1
|
Malinga TV, Othman H, Paximadis M, Tiemessen CT, Ramsay M, Hazelhurst S, Twesigomwe D. Characterization of NAT, GST, and CYP2E1 Genetic Variation in Sub-Saharan African Populations: Implications for Treatment of Tuberculosis and Other Diseases. Clin Pharmacol Ther 2025; 117:1338-1357. [PMID: 39829327 PMCID: PMC11993289 DOI: 10.1002/cpt.3557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Tuberculosis (TB) is a major health burden in Africa. Although TB is treatable, anti-TB drugs are associated with adverse drug reactions (ADRs), which are partly attributed to pharmacogenetic variation. The distribution of star alleles (haplotypes) influencing anti-TB drug metabolism is unknown in many African populations. This presents challenges in implementing genotype-guided therapy in Africa to decrease the occurrence of ADRs and enhance the efficacy of anti-TB drugs. In this study, we used StellarPGx to call variants and star alleles in NAT1, NAT2, GSTM1, GSTT1, GSTP1, and CYP2E1, from 1079 high-depth African whole genomes. We present the distribution of common, rare, and potential novel star alleles across various Sub-Saharan African (SSA) populations, in comparison with other global populations. NAT1*10 (53.6%), GSTT1*0 (65%), GSTM1*0 (48%), and NAT2*5 (17.5%) were among the predominant functionally relevant star alleles. Additionally, we predicted varying phenotype distributions for NAT1 and NAT2 (acetylation) and the glutathione-S-transferase (GST) enzymes (detoxification activity) between SSA and other global populations. Forty-seven potentially novel haplotypes were identified computationally across the genes. This study provides insight into the distribution of key variants and star alleles potentially relevant to anti-TB drug metabolism and other drugs prescribed across various African populations. The high number of potentially novel star alleles exemplifies the need for pharmacogenomics studies in the African context. Overall, our study provides a foundation for functional pharmacogenetic studies and potential implementation of pharmacogenetic testing in Africa to reduce the risk of ADRs related to treatment of TB and other diseases.
Collapse
Affiliation(s)
- Thandeka V.B. Malinga
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- Laboratory of Cytogenetics, Molecular Genetics and Reproductive Biology (LR03SP02)Farhat Hached University HospitalSousseTunisia
| | - Maria Paximadis
- School of Molecular and Cell Biology, Faculty of ScienceUniversity of the WitwatersrandJohannesburgSouth Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services and Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Caroline T. Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services and Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- School of Electrical and Information EngineeringUniversity of the WitwatersrandJohannesburgSouth Africa
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
2
|
Choudhury C, Gill MK, McAleese CE, Butcher NJ, Ngo ST, Steyn FJ, Minchin RF. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction. Pharmacol Rev 2024; 76:300-320. [PMID: 38351074 DOI: 10.1124/pharmrev.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Collapse
Affiliation(s)
- Chandra Choudhury
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Melinder K Gill
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Courtney E McAleese
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Neville J Butcher
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Lopes MQP, Teixeira RLF, Cabello PH, Nery JAC, Sales AM, Nahn J. R. EP, Moreira MV, Stahlke EVR, Possuelo LG, Rossetti MLR, Rabahi MF, Silva LFM, Leme PA, Woods WJ, Nobre ML, de Oliveira MLWDR, Narahashi K, Cavalcanti M, Suffys PN, Boukouvala S, Gallo MEN, Santos AR. Human N-acetyltransferase 2 ( NAT2) gene variability in Brazilian populations from different geographical areas. Front Pharmacol 2023; 14:1278720. [PMID: 38035025 PMCID: PMC10684696 DOI: 10.3389/fphar.2023.1278720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Several polymorphisms altering the NAT2 activity have already been identified. The geographical distribution of NAT2 variants has been extensively studied and has been demonstrated to vary significantly among different ethnic population. Here, we describe the genetic variability of human N-acetyltransferase 2 (NAT2) gene and the predominant genotype-deduced acetylation profiles of Brazilians. Methods: A total of 964 individuals, from five geographical different regions, were genotyped for NAT2 by sequencing the entire coding exon. Results: Twenty-three previously described NAT2 single nucleotide polymorphisms (SNPs) were identified, including the seven most common ones globally (c.191G>A, c.282C>T, c.341T>C, c.481C>T, c.590G>A, c.803A>G and c.857G>A). The main allelic groups were NAT2*5 (36%) and NAT2*6 (18.2%), followed to the reference allele NAT2*4 (20.4%). Combined into genotypes, the most prevalent allelic groups were NAT2*5/*5 (14.6%), NAT2*5/*6 (11.9%) and NAT2*6/*6 (6.2%). The genotype deduced NAT2 slow acetylation phenotype was predominant but showed significant variability between geographical regions. The prevalence of slow acetylation phenotype was higher in the Northeast, North and Midwest (51.3%, 45.5% and 41.5%, respectively) of the country. In the Southeast, the intermediate acetylation phenotype was the most prevalent (40.3%) and, in the South, the prevalence of rapid acetylation phenotype was significantly higher (36.7%), when compared to other Brazilian states (p < 0.0001). Comparison of the predicted acetylation profile among regions showed homogeneity among the North and Northeast but was significantly different when compared to the Southeast (p = 0.0396). The Southern region was significantly different from all other regions (p < 0.0001). Discussion: This study contributes not only to current knowledge of the NAT2 population genetic diversity in different geographical regions of Brazil, but also to the reconstruction of a more accurate phenotypic picture of NAT2 acetylator profiles in those regions.
Collapse
Affiliation(s)
- Márcia Quinhones P. Lopes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Raquel Lima F. Teixeira
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Pedro Hernan Cabello
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - José Augusto C. Nery
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Anna Maria Sales
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Lia Gonçalves Possuelo
- Department of Molecular Biology and Biotechnology, IB and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Lucia R. Rossetti
- Department of Molecular Biology and Biotechnology, IB and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo F. Rabahi
- Anuar Auad Infectious Disease Reference Hospital, Goiania, GO, Brazil
| | | | | | | | | | | | | | | | - Philip Noel Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sotiria Boukouvala
- Laboratory of Molecular Genetics and Pharmacogenomics - Toxicogenomics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Eugênia N. Gallo
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Adalberto Rezende Santos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Sileshi T, Telele NF, Burkley V, Makonnen E, Aklillu E. Correlation of N-acetyltransferase 2 genotype and acetylation status with plasma isoniazid concentration and its metabolic ratio in ethiopian tuberculosis patients. Sci Rep 2023; 13:11438. [PMID: 37454203 PMCID: PMC10349800 DOI: 10.1038/s41598-023-38716-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Unfavorable treatment outcomes for tuberculosis (TB) treatment might result from altered plasma exposure to antitubercular drugs in TB patients. The present study investigated the distribution of the N-Acetyltransferase 2 (NAT2) genotype, isoniazid acetylation status, genotype-phenotype concordance of NAT2, and isoniazid plasma exposure among Ethiopian tuberculosis patients. Blood samples were collected from newly diagnosed TB patients receiving a fixed dose combination of first-line antitubercular drugs daily. Genotyping of NAT2 was done using TaqMan drug metabolism assay. Isoniazid and its metabolite concentration were determined using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 120 patients (63 male and 57 female) were enrolled in this study. The mean daily dose of isoniazid was 4.71 mg/kg. The frequency of slow, intermediate, and fast NAT2 acetylators genotypes were 74.2%, 22.4%, and 3.3% respectively. The overall median isoniazid maximum plasma concentration (Cmax) was 4.77 µg/mL and the AUC0-7 h was 11.21 µg.h/mL. The median Cmax in slow, intermediate, and fast acetylators were 5.65, 3.44, and 2.47 μg/mL, respectively. The median AUC0-7 h hour in slow, intermediate, and fast acetylators were 13.1, 6.086, and 3.73 mg•h/L, respectively. The majority (87.5%) of the study participants achieved isoniazid Cmax of above 3 µg/mL, which is considered a lower limit for a favorable treatment outcome. There is 85% concordance between the NAT2 genotype and acetylation phenotypes. NAT2 genotype, female sex, and dose were independent predictors of Cmax and AUC0-7 h (p < 0.001). Our finding revealed that there is a high frequency of slow NAT2 genotypes. The plasma Cmax of isoniazid was higher in the female and slow acetylators genotype group. The overall target plasma isoniazid concentrations in Ethiopian tuberculosis patients were achieved in the majority of the patients. Therefore, it is important to monitor adverse drug reactions and the use of a higher dose of isoniazid should be closely monitored.
Collapse
Affiliation(s)
- Tesemma Sileshi
- Department of Pharmacy, Ambo University, Ambo, Ethiopia.
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Nigus Fikrie Telele
- Department of Laboratory Medicines, Karolinska Institutet, Stockholm, Sweden
| | - Victoria Burkley
- Department of Laboratory Medicines, Karolinska Institutet, Stockholm, Sweden
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Eleni Aklillu
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Salazar-González RA, Doll MA, Hein DW. N-acetyltransferase 2 genetic polymorphism modifies genotoxic and oxidative damage from new psychoactive substances. Arch Toxicol 2023; 97:189-199. [PMID: 36138126 PMCID: PMC10187882 DOI: 10.1007/s00204-022-03383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023]
Abstract
The use of new psychoactive substances (NPS) as drugs of abuse is common and increasingly popular, particularly among youth and neglected communities. Recent studies have reported acute toxic effects from these chemicals; however, their long-term toxicity is unknown. Genetic differences between individuals likely affect the toxicity risk. Arylamine N-acetyltransferase 2 (NAT2) capacity differs among individuals due to genetic inheritance. The goal of the present study is to investigate the gene-environment interaction between NAT2 polymorphism and toxicity after exposure to these chemicals. We measured N-acetylation by human NAT1 and NAT2 and found that N-acetylation of NPS is carried out exclusively by NAT2. Differences in N-acetylation between NAT2*4 (reference allele) and NAT2*5B (common variant allele) were highly significant (p < 0.0001). Using DNA repair-deficient genetically engineered Chinese hamster ovary (CHO cells), expressing human CYP1A2 and either NAT2*4 or NAT2*5B, we measured the induction of DNA double-strand breaks ([Formula: see text]H2Ax) following treatment of the CHO cells with increasing concentrations of NPS. The induction of [Formula: see text]H2Ax showed a NAT2 allele-dependent response, higher in the NAT2*4 vs NAT2*5B alleles (p < 0.05). Induction of oxidative stress (ROS/RNS) was evaluated; we observed NAT2 allele-dependent response for all compounds in concentrations as low as 10 [Formula: see text]M, where NAT2*4 showed increased ROS/RNS vs NAT2*5B (p < 0.05). In summary, NPS are N-acetylated by NAT2 at rates higher in cells expressing NAT2*4 than NAT2*5B. Exposure to psychoactive chemicals results in genotoxic and oxidative damage that is modified by the NAT2 genetic polymorphism.
Collapse
Affiliation(s)
- Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.
| |
Collapse
|
6
|
Mouterde M, Daali Y, Rollason V, Čížková M, Mulugeta A, Al Balushi KA, Fakis G, Constantinidis TC, Al-Thihli K, Černá M, Makonnen E, Boukouvala S, Al-Yahyaee S, Yimer G, Černý V, Desmeules J, Poloni ES. Joint Analysis of Phenotypic and Genomic Diversity Sheds Light on the Evolution of Xenobiotic Metabolism in Humans. Genome Biol Evol 2022; 14:6852765. [PMID: 36445690 PMCID: PMC9750130 DOI: 10.1093/gbe/evac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Variation in genes involved in the absorption, distribution, metabolism, and excretion of drugs (ADME) can influence individual response to a therapeutic treatment. The study of ADME genetic diversity in human populations has led to evolutionary hypotheses of adaptation to distinct chemical environments. Population differentiation in measured drug metabolism phenotypes is, however, scarcely documented, often indirectly estimated via genotype-predicted phenotypes. We administered seven probe compounds devised to target six cytochrome P450 enzymes and the P-glycoprotein (P-gp) activity to assess phenotypic variation in four populations along a latitudinal transect spanning over Africa, the Middle East, and Europe (349 healthy Ethiopian, Omani, Greek, and Czech volunteers). We demonstrate significant population differentiation for all phenotypes except the one measuring CYP2D6 activity. Genome-wide association studies (GWAS) evidenced that the variability of phenotypes measuring CYP2B6, CYP2C9, CYP2C19, and CYP2D6 activity was associated with genetic variants linked to the corresponding encoding genes, and additional genes for the latter three. Instead, GWAS did not indicate any association between genetic diversity and the phenotypes measuring CYP1A2, CYP3A4, and P-gp activity. Genome scans of selection highlighted multiple candidate regions, a few of which included ADME genes, but none overlapped with the GWAS candidates. Our results suggest that different mechanisms have been shaping the evolution of these phenotypes, including phenotypic plasticity, and possibly some form of balancing selection. We discuss how these contrasting results highlight the diverse evolutionary trajectories of ADME genes and proteins, consistent with the wide spectrum of both endogenous and exogenous molecules that are their substrates.
Collapse
Affiliation(s)
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Victoria Rollason
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Martina Čížková
- Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anwar Mulugeta
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Khalid A Al Balushi
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| | - Giannoulis Fakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Khalid Al-Thihli
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia,Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Said Al-Yahyaee
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Getnet Yimer
- Center for Global Genomics & Health Equity, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Viktor Černý
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
7
|
Functional variability of rhesus macaque (Macaca mulatta) NAT2 gene for drug-metabolising arylamine N-acetyltransferase 2. Biochem Pharmacol 2021; 188:114545. [PMID: 33831395 DOI: 10.1016/j.bcp.2021.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/21/2022]
Abstract
Human NAT2 is a polymorphic pharmacogene encoding for N-acetyltransferase 2, a hepatic enzyme active towards arylamine and arylhydrazine drugs, including the anti-tubercular antibiotic isoniazid. The isoenzyme also modulates susceptibility to chemical carcinogenesis, particularly of the bladder. Human NAT2 represents an ideal model for anthropological investigations into the demographic adaptation of worldwide populations to their xenobiotic environment. Its sequence appears to be subject to positive selection pressures that are population-specific and may be attributed to gene-environment interactions directly associated with exogenous chemical challenges. However, recent evidence suggests that the same evolutionary pattern may not be observed in other primates. Here, we report NAT2 polymorphism in 25 rhesus macaques (Macaca mulatta) and compare the frequencies and functional characteristics of 12 variants. Seven non-synonymous single nucleotide variations (SNVs) were identified, including one nonsense mutation. The missense SNVs were demonstrated to affect enzymatic function in a substrate-dependent manner, albeit more moderately than certain NAT1 SNVs recently characterised in the same cohort. Haplotypic and functional variability of NAT2 was comparable to that previously observed for NAT1 in the same population sample, suggesting that the two paralogues may have evolved under similar selective pressures in the rhesus macaque. This is different to the population variability distribution pattern reported for humans and chimpanzees. Recorded SNVs were also different from those found in other primates. The study contributes to further understanding of NAT2 functional polymorphism in the rhesus macaque, a non-human primate model used in biomedicine and pharmacology, indicating variability in xenobiotic acetylation that could affect drug metabolism.
Collapse
|
8
|
Nigam K, Gupta S, Gupta OP, Srivastav RK, Singh SP, Sanyal S. Alteration of the risk of pre-oral cancer and cancer in North Indian population by NAT1 and NAT2 polymorphisms genotypes and haplotypes. Eur Arch Otorhinolaryngol 2021; 278:4081-4089. [PMID: 33813602 DOI: 10.1007/s00405-021-06774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The risk of oral cancer is strongly related to consumption of tobacco, smoking and drinking alcohol. N-acetyl transferases 1,2 are phase II metabolic enzymes, metabolize aryl and heterocyclic amines which are present in tobacco. NAT2 slows acetylator phenotype and the genotype is related to reduced ability to detoxify these xenobiotic that are carcinogenic to tissues. The aim of our study to determine the risk of oral cancer as well as oral precancerous lesions in North Indian population with polymorphisms in these two N-acetyl transferases 1,2 genes. MATERIALS AND METHODS A total of 250 patients with pre oral cancer, oral cancer and 250 healthy volunteers were genotypes for the NAT1 and NAT2 gene polymorphisms. Genotypes were identified by PCR and RFLP. Genotype frequencies were evaluated by Chi-square test and risk of disease was estimated by Odds ratio (OR) with 95% confidence interval. RESULT Our results showed that individuals with CT and TT genotypes of NAT1 C > T polymorphism were significantly lower risk of oral diseases (p value = 0.02, OR = 0.60 and p value = 0.04, OR = 0.58, respectively). For NAT2 C > T polymorphism, the TT genotype significantly increased the risk of OSMF (Oral Sub mucous Fibrosis) and Leukoplakia (p value = 0.001, OR = 4.16; p value = 0.002, OR = 4.38, respectively). In contrary, the CC genotype for NAT2 T > C polymorphism increased the risk of OSMF (p value = 0.01, OR = 3.00, 95% CI = 1.31-6.86). CONCLUSION Our study concludes that the NAT1 polymorphism shows protective association with oral diseases and NAT2 polymorphism and haplotypes also influence the susceptibility to oral diseases in North Indian population subjects.
Collapse
Affiliation(s)
- Kumud Nigam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, 226028, India.,Department of Oral Pathology & Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India
| | - Shalini Gupta
- Department of Oral Pathology & Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India.
| | | | - Ratnesh Kumar Srivastav
- Department of Oral Pathology & Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India
| | - Saurabh Pratap Singh
- Department of Oral Pathology & Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India
| | - Somali Sanyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, 226028, India.
| |
Collapse
|
9
|
Fukunaga K, Kato K, Okusaka T, Saito T, Ikeda M, Yoshida T, Zembutsu H, Iwata N, Mushiroda T. Functional Characterization of the Effects of N-acetyltransferase 2 Alleles on N-acetylation of Eight Drugs and Worldwide Distribution of Substrate-Specific Diversity. Front Genet 2021; 12:652704. [PMID: 33815485 PMCID: PMC8012690 DOI: 10.3389/fgene.2021.652704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Variability in the enzymatic activity of N-acetyltransferase 2 (NAT2) is an important contributor to interindividual differences in drug responses. However, there is little information on functional differences in N-acetylation activities according to NAT2 phenotypes, i.e., rapid, intermediate, slow, and ultra-slow acetylators, between different substrate drugs. Here, we estimated NAT2 genotypes in 990 Japanese individuals and compared the frequencies of different genotypes with those of different populations. We then calculated in vitro kinetic parameters of four NAT2 alleles (NAT2∗4, ∗5, ∗6, and ∗7) for N-acetylation of aminoglutethimide, diaminodiphenyl sulfone, hydralazine, isoniazid, phenelzine, procaineamide, sulfamethazine (SMZ), and sulfapyrizine. NAT2∗5, ∗6, and ∗7 exhibited significantly reduced N-acetylation activities with lower Vmax and CLint values of all drugs when compared with NAT2∗4. Hierarchical clustering analysis revealed that 10 NAT2 genotypes were categorized into three or four clusters. According to the results of in vitro metabolic experiments using SMZ as a substrate, the frequencies of ultra-slow acetylators were calculated to be 29.05–54.27% in Europeans, Africans, and South East Asians, whereas Japanese and East Asian populations showed lower frequencies (4.75 and 11.11%, respectively). Our findings will be helpful for prediction of responses to drugs primarily metabolized by NAT2.
Collapse
Affiliation(s)
- Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Kato
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Zembutsu
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
10
|
Abstract
Despite recent rapid advances in medical knowledge that have improved survival, conventional medical science's understanding of human health and disease relies heavily on people of European descent living in contemporary urban industrialized environments. Given that modern conditions in high-income countries differ widely in terms of lifestyle and exposures compared to those experienced by billions of people and all our ancestors over several hundred thousand years, this narrow approach to the human body and health is very limiting. We argue that preventing and treating chronic diseases of aging and other mismatch diseases will require both expanding study design to sample diverse populations and contexts, and fully incorporating evolutionary perspectives. In this paper, we first assess the extent of biased representation of industrialized populations in high profile, international biomedical journals, then compare patterns of morbidity and health across world regions. We also compare demographic rates and the force of selection between subsistence and industrialized populations to reflect on the changes in how selection operates on fertility and survivorship across the lifespan. We argue that, contrary to simplistic misguided solutions like the PaleoDiet, the hypothesis of evolutionary mismatch needs critical consideration of population history, evolutionary biology and evolved reaction norms to prevent and treat diseases. We highlight the critical value of broader sampling by considering the effects of three key exposures that have radically changed over the past century in many parts of the world-pathogen burden, reproductive effort and physical activity-on autoimmune, cardiometabolic and other mismatch diseases.
Collapse
Affiliation(s)
- Michael D Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA
| |
Collapse
|
11
|
The association between NAT2 acetylator status and adverse drug reactions of sulfasalazine: a systematic review and meta-analysis. Sci Rep 2020; 10:3658. [PMID: 32107440 PMCID: PMC7046788 DOI: 10.1038/s41598-020-60467-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
N-acetyltransferase 2 (NAT2) acetylator status can be classified into three groups depending on the number of rapid alleles (e.g., NAT2*4): rapid, intermediate, and slow acetylators. Such acetylator status may influence the occurrence of adverse drug reactions (ADRs) during sulfasalazine treatment. This systematic review and meta-analysis aimed to evaluate the association between NAT2 acetylator status and ADRs of sulfasalazine. We searched for qualified studies in PubMed, Web of Science, Embase, and the Cochrane Library. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between NAT2 acetylator status and ADRs of sulfasalazine. Nine cohort studies involving 1,077 patients were included in the meta-analysis. NAT2 slow acetylators were associated with an increase in overall ADRs (OR 3.37, 95% CI: 1.43 to 7.93; p = 0.005), discontinuation due to overall ADRs (OR 2.89, 95% CI: 1.72 to 4.86; p < 0.0001), and dose-related ADRs (OR 5.20, 95% CI: 2.44 to 11.08; p < 0.0001), compared with rapid and intermediate acetylators. In conclusion, NAT2 slow acetylators are at risk of ADRs during sulfasalazine treatment. Based on our findings, NAT2 genotyping may be useful to predict the occurrence of ADRs during sulfasalazine treatment.
Collapse
|
12
|
Population variability of rhesus macaque (Macaca mulatta) NAT1 gene for arylamine N-acetyltransferase 1: Functional effects and comparison with human. Sci Rep 2019; 9:10937. [PMID: 31358821 PMCID: PMC6662693 DOI: 10.1038/s41598-019-47485-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Human NAT1 gene for N-acetyltransferase 1 modulates xenobiotic metabolism of arylamine drugs and mutagens. Beyond pharmacogenetics, NAT1 is also relevant to breast cancer. The population history of human NAT1 suggests evolution through purifying selection, but it is unclear whether this pattern is evident in other primate lineages where population studies are scarce. We report NAT1 polymorphism in 25 rhesus macaques (Macaca mulatta) and describe the haplotypic and functional characteristics of 12 variants. Seven non-synonymous single nucleotide variations (SNVs) were identified and experimentally demonstrated to compromise enzyme function, mainly through destabilization of NAT1 protein and consequent activity loss. One non-synonymous SNV (c.560G > A, p.Arg187Gln) has also been characterized for human NAT1 with similar effects. Population haplotypic and functional variability of rhesus NAT1 was considerably higher than previously reported for its human orthologue, suggesting different environmental pressures in the two lineages. Known functional elements downstream of human NAT1 were also differentiated in rhesus macaque and other primates. Xenobiotic metabolizing enzymes play roles beyond mere protection from exogenous chemicals. Therefore, any link to disease, particularly carcinogenesis, may be via modulation of xenobiotic mutagenicity or more subtle interference with cell physiology. Comparative analyses add the evolutionary dimension to such investigations, assessing functional conservation/diversification among primates.
Collapse
|
13
|
Humans and Chimpanzees Display Opposite Patterns of Diversity in Arylamine N-Acetyltransferase Genes. G3-GENES GENOMES GENETICS 2019; 9:2199-2224. [PMID: 31068377 PMCID: PMC6643899 DOI: 10.1534/g3.119.400223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the many genes involved in the metabolism of therapeutic drugs, human arylamine N-acetyltransferases (NATs) genes have been extensively studied, due to their medical importance both in pharmacogenetics and disease epidemiology. One member of this small gene family, NAT2, is established as the locus of the classic human acetylation polymorphism in drug metabolism. Current hypotheses hold that selective processes favoring haplotypes conferring lower NAT2 activity have been operating in modern humans’ recent history as an adaptation to local chemical and dietary environments. To shed new light on such hypotheses, we investigated the genetic diversity of the three members of the NAT gene family in seven hominid species, including modern humans, Neanderthals and Denisovans. Little polymorphism sharing was found among hominids, yet all species displayed high NAT diversity, but distributed in an opposite fashion in chimpanzees and bonobos (Pan genus) compared to modern humans, with higher diversity in Pan species at NAT1 and lower at NAT2, while the reverse is observed in humans. This pattern was also reflected in the results returned by selective neutrality tests, which suggest, in agreement with the predicted functional impact of mutations detected in non-human primates, stronger directional selection, presumably purifying selection, at NAT1 in modern humans, and at NAT2 in chimpanzees. Overall, the results point to the evolution of divergent functions of these highly homologous genes in the different primate species, possibly related to their specific chemical/dietary environment (exposome) and we hypothesize that this is likely linked to the emergence of controlled fire use in the human lineage.
Collapse
|
14
|
Functional expression of human arylamine N-acetyltransferase NAT1*10 and NAT1*11 alleles: a mini review. Pharmacogenet Genomics 2019; 28:238-244. [PMID: 30222709 DOI: 10.1097/fpc.0000000000000350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The arylamine N-acetyltransferase (NAT) nomenclature committee assigns functional phenotypes for human arylamine N-acetyltransferase 1 (NAT1) alleles in those instances in which the committee determined a consensus has been achieved in the scientific literature. In the most recent nomenclature update, the committee announced that functional phenotypes for NAT1*10 and NAT1*11 alleles were not provided owing to a lack of consensus. Phenotypic inconsistencies observed among various studies for NAT1*10 and NAT1*11 may be owing to variable allelic expression among different tissues, the limitations of the genotyping assays (which mostly relied on techniques not involving direct DNA sequencing), the differences in recombinant protein expression systems used (bacteria, yeast, and mammalian cell lines) and/or the known inherent instability of human NAT1 protein, which requires very careful handling of native and recombinant cell lysates. Three recent studies provide consistent evidence of the mechanistic basis underlying the functional phenotype of NAT1*10 and NAT1*11 as 'increased-activity' alleles. Some NAT1 variants (e.g. NAT1*14, NAT1*17, and NAT1*22) may be designated as 'decreased-activity' alleles and other NAT1 variants (e.g. NAT1*15 and NAT1*19) may be designated as 'no-activity' alleles compared with the NAT1*4 reference allele. We propose that phenotypic designations as 'rapid' and 'slow' acetylator should be discontinued for NAT1 alleles, although these designations remain very appropriate for NAT2 alleles.
Collapse
|
15
|
Complex Haplotypes of GSTM1 Gene Deletions Harbor Signatures of a Selective Sweep in East Asian Populations. G3-GENES GENOMES GENETICS 2018; 8:2953-2966. [PMID: 30061374 PMCID: PMC6118300 DOI: 10.1534/g3.118.200462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The deletion of the metabolizing Glutathione S-transferase Mu 1 (GSTM1) gene has been associated with multiple cancers, metabolic and autoimmune disorders, as well as drug response. It is unusually common, with allele frequency reaching up to 75% in some human populations. Such high allele frequency of a derived allele with apparent impact on an otherwise conserved gene is a rare phenomenon. To investigate the evolutionary history of this locus, we analyzed 310 genomes using population genetics tools. Our analysis revealed a surprising lack of linkage disequilibrium between the deletion and the flanking single nucleotide variants in this locus. Tests that measure extended homozygosity and rapid change in allele frequency revealed signatures of an incomplete sweep in the locus. Using empirical approaches, we identified the Tanuki haplogroup, which carries the GSTM1 deletion and is found in approximately 70% of East Asian chromosomes. This haplogroup has rapidly increased in frequency in East Asian populations, contributing to a high population differentiation among continental human groups. We showed that extended homozygosity and population differentiation for this haplogroup is incompatible with simulated neutral expectations in East Asian populations. In parallel, we found that the Tanuki haplogroup is significantly associated with the expression levels of other GSTM genes. Collectively, our results suggest that standing variation in this locus has likely undergone an incomplete sweep in East Asia with regulatory impact on multiple GSTM genes. Our study provides the necessary framework for further studies to elucidate the evolutionary reasons that maintain disease-susceptibility variants in the GSTM1 locus.
Collapse
|
16
|
Comparative analysis of xenobiotic metabolising N-acetyltransferases from ten non-human primates as in vitro models of human homologues. Sci Rep 2018; 8:9759. [PMID: 29950659 PMCID: PMC6021393 DOI: 10.1038/s41598-018-28094-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Xenobiotic metabolising N-acetyltransferases (NATs) perform biotransformation of drugs and carcinogens. Human NAT1 is associated with endogenous metabolic pathways of cells and is a candidate drug target for cancer. Human NAT2 is a well-characterised polymorphic xenobiotic metabolising enzyme, modulating susceptibility to drug-induced toxicity. Human NATs are difficult to express to high purification yields, complicating large-scale production for high-throughput screens or use in sophisticated enzymology assays and crystallography. We undertake comparative functional investigation of the NAT homologues of ten non-human primates, to characterise their properties and evaluate their suitability as models of human NATs. Considering the amount of generated recombinant protein, the enzymatic activity and thermal stability, the NAT homologues of non-human primates are demonstrated to be a much more effective resource for in vitro studies compared with human NATs. Certain NAT homologues are proposed as better models, such as the NAT1 of macaques Macaca mulatta and M. sylvanus, the NAT2 of Erythrocebus patas, and both NAT proteins of the gibbon Nomascus gabriellae which show highest homology to human NATs. This comparative investigation will facilitate in vitro screens towards discovery and optimisation of candidate pharmaceutical compounds for human NAT isoenzymes, while enabling better understanding of NAT function and evolution in primates.
Collapse
|
17
|
Saitou M, Satta Y, Gokcumen O, Ishida T. Complex evolution of the GSTM gene family involves sharing of GSTM1 deletion polymorphism in humans and chimpanzees. BMC Genomics 2018; 19:293. [PMID: 29695243 PMCID: PMC5918908 DOI: 10.1186/s12864-018-4676-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background The common deletion of the glutathione S-transferase Mu 1 (GSTM1) gene in humans has been shown to be involved in xenobiotic metabolism and associated with bladder cancer. However, the evolution of this deletion has not been investigated. Results In this study, we conducted comparative analyses of primate genomes. We demonstrated that the GSTM gene family has evolved through multiple structural variations, involving gene duplications, losses, large inversions and gene conversions. We further showed experimentally that the GSTM1 was polymorphically deleted in both humans and also in chimpanzees, through independent deletion events. To generalize our results, we searched for genic deletions that are polymorphic in both humans and chimpanzees. Consequently, we found only two such deletions among the thousands that we have searched, one of them being the GSTM1 deletion and the other surprisingly being another metabolizing gene, the UGT2B17. Conclusions Overall, our results support the emerging notion that metabolizing gene families, such as the GSTM, NAT, UGT and CYP, have been evolving rapidly through gene duplication and deletion events in primates, leading to complex structural variation within and among species with unknown evolutionary consequences. Electronic supplementary material The online version of this article (10.1186/s12864-018-4676-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Saitou
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, USA
| | - Y Satta
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - O Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, USA.
| | - T Ishida
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Ma XF, Wang XD, Liu RR, Luan QX. Efficacy research of salazosulfamide in ankylosing spondylitis and NAT1 gene polymorphism. Exp Ther Med 2017; 14:2999-3003. [PMID: 28912853 PMCID: PMC5585730 DOI: 10.3892/etm.2017.4844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to explore the correlation of salazosulfamide efficacy on ankylosing spondylitis and N-acetyltransferase 1 (NAT1) gene polymorphism. Thirty-two patients with ankylosing spondylitis were recruited in the experimental group and 36 normal individuals were recruited to the control group. The experimental group received 8.0 mg of salazosulfamide (MTX) per week and the control group received isodose of normal saline. Twenty-six patients in the experimental group responded to the salazosulfamide treatment and 6 did not show response. Morning stiffness time of patients in the experimental group who responded to salazosulfamide was significantly lower than that of patients with no reaction to salazosulfamide, and similar to patients in the control group. The average tender joint count of patients in the experimental group that responded to salazosulfamide was lower than in patients with no response to treatment, and similar to patients in the control group. NAT1 gene sequencing determined that the patients sensitive to salazosulfamide treatment manifested as AA/AG at 263 locus, whereas patients not sensitive to salazosulfamide were GG. NAT1 expression was comparable between the different genotypes at the mRNA level. However, there was a significant difference of NAT1 protein between groups. Overall, salazosulfamide demonstrates curative activity for ankylosing spondylitis and we believe that NAT1 AA/GG genotype at 263 locus can promote salazosulfamide effectiveness on ankylosing spondylitis.
Collapse
Affiliation(s)
- Xiu-Fen Ma
- Division of Immunology and Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiao-Dong Wang
- Division of Immunology and Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Run-Rong Liu
- Division of Immunology and Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Qing-Xia Luan
- Division of Immunology and Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
19
|
Polimanti R, Yang BZ, Zhao H, Gelernter J. Evidence of Polygenic Adaptation in the Systems Genetics of Anthropometric Traits. PLoS One 2016; 11:e0160654. [PMID: 27537407 PMCID: PMC4990182 DOI: 10.1371/journal.pone.0160654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 07/25/2016] [Indexed: 12/26/2022] Open
Abstract
Many signals of natural selection have been identified in the human genome. However, except for some single-locus mechanisms, most molecular processes generating these adaptation signals are still unknown. We developed an approach that integrates datasets related to genome-wide association studies (GWAS) with information about systems biology and genetic signatures of natural selection to identify evidence of polygenic adaptation. Specifically, we focused on five anthropometric measurements: body mass index (BMI), height, waist-to-hip ratio adjusted for BMI (WHR), and waist circumference adjusted for BMI (WC), and sex differences for WHR and WC. We performed an enrichment analysis for signals of natural selection in protein interaction networks associated with anthropometric traits in European populations. The adaptation signals-enriched gene networks associated highlighted epistatic interactions in the context of polygenic selection for the investigated traits. These polygenic mechanisms indicated intriguing selective mechanisms related to the anthropometric traits: adult locomotory behavior for BMI, infection resistance for height, interplay between lipid transport and immune systems for WHR, and female-specific polygenic adaptation for WHR and WC. In conclusion, we observed evidence of polygenic adaptation in the context of systems genetics of anthropometric traits that indicates polygenic mechanisms related to the natural selection in European populations.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut, United States of America
- VA CT Healthcare Center, West Haven, Connecticut, United States of America
| | - Bao Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut, United States of America
- VA CT Healthcare Center, West Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut, United States of America
- VA CT Healthcare Center, West Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
20
|
Podgorná E, Diallo I, Vangenot C, Sanchez-Mazas A, Sabbagh A, Černý V, Poloni ES. Variation in NAT2 acetylation phenotypes is associated with differences in food-producing subsistence modes and ecoregions in Africa. BMC Evol Biol 2015; 15:263. [PMID: 26620671 PMCID: PMC4665893 DOI: 10.1186/s12862-015-0543-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Background Dietary changes associated to shifts in subsistence strategies during human evolution may have induced new selective pressures on phenotypes, as currently held for lactase persistence. Similar hypotheses exist for arylamine N-acetyltransferase 2 (NAT2) mediated acetylation capacity, a well-known pharmacogenetic trait with wide inter-individual variation explained by polymorphisms in the NAT2 gene. The environmental causative factor (if any) driving its evolution is as yet unknown, but significant differences in prevalence of acetylation phenotypes are found between hunter-gatherer and food-producing populations, both in sub-Saharan Africa and worldwide, and between agriculturalists and pastoralists in Central Asia. These two subsistence strategies also prevail among sympatric populations of the African Sahel, but knowledge on NAT2 variation among African pastoral nomads was up to now very scarce. Here we addressed the hypothesis of different selective pressures associated to the agriculturalist or pastoralist lifestyles having acted on the evolution of NAT2 by sequencing the gene in 287 individuals from five pastoralist and one agriculturalist Sahelian populations. Results We show that the significant NAT2 genetic structure of African populations is mainly due to frequency differences of three major haplotypes, two of which are categorized as decreased function alleles (NAT2*5B and NAT2*6A), particularly common in populations living in arid environments, and one fast allele (NAT2*12A), more frequently detected in populations living in tropical humid environments. This genetic structure does associate more strongly with a classification of populations according to ecoregions than to subsistence strategies, mainly because most Sahelian and East African populations display little to no genetic differentiation between them, although both regions hold nomadic or semi-nomadic pastoralist and sedentary agriculturalist communities. Furthermore, we found significantly higher predicted proportions of slow acetylators in pastoralists than in agriculturalists, but also among food-producing populations living in the Sahelian and dry savanna zones than in those living in humid environments, irrespective of their mode of subsistence. Conclusion Our results suggest a possible independent influence of both the dietary habits associated with subsistence modes and the chemical environment associated with climatic zones and biomes on the evolution of NAT2 diversity in sub-Saharan African populations. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0543-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eliška Podgorná
- Department of the Archaeology of Landscape and Archaeobiology, Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic. .,Department of Genetics and Evolution, Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History, University of Geneva, 12 Rue Gustave-Revilliod, 1211, Geneva 4, Switzerland.
| | - Issa Diallo
- Département de Linguistique et Langues Nationales, Institut des Sciences des Sociétés, CNRST, Ouagadougou, Burkina Faso.
| | - Christelle Vangenot
- Department of Genetics and Evolution, Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History, University of Geneva, 12 Rue Gustave-Revilliod, 1211, Geneva 4, Switzerland.
| | - Alicia Sanchez-Mazas
- Department of Genetics and Evolution, Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History, University of Geneva, 12 Rue Gustave-Revilliod, 1211, Geneva 4, Switzerland.
| | - Audrey Sabbagh
- IRD, UMR216, Mère et enfant face aux infections tropicales, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France.
| | - Viktor Černý
- Department of the Archaeology of Landscape and Archaeobiology, Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Estella S Poloni
- Department of Genetics and Evolution, Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History, University of Geneva, 12 Rue Gustave-Revilliod, 1211, Geneva 4, Switzerland.
| |
Collapse
|
21
|
Patillon B, Luisi P, Poloni ES, Boukouvala S, Darlu P, Genin E, Sabbagh A. A homogenizing process of selection has maintained an "ultra-slow" acetylation NAT2 variant in humans. Hum Biol 2015; 86:185-214. [PMID: 25836746 DOI: 10.13110/humanbiology.86.3.0185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-Acetyltransferase 2 (NAT2) is an important enzyme involved in the metabolism of a wide spectrum of naturally occurring xenobiotics, including therapeutic drugs and common environmental carcinogens. Extensive polymorphism in NAT2 gives rise to a wide interindividual variation in acetylation capacity, which influences individual susceptibility to various drug-induced adverse reactions and cancers. Striking patterns of geographic differentiation have been described for the main slow acetylation variants of the NAT2 gene, suggesting the action of natural selection at this locus. In the present study, we took advantage of whole-genome sequence data available from the 1000 Genomes project to investigate the global patterns of population genetic differentiation at NAT2 and determine whether they are atypical compared with the remaining variation of the genome. The nonsynonymous substitution c.590G>A (rs1799930) defining the slow NAT2*6 haplotype cluster exhibited an unusually low FST value compared with the genome average (FST = 0.006, P = 0.016). It was indicated as the most likely target of a homogenizing process of selection promoting the same allelic variant in globally distributed populations. The rs1799930 A allele has been associated with the slowest acetylation capacity in vivo, and its substantial correlation with the subsistence strategy adopted by past human populations suggests that it may have conferred a selective advantage in populations shifting from foraging to agricultural and pastoral activities in the Neolithic period. Results of neutrality tests further supported an adaptive evolution of the NAT2 gene through either balancing selection or directional selection acting on multiple standing slow acetylation variants.
Collapse
Affiliation(s)
- B Patillon
- 1 IRD UMR216, Mère et enfant face aux infections tropicales, Paris, France
| | | | | | | | | | | | | |
Collapse
|
22
|
van der Sluis R, Badenhorst CPS, Erasmus E, van Dyk E, van der Westhuizen FH, van Dijk AA. Conservation of the coding regions of the glycine N-acyltransferase gene further suggests that glycine conjugation is an essential detoxification pathway. Gene 2015; 571:126-34. [PMID: 26149650 DOI: 10.1016/j.gene.2015.06.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/20/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
Abstract
Thorough investigation of the glycine conjugation pathway has been neglected. No defect of the glycine conjugation pathway has been reported and this could reflect the essential role of glycine conjugation in hepatic metabolism. Therefore, we hypothesised that genetic variation in the open reading frame (ORF) of the GLYAT gene should be low and that deleterious alleles would be found at low frequencies. This hypothesis was investigated by analysing the genetic variation of the human GLYAT ORF using data available in public databases. We also sequenced the GLYAT ORF of a small cohort of South African Afrikaner Caucasian individuals. In total, data from 1537 individuals was analysed. The two most prominent GLYAT haplotypes in all populations analysed, were S156 (70%) and T17S156 (20%). The S156C199 and S156H131 haplotypes, which have a negative effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. In the Afrikaner Caucasian cohort a novel Q61L SNP occurring at a high frequency (12%) was detected. The results of this study indicated that the GLYAT ORF is highly conserved and supported the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. These findings emphasise the importance of future investigations to determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics.
Collapse
Affiliation(s)
- Rencia van der Sluis
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa
| | - Christoffel P S Badenhorst
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa
| | - Elardus Erasmus
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa
| | - Etresia van Dyk
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa
| | | | - Alberdina A van Dijk
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
23
|
Mlotha R, Waterhouse D, Dzinjalamala F, Ardrey A, Molyneux E, Davies GR, Ward S. Pharmacokinetics of anti-TB drugs in Malawian children: reconsidering the role of ethambutol. J Antimicrob Chemother 2015; 70:1798-803. [PMID: 25759035 PMCID: PMC4498297 DOI: 10.1093/jac/dkv039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/30/2015] [Indexed: 11/14/2022] Open
Abstract
Background Current guidelines for dosing of anti-TB drugs in children advocate higher doses for rifampicin and isoniazid despite limited availability of paediatric data on the pharmacokinetics of these drugs, especially from Africa, where the burden of childhood disease remains high. Methods Thirty children aged 6 months to 15 years underwent intensive pharmacokinetic sampling for first-line anti-TB drugs at Queen Elizabeth Central Hospital, Blantyre, Malawi. Rifampicin, isoniazid, pyrazinamide and ethambutol were dosed at 10, 5, 25 and 20 mg/kg, respectively. Plasma drug concentrations were determined using sensitive, validated bioanalytical methods and summary pharmacokinetic parameters were estimated using non-compartmental analysis. Results The median (IQR) Cmax was 2.90 (2.08–3.43), 3.37 (2.55–4.59), 34.60 (32.30–40.90) and 1.20 (0.85–1.68) mg/L while the median (IQR) AUC0–∞ was 16.92 (11.10–22.74), 11.48 (7.35–18.93), 333.50 (279.50–487.2) and 8.65 (5.96–11.47) mg·h/L for rifampicin, isoniazid, pyrazinamide and ethambutol, respectively. For all drugs, pharmacokinetic parameters relating to drug absorption and exposure were lower than those published for adults, though similar to existing paediatric data from sub-Saharan Africa. Weight and/or dose predicted at least one measure of exposure for all drugs. Age-related decreases in CL/F for rifampicin and pyrazinamide and a biphasic elimination pattern of isoniazid were observed. Predicted AUC0–∞ for rifampicin dosed at 15 mg/kg was comparable to that of adults while the dose required to achieve ethambutol exposure similar to that in adults was 55 mg/kg or higher. Conclusions These data support recently revised WHO recommendations for dosing of anti-TB drugs in children, but dosing of ethambutol in children also appears inadequate by comparison with adult pharmacokinetic data.
Collapse
Affiliation(s)
- R Mlotha
- Department of Paediatrics, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - D Waterhouse
- Department of Molecular Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - F Dzinjalamala
- Faculty of Pharmacy, College of Medicine, University of Malawi, Blantyre, Malawi
| | - A Ardrey
- Department of Molecular Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - E Molyneux
- Department of Paediatrics, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - G R Davies
- Institutes of Infection and Global Health and Translational Medicine, University of Liverpool, Liverpool, UK
| | - S Ward
- Faculty of Pharmacy, College of Medicine, University of Malawi, Blantyre, Malawi
| |
Collapse
|
24
|
PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 2014; 24:409-25. [PMID: 24892773 DOI: 10.1097/fpc.0000000000000062] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Kang SH, Park G, Jang SJ, Moon DS. Novel NAT2 haplotyping using allele-specific sequencing. Pharmacogenomics 2014; 15:1117-24. [DOI: 10.2217/pgs.14.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: NAT2 is a common metabolizer of many clinical drugs. NAT2 haplotyping requires a complex procedure. Allele-specific PCR followed by direct sequencing or cloning sequencing are common methods used for haplotyping. However, these common methods require labor-intensive procedures. Allele-specific sequencing was designed for haplotyping of the NAT2 gene. Materials & methods: Using rapid DNA polymerase with high fidelity, we amplified the NAT2 coding region of genomic DNA for direct sequencing, allele-specific sequencing and for the cloning of genomic DNA from 307 healthy Korean subjects. Direct sequencing analysis of the 870-bp coding region of NAT2 was performed in order to search 11 of the most common SNPs. For cases who were heterozygous for two or more SNPs and whose haplotypes were not determined by direct sequencing, we performed sequencing analysis using the allele-specific sequencing primer for one specified allele. We performed cloning-sequencing analysis for confirmation of the haplotyping results of allele-specific sequencing. Results: Homozygotes for SNPs, heterozygotes for one SNP and heterozygotes for two or more SNPs were 142 (46.3%), six (2.0%) and 259 (51.8%) cases, respectively. There was 100% concordance between the results of NAT2 haplotyping using allele-specific sequencing and cloning sequencing of 65 cases that were heterozygous for two or more SNPs in 307 samples. For cases that were homozygous for the SNPs by direct sequencing, the haplotypes of NAT2 were clearly determined by cloning sequencing. Conclusion: We have developed a novel method for NAT2 haplotyping using allele-specific sequencing, which could be an innovative and reliable method for NAT2 haplotyping. Original submitted 27 September 2013; Revision submitted 21 March 2014
Collapse
Affiliation(s)
- Seong-Ho Kang
- Department of Laboratory Medicine, Chosun University College of Medicine, 588, Seosuk-dong, Dong-gu, Gwangju, 501–717, South Korea
| | - Geon Park
- Department of Laboratory Medicine, Chosun University College of Medicine, 588, Seosuk-dong, Dong-gu, Gwangju, 501–717, South Korea
| | - Sook Jin Jang
- Department of Laboratory Medicine, Chosun University College of Medicine, 588, Seosuk-dong, Dong-gu, Gwangju, 501–717, South Korea
- Research Center for Resistant Cells, Chosun University College of Medicine, Gwangju, South Korea
| | - Dae-Soo Moon
- Department of Laboratory Medicine, Chosun University College of Medicine, 588, Seosuk-dong, Dong-gu, Gwangju, 501–717, South Korea
| |
Collapse
|
26
|
Song T, Wu D, Wang Y, Li H, Yin N, Zhao Z. Association of NAT1 and NAT2 genes with nonsyndromic cleft lip and palate. Mol Med Rep 2013; 8:211-6. [PMID: 23660777 DOI: 10.3892/mmr.2013.1467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/24/2013] [Indexed: 11/05/2022] Open
Abstract
Nonsyndromic cleft lip and palate (NSCLP) is a common congenital deformity, often associated with environmental risk factors, including alcohol, smoking, drugs and radiation exposure. N-acetyltransferase (NAT)1 and NAT2 genes are involved in the detoxification and metabolic activation of numerous drugs and chemicals. The aim of the present study was to investigate whether genetic variations in these two genes and gene‑gene interactions are associated with NSCLP. We investigated eight NAT1 tag single nucleotide polymorphisms (SNPs) and five NAT2 tag SNPs, selected from HapMap data. These SNPs were examined for associations with NSCLP in 204 patients and 226 controls. Strong evidence of an association with NSCLP was identified for rs4921580 in the NAT1 gene, and haplotype analysis supported these findings. We also found a significant difference between NSCLP and control groups for rs1041983 in the NAT2 gene. The results of gene‑gene interaction analyses also indicated that the combination of rs4921580 (Cg+gg) x rs1041983 (Ct+tt) increased the risk of NSCLP. Thus, the present study provides evidence for the role of NAT1 and NAT2 variations in NSCLP, and indicates that interactions between the NAT1 and NAT2 genes may be important in susceptibility to NSCLP.
Collapse
Affiliation(s)
- Tao Song
- Center of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Gomez F, Tomas G, Ko WY, Ranciaro A, Froment A, Ibrahim M, Lema G, Nyambo TB, Omar SA, Wambebe C, Hirbo JB, Rocha J, Tishkoff SA. Patterns of nucleotide and haplotype diversity at ICAM-1 across global human populations with varying levels of malaria exposure. Hum Genet 2013; 132:987-99. [PMID: 23609612 DOI: 10.1007/s00439-013-1284-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/27/2013] [Indexed: 10/26/2022]
Abstract
Malaria is one of the strongest selective pressures in recent human evolution. African populations have been and continue to be at risk for malarial infections. However, few studies have re-sequenced malaria susceptibility loci across geographically and genetically diverse groups in Africa. We examined nucleotide diversity at Intercellular adhesion molecule-1 (ICAM-1), a malaria susceptibility candidate locus, in a number of human populations with a specific focus on diverse African ethnic groups. We used tests of neutrality to assess whether natural selection has impacted this locus and tested whether SNP variation at ICAM-1 is correlated with malaria endemicity. We observe differing patterns of nucleotide and haplotype variation in global populations and higher levels of diversity in Africa. Although we do not observe a deviation from neutrality based on the allele frequency distribution, we do observe several alleles at ICAM-1, including the ICAM-1 (Kilifi) allele, that are correlated with malaria endemicity. We show that the ICAM-1 (Kilifi) allele, which is common in Africa and Asia, exists on distinct haplotype backgrounds and is likely to have arisen more recently in Asia. Our results suggest that correlation analyses of allele frequencies and malaria endemicity may be useful for identifying candidate functional variants that play a role in malaria resistance and susceptibility.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Genetics and Biology, School of Medicine and School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection. BMC Evol Biol 2013; 13:62. [PMID: 23497148 PMCID: PMC3601968 DOI: 10.1186/1471-2148-13-62] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background The arylamine N-acetyltransferases (NATs) are a unique family of enzymes widely distributed in nature that play a crucial role in the detoxification of aromatic amine xenobiotics. Considering the temporal changes in the levels and toxicity of environmentally available chemicals, the metabolic function of NATs is likely to be under adaptive evolution to broaden or change substrate specificity over time, making NATs a promising subject for evolutionary analyses. In this study, we trace the molecular evolutionary history of the NAT gene family during the last ~450 million years of vertebrate evolution and define the likely role of gene duplication, gene conversion and positive selection in the evolutionary dynamics of this family. Results A phylogenetic analysis of 77 NAT sequences from 38 vertebrate species retrieved from public genomic databases shows that NATs are phylogenetically unstable genes, characterized by frequent gene duplications and losses even among closely related species, and that concerted evolution only played a minor role in the patterns of sequence divergence. Local signals of positive selection are detected in several lineages, probably reflecting response to changes in xenobiotic exposure. We then put a special emphasis on the study of the last ~85 million years of primate NAT evolution by determining the NAT homologous sequences in 13 additional primate species. Our phylogenetic analysis supports the view that the three human NAT genes emerged from a first duplication event in the common ancestor of Simiiformes, yielding NAT1 and an ancestral NAT gene which in turn, duplicated in the common ancestor of Catarrhini, giving rise to NAT2 and the NATP pseudogene. Our analysis suggests a main role of purifying selection in NAT1 protein evolution, whereas NAT2 was predicted to mostly evolve under positive selection to change its amino acid sequence over time. These findings are consistent with a differential role of the two human isoenzymes and support the involvement of NAT1 in endogenous metabolic pathways. Conclusions This study provides unequivocal evidence that the NAT gene family has evolved under a dynamic process of birth-and-death evolution in vertebrates, consistent with previous observations made in fungi.
Collapse
|
29
|
Impact of population diversity on the prediction of 7-SNP NAT2 phenotypes using the tagSNP rs1495741 or paired SNPs. Pharmacogenet Genomics 2012; 22:305-9. [PMID: 22336957 DOI: 10.1097/fpc.0b013e3283519c7c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A novel NAT2 tagSNP (rs1495741) and a 2-SNP genotype (rs1041983 and rs1801280) have been recently shown to accurately predict the NAT2 acetylator phenotypes in populations of exclusive or predominant European/White ancestry. We confirmed the accuracy of the tagSNP approach in White Brazilians, but not in Brown or Black Brazilians, sub-Saharan Mozambicans, and Guarani Amerindians. The combined rs1041983 and rs1801280 genotypes provided considerably better prediction of the NAT2 phenotype in Guarani, but no consistent improvement in Brown or Black Brazilians and Mozambicans. Best predictions of the NAT2 phenotype in Mozambicans using NAT2 SNP pairs were obtained with rs1801280 and rs1799930, but the accuracy of the estimates remained inadequate for clinical use or for investigations in this sub-Saharan group or in Brazilians with considerable African ancestry. In conclusion, the rs1495741 tagSNP cannot be applied to predict the NAT2 acetylation phenotype in Guarani and African-derived populations, whereas 2-SNP genotypes may accurately predict NAT2 phenotypes in Guarani, but not in Africans.
Collapse
|
30
|
Arylamine N-Acetyltransferases – from Drug Metabolism and Pharmacogenetics to Identification of Novel Targets for Pharmacological Intervention. CURRENT CONCEPTS IN DRUG METABOLISM AND TOXICOLOGY 2012; 63:169-205. [DOI: 10.1016/b978-0-12-398339-8.00005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century. Toxicol Appl Pharmacol 2011; 271:395-404. [PMID: 21291902 DOI: 10.1016/j.taap.2011.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/28/2010] [Accepted: 01/24/2011] [Indexed: 12/27/2022]
Abstract
Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.
Collapse
|