out common critical issues in pharmacogenomics studies through the lessons we have learned from tamoxifen pharmacogenomics, as well as summarizes the results of pharmacogenomics studies for tamoxifen treatment.
Collapse
|
27
|
Shah RR, Shah DR. Personalized medicine: is it a pharmacogenetic mirage? Br J Clin Pharmacol 2013; 74:698-721. [PMID: 22591598 DOI: 10.1111/j.1365-2125.2012.04328.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The notion of personalized medicine has developed from the application of the discipline of pharmacogenetics to clinical medicine. Although the clinical relevance of genetically-determined inter-individual differences in pharmacokinetics is poorly understood, and the genotype-phenotype association data on clinical outcomes often inconsistent, officially approved drug labels frequently include pharmacogenetic information concerning the safety and/or efficacy of a number of drugs and refer to the availability of the pharmacogenetic test concerned. Regulatory authorities differ in their approach to these issues. Evidence emerging subsequently has generally revealed the pharmacogenetic information included in the label to be premature. Revised drugs labels, together with a flurry of other collateral activities, have raised public expectations of personalized medicine, promoted as 'the right drug at the right dose the first time.' These expectations place the prescribing physician in a dilemma and at risk of litigation, especially when evidence-based information on genotype-related dosing schedules is to all intent and purposes non-existent and guidelines, intended to improve the clinical utility of available pharmacogenetic information or tests, distance themselves from any responsibility. Lack of efficacy or an adverse drug reaction is frequently related to non-genetic factors. Phenoconversion, arising from drug interactions, poses another often neglected challenge to any potential success of personalized medicine by mimicking genetically-determined enzyme deficiency. A more realistic promotion of personalized medicine should acknowledge current limitations and emphasize that pharmacogenetic testing can only improve the likelihood of diminishing a specific toxic effect or increasing the likelihood of a beneficial effect and that application of pharmacogenetics to clinical medicine cannot adequately predict drug response in individual patients.
Collapse
|
28
|
Vianna-Jorge R, Festa-Vasconcellos JS, Goulart-Citrangulo SMT, Leite MS. Functional polymorphisms in xenobiotic metabolizing enzymes and their impact on the therapy of breast cancer. Front Genet 2013; 3:329. [PMID: 23346096 PMCID: PMC3551254 DOI: 10.3389/fgene.2012.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/29/2012] [Indexed: 01/21/2023] Open
Abstract
Breast cancer is the top cancer among women, and its incidence is increasing worldwide. Although the mortality tends to decrease due to early detection and treatment, there is great variability in the rates of clinical response and survival, which makes breast cancer one of the most appealing targets for pharmacogenomic studies. The recognition that functional CYP2D6 polymorphisms affect tamoxifen pharmacokinetics has motivated the attempts of using CYP2D6 genotyping for predicting breast cancer outcomes. In addition to tamoxifen, the chemotherapy of breast cancer includes combinations of cytotoxic drugs, which are substrates for various xenobiotic metabolizing enzymes. Because of these drugs’ narrow therapeutic window, it has been postulated that impaired biotransformation could lead to increased toxicity. In the present review, we performed a systematic search of all published data exploring associations between polymorphisms in xenobiotic metabolizing enzymes and clinical outcomes of breast cancer. We retrieved 43 original articles involving either tamoxifen or other chemotherapeutic protocols, and compiled all information regarding response or toxicity. The data indicate that, although CYP2D6 polymorphisms can indeed modify tamoxifen pharmacokinetics, CYP2D6 genotyping alone is not enough for predicting breast cancer outcomes. The studies involving other chemotherapeutic protocols explored a great diversity of pharmacogenetic targets, but the number of studies for each functional polymorphism is still very limited, with usually no confirmation of positive associations. In conclusion, the application of pharmacogenetics to predict breast cancer outcomes and to select one individual’s chemotherapeutic protocol is still far from clinical routine. Although some very interesting results have been produced, no clear practical recommendations are recognized yet.
Collapse
Affiliation(s)
- Rosane Vianna-Jorge
- Programa de Farmacologia, Coordenação de Pesquisa, Instituto Nacional do Câncer Rio de Janeiro, Brazil ; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
29
|
Zafra-Ceres M, de Haro T, Farez-Vidal E, Blancas I, Bandres F, de Dueñas EM, Ochoa-Aranda E, Gomez-Capilla JA, Gomez-Llorente C. Influence of CYP2D6 polymorphisms on serum levels of tamoxifen metabolites in Spanish women with breast cancer. Int J Med Sci 2013; 10:932-7. [PMID: 23781139 PMCID: PMC3675507 DOI: 10.7150/ijms.5708] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Estrogen receptor-positive breast cancer tumors depend on estrogen signaling for their growth and replication and can be treated by anti-estrogen therapy with tamoxifen. Polymorphisms of the CYP2D6 and CYP2C19 genes are associated with an impaired response to tamoxifen. The study objective was to investigate the impact of genetic polymorphisms in CYP2D6 and CYP2C19 on the pharmacokinetics of tamoxifen and its metabolites in Spanish women with estrogen receptor-positive breast cancer who were candidates for tamoxifen therapy. METHODS We studied 90 women with estrogen receptor-positive breast cancer, using the AmpliChip CYP450 test to determine CYP2D6 and CYP2C19 gene variants. Plasma levels of tamoxifen and its metabolites were quantified by high-performance liquid chromatography. RESULTS The CYP2D6 phenotype was extensive metabolizer in 80%, intermediate metabolizer in 12.2%, ultra-rapid metabolizer in 2.2%, and poor metabolizer in 5.6% of patients, and the allele frequency was 35.0% for allele (*)1, 21.0% for *2, and 18.9% for *4. All poor metabolizers in this series were *4/*4, and their endoxifen and 4-hydroxy tamoxifen levels were 25% lower than those of extensive metabolizers. CYP2C19*2 allele, which has been related to breast cancer outcomes, was detected in 15.6% of the studied alleles. CONCLUSION CYP2D6*4/*4 genotype was inversely associated with 4-hydroxy tamoxifen and endoxifen levels. According to these results, CYP2D6 and CYP2C19 genotyping appears advisable before the prescription of tamoxifen therapy.
Collapse
Affiliation(s)
- Mercedes Zafra-Ceres
- Clinical Biochemistry Services, San Cecilio University Hospital. Avd/ Doctor Olóriz s/n 18012, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
McCowan C, Thompson AM. The importance of nonpharmacogenetic factors in endocrine therapy. Pharmacogenomics 2012; 13:721-8. [PMID: 22515614 DOI: 10.2217/pgs.12.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonpharmacogenetic factors may play a key role in the success of oral endocrine therapy for breast cancer. Adherence, defined as following medical advice as well as persistence and duration of use for patients prescribed endocrine therapy, may impact significantly on recurrence and survival. Side effects from tamoxifen or aromatase inhibitors may lead to patients stopping or switching therapy, while comorbidities, consequent coprescribing and patient perceptions may also influence outcomes. Interventions to improve adherence and persistence are required and could have as great an effect on survival as applying pharmacogenetic principles to the endocrine management of breast cancer.
Collapse
Affiliation(s)
- Colin McCowan
- Dundee Cancer Centre, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | | |
Collapse
|
31
|
Dong N, Yu J, Wang C, Zheng X, Wang Z, Di L, Song G, Zhu B, Che L, Jia J, Jiang H, Zhou X, Wang X, Ren J. Pharmacogenetic assessment of clinical outcome in patients with metastatic breast cancer treated with docetaxel plus capecitabine. J Cancer Res Clin Oncol 2012; 138:1197-203. [PMID: 22426923 DOI: 10.1007/s00432-012-1183-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Docetaxel plus capecitabine, a commonly used chemotherapeutic regimen for metastatic breast cancer (MBC), is highly variable in its effectiveness. We aimed to investigate whether allelic variants of cytochrome P450 (CYP450) affected objective response, progression-free survival (PFS), and overall survival (OS) in MBC. PATIENTS AND METHODS 79 SNPs in CYP450, whose minor allele frequency were ≥ 10%, were genotyped in 69 MBC patients who were treated with docetaxel plus capecitabine. Pearson's χ(2) test or Fisher's exact test was used to investigate the influence of SNPs on objective response as appropriate. Log-rank test was used to assess the association between SNPs and survival outcomes. RESULTS There is no significant association between polymorphisms and both objective response and OS. Only one SNP, CYP1A1 rs1048943 A>G (Ile462Val), was significantly associated with PFS (P = 0.0003). Multivariate analysis confirmed its prognostic significance for PFS (P = 0.004). CONCLUSION CYP1A1 rs1048943 A>G (Ile462Val) polymorphism is a potential prognostic marker for survival outcome after docetaxel plus capecitabine chemotherapy in MBC patients. However, confirmatory study is needed to validate this finding.
Collapse
Affiliation(s)
- Ningning Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Medical Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients. BMC MEDICAL GENETICS 2012; 13:45. [PMID: 22702493 PMCID: PMC3458973 DOI: 10.1186/1471-2350-13-45] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/22/2012] [Indexed: 01/29/2023]
Abstract
Background The enzymes of the cytochrome P450 family (CYPs) play an important role in the metabolism of a great variety of anticancer agents; therefore, polymorphisms in genes encoding for metabolizing enzymes and drugs transporters can affect drug efficacy and toxicity. Methods The genetic polymorphisms of cytochrome P450 were studied in 395 patients with breast cancer by RLFP analysis. Results Here, we studied the association of functionally significant variant alleles of CYP3A4, CYP3A5, CYP2B6, CYP2C8, CYP2C9 and CYP2C19 with the clinical response to neoadjuvant chemotherapy in breast cancer patients. A significant correlation was observed between the CYP2C9*2 polymorphism and chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91), as well as between CYP2C9*2 heterozygotes and chemotherapy resistance in women with nodal forms of breast cancer and a cancer hereditary load (OR = 15.50; CI 95% = 1.08 – 826.12) when the potential combined effects were examined. No significant association between chemotherapy resistance and the other examined genotypes and the potential combined clinical and tumour-related parameters were discovered. Conclusion In conclusion, CYP2C9*2 was associated with neoadjuvant chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91) in the population of interest.
Collapse
|
33
|
Dickschen K, Willmann S, Thelen K, Lippert J, Hempel G, Eissing T. Physiologically Based Pharmacokinetic Modeling of Tamoxifen and its Metabolites in Women of Different CYP2D6 Phenotypes Provides New Insight into the Tamoxifen Mass Balance. Front Pharmacol 2012; 3:92. [PMID: 22661948 PMCID: PMC3357105 DOI: 10.3389/fphar.2012.00092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+) mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6). It is widely accepted that CYP2D6 poor metabolizers exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved. In this study, physiologically based pharmacokinetic (PBPK)-modeling was applied to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy. A PBPK-model of tamoxifen and its pharmacologically important metabolites N-desmethyltamoxifen (NDM-TAM), 4-hydroxytamoxifen (4-OH-TAM), and endoxifen was developed and validated. This model is able to simulate the pharmacokinetics (PK) after single and repeated oral tamoxifen doses in female breast cancer patients in dependence of the CYP2D6 phenotype. A detailed model-based analysis of the mass balance offered support for a recent hypothesis stating a more prominent role for endoxifen formation from 4-OH-TAM. In the future this model provides a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity, or co-treatment with CYP2D6 inhibitors.
Collapse
Affiliation(s)
- Kristin Dickschen
- Klinische Pharmazie, Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster Münster, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Impact of genetic polymorphisms of cytochrome P450 2 C (CYP2C) enzymes on the drug metabolism and design of antidiabetics. Chem Biol Interact 2011; 194:159-67. [DOI: 10.1016/j.cbi.2011.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 01/01/2023]
|
35
|
Phan VH, Tan C, Rittau A, Xu H, McLachlan AJ, Clarke SJ. An update on ethnic differences in drug metabolism and toxicity from anti-cancer drugs. Expert Opin Drug Metab Toxicol 2011; 7:1395-410. [PMID: 21950349 DOI: 10.1517/17425255.2011.624513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Based on recent emerging evidence of inter-ethnic differences in drug response and toxicity, ethnic diversity in pharmacokinetics, pharmacogenomics and clinical outcomes are being increasingly investigated. Ultimately, this will promote improved understanding of inter-individual differences in the pharmacokinetics and tolerance of cytotoxic drugs. AREAS COVERED This article reviews potential explanations for the observed ethnic differences in treatment outcomes and provides clinical data to support this concept. A literature search was implemented on PubMed and PharmGKB to investigate the areas of ethnic differences in pharmacogenomics, pharmacogenetics and clinical outcomes of cancer therapies. EXPERT OPINION There has been a relative paucity of clinical evidence linking genetic polymorphisms of genes encoding drug-metabolizing enzymes to the pharmacokinetics, pharmacodynamics and tolerance of anti-cancer drugs. Future research should focus on studies using large sample sizes, in the hope that they will provide results of high clinical significance. Due to the potential for ethnic differences to impact on both toxicities and benefits of systemic cancer therapies, the development of new therapeutic agents should include patients from diverse geographical ancestries in each phase of drug development.
Collapse
Affiliation(s)
- Viet Hong Phan
- The University of Sydney, Concord Repatriation General Hospital, Sydney Cancer Centre, Concord, NSW, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Del Re M, Michelucci A, Simi P, Danesi R. Pharmacogenetics of anti-estrogen treatment of breast cancer. Cancer Treat Rev 2011; 38:442-50. [PMID: 21917382 DOI: 10.1016/j.ctrv.2011.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
A major effort is underway to select genetic polymorphisms potentially relevant to the clinical efficacy and safety of endocrine treatment of breast cancer. Genetic factors of the host that affect the metabolism of tamoxifen, a widely used drug for the adjuvant treatment of breast cancer, have received particular attention. Cytochrome P450 isoform 2D6 (CYP2D6) is a key step in the metabolism of tamoxifen to its active moiety endoxifen. Women with functionally deficient genetic variants of CYP2D6 who are given drugs that inhibit CYP2D6 are exposed to low endoxifen plasma levels and may enjoy reduced benefits from tamoxifen treatment. Therefore, CYP2D6 status may be an important predictor of the benefits of tamoxifen to an individual; unfortunately, the data are not uniformly concordant, and definitive evidence that would suggest the routine analysis of CYP2D6 before commencing tamoxifen treatment is not yet available. Recent research has focused on the role UDP-glucuronosyltransferases, a family of metabolizing enzymes that play an important role in the metabolic clearance of tamoxifen and of the aromatase inhibitors as well, and how interindividual differences in these enzymes may play a role in the clinical outcome upon administration of anti-estrogen treatment. In conclusion, whether a pharmacogenetic profile should be obtained prior to initiating tamoxifen therapy is currently a matter of debate, although summing up all the scientific evidence available on this issue it appears that the genetic screening would be an useful support for clinical decision making in selected patients.
Collapse
Affiliation(s)
- Marzia Del Re
- Division of Pharmacology, Department of Internal Medicine, University of Pisa, Italy
| | | | | | | |
Collapse
|
37
|
van Schaik RHN, Kok M, Sweep FCGJ, van Vliet M, van Fessem M, Meijer-van Gelder ME, Seynaeve C, Lindemans J, Wesseling J, Van 't Veer LJ, Span PN, van Laarhoven H, Sleijfer S, Foekens JA, Linn SC, Berns EMJJ. The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics 2011; 12:1137-46. [PMID: 21830868 DOI: 10.2217/pgs.11.54] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS Tamoxifen is metabolized by cytochrome P450s, with an important role for CYP2D6. Recently, we demonstrated in 80 patients that CYP2C19*2 is associated with increased survival in breast cancer patients using tamoxifen. Here, we aimed to confirm this in a large group of 499 patients. MATERIALS & METHODS A total of 499 estrogen receptor-positive primary breast tumor specimens of advanced disease patients treated with first-line tamoxifen were genotyped for CYP2C19*2 and *17 variant alleles, with primary end point time-to-treatment failure (TTF). Effects of CYP2C19, independent of treatment, were analyzed in 243 primary systematic untreated patients. RESULTS CYP2C19*2 hetero- and homozygote patients combined showed significantly longer TTFs (hazard ratio [HR]: 0.72; 95% CI: 0.57-0.90; p = 0.004). In multivariate analysis, including CYP2D6*4 status, CYP2C19*2 remained independently associated with TTF (HR: 0.73; 95% CI: 0.58-0.91; p = 0.007). In untreated patients, the CYP2C19*17 allele was significantly associated with a longer disease-free interval (HR: 0.66; 95%CI: 0.46-0.95; p = 0.025). CONCLUSION CYP2C19 genotyping is potentially important for tamoxifen therapy for advanced disease and for breast cancer prognosis.
Collapse
|
38
|
Hofman A, van Duijn CM, Franco OH, Ikram MA, Janssen HLA, Klaver CCW, Kuipers EJ, Nijsten TEC, Stricker BHC, Tiemeier H, Uitterlinden AG, Vernooij MW, Witteman JCM. The Rotterdam Study: 2012 objectives and design update. Eur J Epidemiol 2011; 26:657-86. [PMID: 21877163 PMCID: PMC3168750 DOI: 10.1007/s10654-011-9610-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/08/2011] [Indexed: 01/09/2023]
Abstract
The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, oncological, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over a 1,000 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy ). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods.
Collapse
Affiliation(s)
- Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cronin-Fenton DP, Lash TL. Clinical epidemiology and pharmacology of CYP2D6 inhibition related to breast cancer outcomes. Expert Rev Clin Pharmacol 2011; 4:363-77. [PMID: 21709817 PMCID: PMC3119576 DOI: 10.1586/ecp.11.18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adjuvant tamoxifen therapy of breast cancer patients with estrogen receptor-positive tumors reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized by several polymorphic enzymes, including cytochrome P450 2D6 (CYP2D6), to more active metabolites. We have reviewed the clinical pharmacology of tamoxifen and evaluated the evidence from clinical epidemiology studies regarding the association between CYP2D6 inhibition and tamoxifen effectiveness. We conclude that the impact of CYP2D6 inhibition on tamoxifen effectiveness is likely to be null or small, at least in the populations studied so far. Understanding the effect of variations in tamoxifen metabolism on breast cancer outcomes, if any, will likely require a broader perspective, including examination of the complete metabolic pathway and subgroups of patients with other markers of potentially poor tamoxifen response.
Collapse
Affiliation(s)
- Deirdre P Cronin-Fenton
- Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Alle 43–45, 8200 Aarhus C., Denmark.
| | | |
Collapse
|