1
|
Kemmo Tsafack U, Lin CW, Ahn KW. Joint Screening for Ultra-High Dimensional Multi-Omics Data. Bioengineering (Basel) 2024; 11:1193. [PMID: 39768011 PMCID: PMC11727280 DOI: 10.3390/bioengineering11121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Investigators often face ultra-high dimensional multi-omics data, where identifying significant genes and omics within a gene is of interest. In such data, each gene forms a group consisting of its multiple omics. Moreover, some genes may also be highly correlated. This leads to a tri-level hierarchical structured data: the cluster level, which is the group of correlated genes, the subgroup level, which is the group of omics of the same gene, and the individual level, which consists of omics. Screening is widely used to remove unimportant variables so that the number of remaining variables becomes smaller than the sample size. Penalized regression with the remaining variables after performing screening is then used to identify important variables. To screen unimportant genes, we propose to cluster genes and conduct screening. We show that the proposed screening method possesses the sure screening property. Extensive simulations show that the proposed screening method outperforms competing methods. We apply the proposed variable selection method to the TCGA breast cancer dataset to identify genes and omics that are related to breast cancer.
Collapse
Affiliation(s)
| | | | - Kwang Woo Ahn
- Division of Biostatistics, Medical College of Wisconsin (MCW), Milwaukee, WI 53226, USA; (U.K.T.); (C.-W.L.)
| |
Collapse
|
2
|
van Waardenburg RCAM, Falany CN. Sulfotransferase 4A1 Coding Sequence and Protein Structure Are Highly Conserved in Vertebrates. Genes (Basel) 2024; 15:914. [PMID: 39062693 PMCID: PMC11275347 DOI: 10.3390/genes15070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cytosolic sulfotransferases (SULTs) are Phase 2 drug-metabolizing enzymes that catalyze the conjugation of sulfonate to endogenous and xenobiotic compounds, increasing their hydrophilicity and excretion from cells. To date, 13 human SULTs have been identified and classified into five families. SULT4A1 mRNA encodes two variants: (1) the wild type, encoding a 284 amino acid, ~33 kDa protein, and (2) an alternative spliced variant resulting from a 126 bp insert between exon 6 and 7, which introduces a premature stop codon that enhances nonsense-mediated decay. SULT4A1 is classified as an SULT based on sequence and structural similarities, including PAPS-domains, active-site His, and the dimerization domain; however, the catalytic pocket lid 'Loop 3' size is not conserved. SULT4A1 is uniquely expressed in the brain and localized in the cytosol and mitochondria. SULT4A1 is highly conserved, with rare intronic polymorphisms that have no outward manifestations. However, the SULT4A1 haplotype is correlated with Phelan-McDermid syndrome and schizophrenia. SULT4A1 knockdown revealed potential SULT4A1 functions in photoreceptor signaling and knockout mice display hampered neuronal development and behavior. Mouse and yeast models revealed that SULT4A1 protects the mitochondria from endogenously and exogenously induced oxidative stress and stimulates cell division, promoting dendritic spines' formation and synaptic transmission. To date, no physiological enzymatic activity has been associated with SULT4A1.
Collapse
|
3
|
SULT4A1 Modulates Synaptic Development and Function by Promoting the Formation of PSD-95/NMDAR Complex. J Neurosci 2020; 40:7013-7026. [PMID: 32801157 DOI: 10.1523/jneurosci.2194-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
Sulfotransferase 4A1 (SULT4A1) is a cytosolic sulfotransferase that is highly conserved across species and extensively expressed in the brain. However, the biological function of SULT4A1 is unclear. SULT4A1 has been implicated in several neuropsychiatric disorders, such as Phelan-McDermid syndrome and schizophrenia. Here, we investigate the role of SULT4A1 within neuron development and function. Our data demonstrate that SULT4A1 modulates neuronal branching complexity and dendritic spines formation. Moreover, we show that SULT4A1, by negatively regulating the catalytic activity of Pin1 toward PSD-95, facilitates NMDAR synaptic expression and function. Finally, we demonstrate that the pharmacological inhibition of Pin1 reverses the pathologic phenotypes of neurons knocked down by SULT4A1 by specifically restoring dendritic spine density and rescuing NMDAR-mediated synaptic transmission. Together, these findings identify SULT4A1 as a novel player in neuron development and function by modulating dendritic morphology and synaptic activity.SIGNIFICANCE STATEMENT Sulfotransferase 4A1 (SULT4A1) is a brain-specific sulfotransferase highly expressed in neurons. Different evidence has suggested that SULT4A1 has an important role in neuronal function and that SULT4A1 altered expression might represent a contributing factor in multiple neurodevelopmental disorders. However, the function of SULT4A1 in the mammalian brain is still unclear. Here, we demonstrate that SULT4A1 is highly expressed at postsynaptic sites where it sequesters Pin1, preventing its negative action on synaptic transmission. This study reveals a novel role of SULT4A1 in the modulation of NMDA receptor activity and strongly contributes to explaining the neuronal dysfunction observed in patients carrying deletions of SULTA41 gene.
Collapse
|
4
|
Idris M, Mitchell DJ, Gordon R, Sidharthan NP, Butcher NJ, Minchin RF. Interaction of the Brain-Selective Sulfotransferase SULT4A1 with Other Cytosolic Sulfotransferases: Effects on Protein Expression and Function. Drug Metab Dispos 2020; 48:337-344. [PMID: 32152050 DOI: 10.1124/dmd.119.089714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Sulfotransferase (SULT) 4A1 is a brain-selective sulfotransferase-like protein that has recently been shown to be essential for normal neuronal development in mice. In the present study, SULT4A1 was found to colocalize with SULT1A1/3 in human brain neurons. Using immunoprecipitation, SULT4A1 was shown to interact with both SULT1A1 and SULT1A3 when expressed in human cells. Mutation of the conserved dimerization motif located in the C terminus of the sulfotransferases prevented this interaction. Both ectopically expressed and endogenous SULT4A1 decreased SULT1A1/3 protein levels in neuronal cells, and this was also prevented by mutation of the dimerization motif. During differentiation of neuronal SH-SY5Y cells, there was a loss in SULT1A1/3 protein but an increase in SULT4A1 protein. This resulted in an increase in the toxicity of dopamine, a substrate for SULT1A3. Inhibition of SULT4A1 using small interference RNA abrogated the loss in SULT1A1/3 and reversed dopamine toxicity. These results show a reciprocal relationship between SULT4A1 and the other sulfotransferases, suggesting that it may act as a chaperone to control the expression of SULT1A1/3 in neuronal cells. SIGNIFICANCE STATEMENT: The catalytically inactive sulfotransferase (SULT) 4A1 may regulate the function of other SULTs by interacting with them via a conserved dimerization motif. In neuron-like cells, SULT4A1 is able to modulate dopamine toxicity by interacting with SULT1A3, potentially decreasing the metabolism of dopamine.
Collapse
Affiliation(s)
- Misgana Idris
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Deanne J Mitchell
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Richard Gordon
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Neelima P Sidharthan
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Abstract
Pharmacogenomic testing in psychiatry is becoming an established clinical procedure. Several vendors provide clinical interpretation of combinatorial pharmacogenomic testing of gene variants that have documented predictive implications regarding either pharmacologic response or adverse effects in depression and other psychiatric conditions. Such gene profiles have demonstrated improvements in outcome in depression, and reduction of cost of care of patients with inadequate clinical response. Additionally, several new gene variants are being studied to predict specific response in individuals. Many of these genes have demonstrated a role in the pathophysiology of depression or specific depressive symptoms. This article reviews the current state-of-the-art application of psychiatric pharmacogenomics.
Collapse
|
6
|
Reynolds KK, Pierce DL, Weitendorf F, Linder MW. Avoidable drug-gene conflicts and polypharmacy interactions in patients participating in a personalized medicine program. Per Med 2017; 14:221-233. [PMID: 29767587 DOI: 10.2217/pme-2016-0095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM Determine the ability of a pharmacogenetic service, PRIMER, to identify drug-gene (DGI) and drug-drug interactions (DDI) in patients across multiple conditions. PRIMER consists of patient selection criteria, a gene panel and actionable guidance for DGIs and DDIs. RESULTS The average patient was prescribed 12 medications. PRIMER identified significant DGIs in 73% of patients tested, with 43% having more than one DGI. DDIs were found in 87% of patients. The most common actionable DGIs were for opioid, psychotropic and cardiovascular medications. CONCLUSION The pairing of patient selection criteria, a multigene panel with evidence-based interpretation and review of DDIs maximizes the patients tested who have actionable benefit and alerts physicians to potentially critical adjustments needed for the patient's medication regimen.
Collapse
Affiliation(s)
- Kristen K Reynolds
- PGXL Laboratories, Louisville, KY 40202, USA.,University of Louisville School of Medicine, Department of Pathology & Laboratory Medicine, Louisville, KY USA 40292
| | | | - Frederick Weitendorf
- PGXL Laboratories, Louisville, KY 40202, USA.,Robley Rex VA Medical Center, Louisville, KY 40206, USA
| | - Mark W Linder
- PGXL Laboratories, Louisville, KY 40202, USA.,University of Louisville School of Medicine, Department of Pathology & Laboratory Medicine, Louisville, KY USA 40292
| |
Collapse
|
7
|
Coughtrie MWH. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem Biol Interact 2016; 259:2-7. [PMID: 27174136 DOI: 10.1016/j.cbi.2016.05.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/02/2016] [Indexed: 12/29/2022]
Abstract
The sulfuryl transfer reaction is of fundamental biological importance. One of the most important manifestations of this process are the reactions catalyzed by members of the cytosolic sulfotransferase (SULT) superfamily. These enzymes transfer the sulfuryl moiety from the universal donor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to a wide variety of substrates with hydroxyl- or amino-groups. Normally a detoxification reaction this facilitates the elimination of a multitude of xenobiotics, although for some molecules sulfation is a bioactivation step. In addition, sulfation plays a key role in endocrine and other signalling pathways since many steroids, sterols, thyroid hormones and catecholamines exist primarily as sulfate conjugates in humans. This article summarizes much of our current knowledge of the organization and function of the human cytosolic sulfotransferases and highlights some of the important interspecies differences that have implications for, among other things, drug development and chemical safety analysis.
Collapse
Affiliation(s)
- Michael W H Coughtrie
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Ramsey TL, Liu Q, Brennan MD. Replication of SULT4A1-1 as a pharmacogenetic marker of olanzapine response and evidence of lower weight gain in the high response group. Pharmacogenomics 2015; 15:933-9. [PMID: 24956247 DOI: 10.2217/pgs.14.54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Antipsychotic efficacy biomarkers have the potential to improve outcomes in psychotic patients. This study examined the effect of SULT4A1-1 haplotype status (rs2285162 [A]-rs2285167 [G]) on olanzapine response. PATIENTS & METHODS We evaluated 87 olanzapine treated subjects from Phases 1, 1B and 2 of the CATIE trial for the impact of SULT4A1-1 status on change in Positive and Negative Syndrome Scale (PANSS) total score using two models of response. We also examined weight change. RESULTS SULT4A1-1-positive status correlated with superior olanzapine response in Phase 1 (p = 0.004 for model 1 and p = 0.001 for model 2) and Phases 1B/2 (p = 0.05 for model 1 and p = 0.007 for model 2). SULT4A1-1-positive subjects gained significantly less weight per month on olanzapine, 0.15 lbs, than did SULT4A1-1-negative subjects, 2.27 lbs (p = 0.04). CONCLUSION This study provides a second replication of superior olanzapine response in SULT4A1-1-positive subjects compared with SULT4A1-1-negative subjects. SULT4A1-1-positive subjects treated with olanzapine also gained less weight than SULT4A1-1-negative subjects.
Collapse
|
9
|
Abstract
This review considers pharmacogenetics of the so called 'second-generation' antipsychotics. Findings for polymorphisms replicating in more than one study are emphasized and compared and contrasted with larger-scale candidate gene studies and genome-wide association study analyses. Variants in three types of genes are discussed: pharmacokinetic genes associated with drug metabolism and disposition, pharmacodynamic genes encoding drug targets, and pharmacotypic genes impacting disease presentation and subtype. Among pharmacokinetic markers, CYP2D6 metabolizer phenotype has clear clinical significance, as it impacts dosing considerations for aripiprazole, iloperidone and risperidone, and variants of the ABCB1 gene hold promise as biomarkers for dosing for olanzapine and clozapine. Among pharmacodynamic variants, the TaqIA1 allele of the DRD2 gene, the DRD3 (Ser9Gly) polymorphism, and the HTR2C -759C/T polymorphism have emerged as potential biomarkers for response and/or side effects. However, large-scale candidate gene studies and genome-wide association studies indicate that pharmacotypic genes may ultimately prove to be the richest source of biomarkers for response and side effect profiles for second-generation antipsychotics.
Collapse
Affiliation(s)
- Mark D Brennan
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
10
|
Wang D, Li Q, Favis R, Jadwin A, Chung H, Fu DJ, Savitz A, Gopal S, Cohen N. SULT4A1 haplotype: conflicting results on its role as a biomarker of antipsychotic response. Pharmacogenomics 2014; 15:1557-64. [DOI: 10.2217/pgs.14.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Based on previous pharmacogenetic findings, we investigated the possible association between SULT4A1-1 haplotype and antipsychotic treatment response. Materials & methods: Using Mixed Model Repeated Measures, we tested the relationship between SULT4A1-1 status (+ carrier, - noncarrier) and clinical improvement (in Positive and Negative Syndrome Scale total score) among European ancestry patients treated with paliperidone extended release (n = 937), paliperidone palmitate (n = 990), risperidone (n = 507) and olanzapine (n = 381) in 12 schizophrenia, two schizoaffective disorder and three bipolar I disorder trials. SULT4A1-1 haplotype was determined using tagging SNP rs763120. Results: There was no significant difference between SULT4A1-1(+) and SULT4A1-1(-) patients for treatment response to paliperidone or olanzapine. SULT4A1-1(-) patients had better treatment response to risperidone in one schizophrenia trial, but not in another schizophrenia trial or bipolar mania trial. Conclusion: Across three psychiatric disorders (n = 2815 patients), we observed no consistent association between SULT4A1-1 status and atypical antipsychotic effect. Original submitted 11 February 2014; Revision submitted 2 July 2014
Collapse
Affiliation(s)
- Dai Wang
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, 1125 Trenton Harbourton Rd, Titusville, NJ, USA
| | - Qingqin Li
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, 1125 Trenton Harbourton Rd, Titusville, NJ, USA
| | - Reyna Favis
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, 1125 Trenton Harbourton Rd, Titusville, NJ, USA
| | - Andrew Jadwin
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, 1125 Trenton Harbourton Rd, Titusville, NJ, USA
| | - Hedy Chung
- Medical Affairs – CNS Psychiatry, Janssen Scientific Affairs, LLC, 1125 Trenton Harbourton Rd, Titusville, NJ, USA
| | - Dong-Jing Fu
- Medical Affairs – CNS Psychiatry, Janssen Scientific Affairs, LLC, 1125 Trenton Harbourton Rd, Titusville, NJ, USA
| | - Adam Savitz
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, 1125 Trenton Harbourton Rd, Titusville, NJ, USA
| | - Srihari Gopal
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, 1125 Trenton Harbourton Rd, Titusville, NJ, USA
| | - Nadine Cohen
- Blue Note Biosciences, LLC, 6 Hutchinson Drive, Princeton, NJ, USA
| |
Collapse
|
11
|
Sidharthan NP, Butcher NJ, Mitchell DJ, Minchin RF. Expression of the orphan cytosolic sulfotransferase SULT4A1 and its major splice variant in human tissues and cells: dimerization, degradation and polyubiquitination. PLoS One 2014; 9:e101520. [PMID: 24988429 PMCID: PMC4079325 DOI: 10.1371/journal.pone.0101520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/08/2014] [Indexed: 11/19/2022] Open
Abstract
The cytosolic sulfotransferase SULT4A1 is highly conserved between mammalian species but its function remains unknown. Polymorphisms in the SULT4A1 gene have been linked to susceptibility to schizophrenia. There are 2 major SULT4A1 transcripts in humans, one that encodes full length protein (wild-type) and one that encodes a truncated protein (variant). Here, we investigated the expression of SULT4A1 in human tissues by RT-PCR and found the wild-type mRNA to be expressed mainly in the brain, gastrointestinal tract and prostate while the splice variant was more widely expressed. In human cell-lines, the wild-type transcript was found in neuronal cells, but the variant transcript was expressed in nearly all other lines examined. Western blot analysis only identified SULT4A1 protein in cells that expressed the wild-type mRNA. No variant protein was detected in cells that expressed the variant mRNA. Ectopically expressed full length SULT4A1 protein was stable while the truncated protein was not, having a half-life of approximately 3 hr. SULT4A1 was also shown to homodimerize, consistent with other SULTs that contain the consensus dimerization motif. Mutation of the dimerization motif resulted in a monomeric form of SULT4A1 that was rapidly degraded by polyubiquitination on the lysine located within the dimerization motif. These results show that SULT4A1 is widely expressed in human tissues, but mostly as a splice variant that produces a rapidly degraded protein. Dimerization protects the protein from degradation. Since many other cytosolic sulfotransferases possess the conserved lysine within the dimerization motif, homodimerization may serve, in part, to stabilize these enzymes in vivo.
Collapse
Affiliation(s)
- Neelima P. Sidharthan
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Neville J. Butcher
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Deanne J. Mitchell
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Rodney F. Minchin
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
12
|
Basu A, Meltzer HY. Tying comparative effectiveness information to decision-making and the future of comparative effectiveness research designs: the case for antipsychotic drugs. J Comp Eff Res 2014; 1:171-80. [PMID: 24237376 DOI: 10.2217/cer.12.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The outcome of comparative effectiveness research on antipsychotic drugs, specifically the National Institute of Mental Health-funded CATIE trial, has raised questions regarding the value of second-generation antipsychotic drugs and has sparked a debate regarding their accessibility through public insurance. We reviewed the evidence on the impact of access restrictions for antipsychotic drugs in Medicaid programs and found that such restrictions resulted in increases in overall costs and a possible decline in the quality of care. We attribute this unwanted outcome to limitations in comparative effectiveness research designs that fail to inform either clinical or policy decision-making. We enumerate these limitations and illustrate the potential for more innovative comparative effectiveness research designs that may be in line with clinical decision-making using an original analysis of the CATIE trial data. The value of genomic information in enabling better trial design is also discussed.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Health Services, PORPP, University of Washington, 1959 NE Pacific St, Box-357660, Seattle, WA 98195-7660, USA.
| | | |
Collapse
|
13
|
Crittenden F, Thomas H, Ethen CM, Wu ZL, Chen D, Kraft TW, Parant JM, Falany CN. Inhibition of SULT4A1 expression induces up-regulation of phototransduction gene expression in 72-hour postfertilization zebrafish larvae. Drug Metab Dispos 2014; 42:947-53. [PMID: 24553382 PMCID: PMC3989789 DOI: 10.1124/dmd.114.057042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/19/2014] [Indexed: 12/25/2022] Open
Abstract
Sulfotransferase (SULT) 4A1 is an orphan enzyme that shares distinct structure and sequence similarities with other cytosolic SULTs. SULT4A1 is primarily expressed in neuronal tissue and is also the most conserved SULT, having been identified in every vertebrate investigated to date. Certain haplotypes of the SULT4A1 gene are correlated with higher baseline psychopathology in schizophrenic patients, but no substrate or function for SULT4A1 has yet been identified despite its high level of sequence conservation. In this study, deep RNA sequencing was used to search for alterations in gene expression in 72-hour postfertilization zebrafish larvae following transient SULT4A1 knockdown (KD) utilizing splice blocking morpholino oligonucleotides. This study demonstrates that transient inhibition of SULT4A1 expression in developing zebrafish larvae results in the up-regulation of several genes involved in phototransduction. SULT4A1 KD was verified by immunoblot analysis and quantitative real-time polymerase chain reaction (qPCR). Gene regulation changes identified by deep RNA sequencing were validated by qPCR. This study is the first identification of a cellular process whose regulation appears to be associated with SULT4A1 expression.
Collapse
Affiliation(s)
- Frank Crittenden
- Departments of Pharmacology and Toxicology (F.C., H.T., J.P., C.N.F.), Medicine (D.C.), and Vision Sciences (T.K.), University of Alabama at Birmingham, Birmingham, Alabama; and R&D Systems, Minneapolis, Minnesota (C.M.E., Z.L.W.)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 2013; 16:2181-94. [PMID: 24099265 DOI: 10.1017/s1461145713000928] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or ketamine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, including novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A and 5-HT7 antagonism, 5-HT(1A), and GABA(A) agonism, contribute to the efficacy of the AAPDs in the scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT(1A) partial agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone, an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or SB269970, with PCP, to rodents, at doses 5-10 fold greater than those acutely effective to restore NOR following scNMDAR treatment, prevents the effect of scPCP to produce an enduring deficit in NOR. This difference in dosage may be relevant to utilizing AAPDs to prevent the onset of CIS in individuals at high risk for developing schizophrenia. The scNMDAR paradigm may be useful for identifying possible means to treat and prevent CIS.
Collapse
|
15
|
Pradhan A, Kharlyngdoh JB, Asnake S, Olsson PE. The brominated flame retardant TBECH activates the zebrafish (Danio rerio) androgen receptor, alters gene transcription and causes developmental disturbances. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:63-72. [PMID: 23958786 DOI: 10.1016/j.aquatox.2013.07.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Tetrabromoethylcyclohexane (TBECH) is a brominated flame retardant that has been shown to be a potent agonist to the human androgen receptor (AR). However, while it is present in the environment, it is not known if it interacts with AR from aquatic species. The present study was therefore aimed at improving our understanding of how TBECH affects aquatic animals using zebrafish as a model organism. In silico modeling demonstrated that TBECH diastereomers bind to the zebrafish androgen receptor (zAR) and in vitro and in vivo data showed that TBECH has androgenic properties. Deleterious effects of TBECH were studied on embryonic and juvenile zebrafish and qRT-PCR analysis in vitro and in vivo was performed to determine TBECH effects on gene regulation. TBECH was found to delay hatching at 1 μM and 10 μM doses while morphological abnormalities and juvenile mortality was observed at 10 μM. The qRT-PCR analysis showed alterations of multiple genes involved in chondrogenesis (cartilage development), metabolism and stress response. Thus, TBECH induces androgenic activity and has negative effects on zebrafish physiology and therefore its impact on the environment should be carefully monitored.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | | | | | | |
Collapse
|
16
|
Liu Q, Jamba M, Patrick C, Padmanabhan S, Brennan MD. Targeted pharmacogenetic analysis of antipsychotic response in the CATIE study. Pharmacogenomics 2012; 13:1227-37. [PMID: 22920393 PMCID: PMC3518380 DOI: 10.2217/pgs.12.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM This study evaluated the impact of 6789 SNPs on treatment response to antipsychotics in Caucasian patients from the CATIE study. MATERIALS & METHODS An Illumina (CA, USA) BeadChip was designed that targeted genes potentially impacting disease risk, disease presentation or antipsychotic response. SNPs tagged regions of linkage disequilibrium or functional variants not detectable using previous genotypes for CATIE. Change in Positive and Negative Syndrome scale total score was modeled using a mixed model repeated measures method that assumed a 30-day lag period. Genetic association analysis was performed using linear regression. RESULTS Association analysis identified 20 SNPs with p-values of ≤5 × 10(-4). Many of these are in genes previously implicated in schizophrenia and other neuropsychiatric diseases. CONCLUSION The targeted approach identified SNPs possibly influencing response to antipsychotic drugs in Caucasian patients suffering from schizophrenia. The findings support a biological link between disease risk and presentation and antipsychotic response.
Collapse
Affiliation(s)
- Qian Liu
- SureGene, LLC, 600 Envoy Circle, Louisville, KY 40299, USA
| | - Maidar Jamba
- SureGene, LLC, 600 Envoy Circle, Louisville, KY 40299, USA
| | - Calvin Patrick
- SureGene, LLC, 600 Envoy Circle, Louisville, KY 40299, USA
| | | | - Mark D Brennan
- SureGene, LLC, 600 Envoy Circle, Louisville, KY 40299, USA
| |
Collapse
|
17
|
Liu Q, Ramsey TL, Meltzer HY, Massey BW, Padmanabhan S, Brennan MD. Sulfotransferase 4A1 Haplotype 1 (SULT4A1-1) Is Associated With Decreased Hospitalization Events in Antipsychotic-Treated Patients With Schizophrenia. Prim Care Companion CNS Disord 2012; 14:11m01293. [PMID: 23106027 DOI: 10.4088/pcc.11m01293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/16/2011] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To evaluate a common genetic variant, sulfotransferase 4A1 haplotype 1 (SULT4A1-1), as a predictor of hospitalization events due to the exacerbation of schizophrenia for patients treated with antipsychotic medications. Haplotypes were determined using single nucleotide polymorphism data. METHOD The study included 417 white subjects from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study with a DSM-IV diagnosis of schizophrenia. Patients were assigned to 1 of 4 atypical antipsychotics (olanzapine, quetiapine, risperidone, or ziprasidone) or to the first-generation antipsychotic perphenazine. Kaplan-Meier survival analysis and Cox proportional hazards regression models were used to measure if haplotype status impacted hospitalization events for these 5 treatments. Haplotype status was evaluated for its relationship to hospitalization events regardless of treatment and for the individual treatments, with or without previous exacerbation. Data for the CATIE study were collected from January 2001 to December 2004. The current post hoc analysis was performed between May 2011 and August 2011. RESULTS In phase 1 of the trial, considering only the first hospitalization events, the haplotype had a significant impact on hospitalization events, with a hazard ratio for SULT4A1-1(-) versus SULT4A1-1(+) of 2.54 (P = .048). When prior exacerbation was included in the model for phase 1, the hazard ratio was 2.34 (P = .072) considering only the first hospitalization event and 2.71 (P = .039) considering all hospitalization events in the phase. When data for all phases were evaluated, SULT4A1-1(-) status was associated with increased hospitalization risk for subjects treated with olanzapine, with a hazard ratio of 8.26 (P = .041), and possibly for subjects treated with quetiapine, with a hazard ratio of 6.80 (P = .070). CONCLUSIONS The SULT4A1-1 haplotype may be an important predictor of risk of hospitalization. SULT4A1-1(+) status was significantly associated with decreased risk of hospitalization when the subjects were treated with olanzapine.
Collapse
Affiliation(s)
- Qian Liu
- SureGene, LLC, Louisville, Kentucky (Drs Liu, Massey, and Brennan; Mr Ramsey; and Ms Padmanabhan); and Department of Psychiatry, Vanderbilt University, Nashville, Tennessee (Dr Meltzer)
| | | | | | | | | | | |
Collapse
|