1
|
Toyoda Y, Matsuo H, Takada T. Functional characterization of variants in human ABCC11, an axillary osmidrosis risk factor. Hum Cell 2024; 37:1070-1079. [PMID: 38750405 DOI: 10.1007/s13577-024-01074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/03/2024] [Indexed: 06/24/2024]
Abstract
Human ATP-binding cassette transporter C11 (ABCC11) is a membrane protein exhibiting ATP-dependent transport activity for a variety of lipophilic anions including endogenous substances and xenobiotics such as anti-cancer agents. Accumulating evidence indicates that ABCC11 wild type is responsible for the high-secretion phenotypes in human apocrine glands including wet type of earwax and the risk of axillary osmidrosis. Also, a less-functional variant of ABCC11 was reportedly associated with a risk for drug-induced toxicity in humans. Thus, functional change in ABCC11 may affect individual's constitution and drug toxicity, which led us to reason that functional validation of genetic variations in ABCC11 should be of importance. Therefore, in addition to p.G180R (a well-characterized non-functional variant of ABCC11), we studied cellular expression and function of 10 variants of ABCC11. In this study, ABCC11 function was evaluated as an ATP-dependent transport of radio labeled-dehydroepiandrosterone sulfate using ABCC11-expressing plasma membrane vesicles. Except for p.G180R, other 10 variants were maturated as an N-linked glycoprotein and expressed on the plasma membrane. We found that six variants impaired the net cellular function of ABCC11. Among them, p.R630W was most influential. Including this identification of a significantly-dysfunctional variant, our findings will extend our understanding of genetic variations and biochemical features of ABCC11 protein.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Di Francia R, Crisci S, De Monaco A, Cafiero C, Re A, Iaccarino G, De Filippi R, Frigeri F, Corazzelli G, Micera A, Pinto A. Response and Toxicity to Cytarabine Therapy in Leukemia and Lymphoma: From Dose Puzzle to Pharmacogenomic Biomarkers. Cancers (Basel) 2021; 13:cancers13050966. [PMID: 33669053 PMCID: PMC7956511 DOI: 10.3390/cancers13050966] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary In this review, the authors propose a crosswise examination of cytarabine-related issues ranging from the spectrum of clinical activity and severe toxicities, through updated cellular pharmacology and drug formulations, to the genetic variants associated with drug-induced phenotypes. Cytarabine (cytosine arabinoside; Ara-C) in multiagent chemotherapy regimens is often used for leukemia or lymphoma treatments, as well as neoplastic meningitis. Chemotherapy regimens can induce a suboptimal clinical outcome in a fraction of patients. The individual variability in clinical response to Leukemia & Lymphoma treatments among patients appears to be associated with intracellular accumulation of Ara-CTP due to genetic variants related to metabolic enzymes. The review provides exhaustive information on the effects of Ara-C-based therapies, the adverse drug reaction will also be provided including bone pain, ocular toxicity (corneal pain, keratoconjunctivitis, and blurred vision), maculopapular rash, and occasional chest pain. Evidence for predicting the response to cytarabine-based treatments will be highlighted, pointing at their significant impact on the routine management of blood cancers. Abstract Cytarabine is a pyrimidine nucleoside analog, commonly used in multiagent chemotherapy regimens for the treatment of leukemia and lymphoma, as well as for neoplastic meningitis. Ara-C-based chemotherapy regimens can induce a suboptimal clinical outcome in a fraction of patients. Several studies suggest that the individual variability in clinical response to Leukemia & Lymphoma treatments among patients, underlying either Ara-C mechanism resistance or toxicity, appears to be associated with the intracellular accumulation and retention of Ara-CTP due to genetic variants related to metabolic enzymes. Herein, we reported (a) the latest Pharmacogenomics biomarkers associated with the response to cytarabine and (b) the new drug formulations with optimized pharmacokinetics. The purpose of this review is to provide readers with detailed and comprehensive information on the effects of Ara-C-based therapies, from biological to clinical practice, maintaining high the interest of both researcher and clinical hematologist. This review could help clinicians in predicting the response to cytarabine-based treatments.
Collapse
Affiliation(s)
- Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics, 60126 Ancona, Italy;
| | - Stefania Crisci
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Angela De Monaco
- Clinical Patology, ASL Napoli 2 Nord, “S.M. delle Grazie Hospital”, 80078 Pozzuoli, Italy;
| | - Concetta Cafiero
- Medical Oncology, S.G. Moscati, Statte, 74010 Taranto, Italy
- Correspondence: or (C.C.); (A.M.); Tel.:+39-34-0101-2002 (C.C.); +39-06-4554-1191 (A.M.)
| | - Agnese Re
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Giancarla Iaccarino
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Rosaria De Filippi
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | | | - Gaetano Corazzelli
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS—Fondazione Bietti, 00184 Rome, Italy
- Correspondence: or (C.C.); (A.M.); Tel.:+39-34-0101-2002 (C.C.); +39-06-4554-1191 (A.M.)
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| |
Collapse
|
3
|
Magdy T, Burridge PW. Use of hiPSC to explicate genomic predisposition to anthracycline-induced cardiotoxicity. Pharmacogenomics 2021; 22:41-54. [PMID: 33448871 PMCID: PMC7923254 DOI: 10.2217/pgs-2020-0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The anticancer agents of the anthracycline family are commonly associated with the potential to cause severe toxicity to the heart. To solve the question of why particular a patient is predisposed to anthracycline-induced cardiotoxicity (AIC), researchers have conducted numerous pharmacogenomic studies and identified more than 60 loci associated with AIC. To date, none of these identified loci have been developed into US FDA-approved biomarkers for use in routine clinical practice. With advances in the application of human-induced pluripotent stem cell-derived cardiomyocytes, sequencing technologies and genomic editing techniques, variants associated with AIC can now be validated in a human model. Here, we provide a comprehensive overview of known genetic variants associated with AIC from the perspective of how human-induced pluripotent stem cell-derived cardiomyocytes can be used to help better explain the genomic predilection to AIC.
Collapse
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Simões AR, Fernández-Rozadilla C, Maroñas O, Carracedo Á. The Road so Far in Colorectal Cancer Pharmacogenomics: Are We Closer to Individualised Treatment? J Pers Med 2020; 10:E237. [PMID: 33228198 PMCID: PMC7711884 DOI: 10.3390/jpm10040237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent decades, survival rates in colorectal cancer have improved greatly due to pharmacological treatment. However, many patients end up developing adverse drug reactions that can be severe or even life threatening, and that affect their quality of life. These remain a limitation, as they may force dose reduction or treatment discontinuation, diminishing treatment efficacy. From candidate gene approaches to genome-wide analysis, pharmacogenomic knowledge has advanced greatly, yet there is still huge and unexploited potential in the use of novel technologies such as next-generation sequencing strategies. This review summarises the road of colorectal cancer pharmacogenomics so far, presents considerations and directions to be taken for further works and discusses the path towards implementation into clinical practice.
Collapse
Affiliation(s)
- Ana Rita Simões
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Ceres Fernández-Rozadilla
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Olalla Maroñas
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica; SERGAS, 15706 Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Raras—CIBERER, 28029 Madrid, Spain
| |
Collapse
|
5
|
Klein K, Tremmel R, Winter S, Fehr S, Battke F, Scheurenbrand T, Schaeffeler E, Biskup S, Schwab M, Zanger UM. A New Panel-Based Next-Generation Sequencing Method for ADME Genes Reveals Novel Associations of Common and Rare Variants With Expression in a Human Liver Cohort. Front Genet 2019; 10:7. [PMID: 30766545 PMCID: PMC6365429 DOI: 10.3389/fgene.2019.00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/09/2019] [Indexed: 01/10/2023] Open
Abstract
We developed a panel-based NGS pipeline for comprehensive analysis of 340 genes involved in absorption, distribution, metabolism and excretion (ADME) of drugs, other xenobiotics, and endogenous substances. The 340 genes comprised phase I and II enzymes, drug transporters and regulator/modifier genes within their entire coding regions, adjacent intron regions and 5' and 3'UTR regions, resulting in a total panel size of 1,382 kbp. We applied the ADME NGS panel to sequence genomic DNA from 150 Caucasian liver donors with available comprehensive gene expression data. This revealed an average read-depth of 343 (range 27-811), while 99% of the 340 genes were covered on average at least 100-fold. Direct comparison of variant annotation with 363 available genotypes determined independently by other methods revealed an overall accuracy of >99%. Of 15,727 SNV and small INDEL variants, 12,022 had a minor allele frequency (MAF) below 2%, including 8,937 singletons. In total we found 7,273 novel variants. Functional predictions were computed for coding variants (n = 4,017) by three algorithms (Polyphen 2, Provean, and SIFT), resulting in 1,466 variants (36.5%) concordantly predicted to be damaging, while 1,019 variants (25.4%) were predicted to be tolerable. In agreement with other studies we found that less common variants were enriched for deleterious variants. Cis-eQTL analysis of variants with (MAF ≥ 2%) revealed significant associations for 90 variants in 31 genes after Bonferroni correction, most of which were located in non-coding regions. For less common variants (MAF < 2%), we applied the SKAT-O test and identified significant associations to gene expression for ADH1C and GSTO1. Moreover, our data allow comparison of functional predictions with additional phenotypic data to prioritize variants for further analysis.
Collapse
Affiliation(s)
- Kathrin Klein
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| | - Sarah Fehr
- CeGaT GmbH, Tübingen, Germany
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Florian Battke
- CeGaT GmbH, Tübingen, Germany
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Tim Scheurenbrand
- CeGaT GmbH, Tübingen, Germany
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| | - Saskia Biskup
- CeGaT GmbH, Tübingen, Germany
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ulrich M. Zanger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Pre-treatment assay of 5-fluorouracil degradation rate (5-FUDR) to improve prediction of 5-fluorouracil toxicity in gastro-esophageal cancer. Oncotarget 2017; 8:14050-14057. [PMID: 27738344 PMCID: PMC5355161 DOI: 10.18632/oncotarget.12571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/05/2016] [Indexed: 01/25/2023] Open
Abstract
Background 5-fluorouracil (5-FU) based chemotherapy is the most common first line regimen used in gastric and gastroesophageal junction cancer, but development of severe toxicity is a main concern in the treatment. The present study is aimed to evaluate a novel pre-treatment assay, known as the 5-FU degradation rate (5-FUDR), as a predictive factor for 5-FU toxicity. Methods Pre-treatment 5-FUDR and gene polymorphisms related to 5-FU metabolism (DPYDIVS14+1G>A, MTHFRA1298T or C677T, TMYS TSER) were characterized in gastro-esophageal cancer patients. Association with toxicities was retrospectively evaluated, using multivariate logistic regression analysis. Results 107 gastro-esophageal cancer patients were retrospectively analyzed. No relation between gene polymorphisms and toxicity were detected, while low (< 5th centile) and high (> 95th centile) 5-FUDRs were associated with development of grade 3-4 toxicity (OR 11.14, 95% CI 1.09-113.77 and OR 9.63, 95% CI 1.70-54.55, p = 0.002). Conclusions Compared to currently used genetic tests, the pre-treatment 5-FUDR seems useful in identifying patients at risk of developing toxicity.
Collapse
|
7
|
5-Fluorouracil degradation rate could predict toxicity in stages II–III colorectal cancer patients undergoing adjuvant FOLFOX. Anticancer Drugs 2017; 28:322-326. [DOI: 10.1097/cad.0000000000000453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Protein expression of ATP-binding cassette transporters ABCC10 and ABCC11 associates with survival of colorectal cancer patients. Cancer Chemother Pharmacol 2016; 78:595-603. [PMID: 27468921 DOI: 10.1007/s00280-016-3114-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE This study investigated the prognostic importance of protein expression of ATP-binding cassette (ABC) transporters ABCC10 and ABCC11 in colorectal cancer. METHODS Protein content of ABCC10 and ABCC11 was assessed in tumor tissue blocks of 140 colorectal cancer patients and associated with survival of patients with regard to 5-fluorouracil-based therapy. RESULTS Low ABCC10 protein content in tumors increased hazard ratio of patient's death more than three times in comparison with high ABCC10-expressing tumors (P = 0.004). In contrast, the low ABCC11 content increased the hazard ratio of cancer recurrence in patients almost four times (P = 0.016). Analysis of patients treated with regimens based on 5-fluorouracil revealed that patients with low ABCC11 content in their tumors had shorter disease-free interval than those with higher content (P = 0.024). CONCLUSIONS The present study shows for the first time that the protein expression of ABCC10 significantly associates with overall survival and the expression of ABCC11 with disease-free interval of colorectal cancer patients and provides strong impulse for further validation of their prognostic value in colorectal cancer.
Collapse
|
9
|
Hamzic S, Wenger N, Froehlich TK, Joerger M, Aebi S, Largiadèr CR, Amstutz U. The impact of ABCC11 polymorphisms on the risk of early-onset fluoropyrimidine toxicity. THE PHARMACOGENOMICS JOURNAL 2016; 17:319-324. [DOI: 10.1038/tpj.2016.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/12/2016] [Indexed: 12/15/2022]
|
10
|
Diagnosis of Human Axillary Osmidrosis by Genotyping of the Human ABCC11 Gene: Clinical Practice and Basic Scientific Evidence. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7670483. [PMID: 27057547 PMCID: PMC4781944 DOI: 10.1155/2016/7670483] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 01/09/2023]
Abstract
The importance of personalized medicine and healthcare is becoming increasingly recognized. Genetic polymorphisms associated with potential risks of various human genetic diseases as well as drug-induced adverse reactions have recently been well studied, and their underlying molecular mechanisms are being uncovered by functional genomics as well as genome-wide association studies. Knowledge of certain genetic polymorphisms is clinically important for our understanding of interindividual differences in drug response and/or disease risk. As such evidence accumulates, new clinical applications and practices are needed. In this context, the development of new technologies for simple, fast, accurate, and cost-effective genotyping is imperative. Here, we describe a simple isothermal genotyping method capable of detecting single nucleotide polymorphisms (SNPs) in the human ATP-binding cassette (ABC) transporter ABCC11 gene and its application to the clinical diagnosis of axillary osmidrosis. We have recently reported that axillary osmidrosis is linked with one SNP 538G>A in the ABCC11 gene. Our molecular biological and biochemical studies have revealed that this SNP greatly affects the protein expression level and the function of ABCC11. In this review, we highlight the clinical relevance and importance of this diagnostic strategy in axillary osmidrosis therapy.
Collapse
|
11
|
Tsuchiya T, Arai J, Matsumoto K, Miyazaki T, Honda S, Tagawa T, Nakamura A, Taniguchi H, Sano I, Akamine S, Muraoka M, Hisano H, Yamasaki N, Nagayasu T. Prognostic Impact of the ABCC11/MRP8 Polymorphism in Adjuvant Oral Chemotherapy with S-1 for Non-Small Cell Lung Cancer. Chemotherapy 2015; 61:77-86. [DOI: 10.1159/000438942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022]
Abstract
Background: Postoperative 1-year administration of S-1, an oral derivative of 5-fluorouracil (5-FU), was shown to be feasible in lung cancer. The 5-year survival rates of postoperative patients treated with S-1 adjuvant chemotherapy and the prognostic impact of clinicopathological factors were examined. Methods: The data of 50 patients with curatively resected pathological stage IB to IIIA non-small cell lung cancer, who were treated with S-1 postoperatively, were analyzed. The prognostic impacts of 22 clinicopathological factors including expressions of the 5-FU pathway enzymes were evaluated. A single-nucleotide polymorphism (SNP), i.e. 538G>A (rs17822931), of ABCC11/MRP8, which encodes a 5-FU excretion enzyme that is known as an earwax type determinant, was also evaluated. Results: The 5-year overall and relapse-free survival rates were 72.5 and 67.5%, respectively. A performance status ≥1, lymphatic vessel invasion, blood vessel invasion, and the A/A type of SNP538, which is responsible for the dry earwax type, were significantly associated with shorter relapse-free survivals. In 34 patients who showed a relative performance of 70% or more for chemotherapy, multivariate survival analysis indicated significant hazard ratios only for the A/A type of SNP538 (p = 0.007). Conclusions: S-1 has sufficient power as adjuvant chemotherapy. However, its effect might be small in the dry earwax type patient group in an adjuvant setting.
Collapse
|
12
|
Drasdo D, Bode J, Dahmen U, Dirsch O, Dooley S, Gebhardt R, Ghallab A, Godoy P, Häussinger D, Hammad S, Hoehme S, Holzhütter HG, Klingmüller U, Kuepfer L, Timmer J, Zerial M, Hengstler JG. The virtual liver: state of the art and future perspectives. Arch Toxicol 2015; 88:2071-5. [PMID: 25331938 DOI: 10.1007/s00204-014-1384-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dirk Drasdo
- Institut National de Recherche en Informatique et en Automatique (INRIA), Domaine de Voluceau - Rocquencourt, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Arlanov R, Lang T, Jedlitschky G, Schaeffeler E, Ishikawa T, Schwab M, Nies AT. Functional characterization of common protein variants in the efflux transporter ABCC11 and identification of T546M as functionally damaging variant. THE PHARMACOGENOMICS JOURNAL 2015; 16:193-201. [PMID: 25896536 DOI: 10.1038/tpj.2015.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 11/09/2022]
Abstract
Multidrug resistance protein 8 (ABCC11) is an efflux transporter for anionic lipophilic compounds, conferring resistance to antiviral and anticancer agents like 5-fluorouracil (5-FU). ABCC11 missense variants may contribute to variability in drug response but functional consequences, except for the 'earwax variant' c.538G>A, are unknown. Using the 'Screen and Insert' technology, we generated human embryonic kidney 293 cells stably expressing ABCC11 missense variants frequently occurring in different ethnic populations: c.57G>A, c.538G>A, c.950C>A, c.1637C>T, c.1942G>A, c.4032A>G. A series of in silico prediction analyses and in vitro plasma membrane vesicle uptake, immunoblotting and immunolocalization experiments were undertaken to investigate functional consequences. We identified c.1637C>T (T546M), previously associated with 5-FU-related toxicity, as a novel functionally damaging ABCC11 variant exhibiting markedly reduced transport function of 5-FdUMP, the active cytotoxic metabolite of 5-FU. Detailed analysis of 14 subpopulations revealed highest allele frequencies of c.1637C>T in Europeans and Americans (up to 11%) compared with Africans and Asians (up to 3%).
Collapse
Affiliation(s)
- R Arlanov
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - T Lang
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - G Jedlitschky
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - E Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - T Ishikawa
- RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - M Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany.,Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital of Tübingen, Tübingen, Germany
| | - A T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| |
Collapse
|
14
|
Abstract
Since over 50 years, 5-fluorouracil (5-FU) is in use as backbone of chemotherapy treatment regimens for a wide range of cancers including colon, breast, and head and neck carcinomas. However, drug resistance and severe toxicities such as mucositis, diarrhea, neutropenia, and vomiting in up to 40% of treated patients often lead to dose limitation or treatment discontinuation. Because the oral bioavailability of 5-FU is unpredictable and highly variable, 5-FU is commonly administered intravenously. To overcome medical complications and inconvenience associated with intravenous administration, the oral prodrugs capecitabine and tegafur have been developed. Both fluoropyrimidines are metabolically converted intracellularly to 5-FU, which then needs metabolic activation to exert its damaging activity on RNA and DNA. The low response rates of 10-15% of 5-FU monotherapy can be improved by combination regimens of infusional 5-FU and leucovorin together with oxaliplatin (FOLFOX) or irinotecan (FOLFIRI), thereby increasing response rates to 30-40%. The impact of metabolizing enzymes in the development of fluoropyrimidine toxicity and resistance has been studied in great detail. In addition, membrane drug transporters, which are critical determinants of intracellular drug concentrations, may play a role in occurrence of toxicity and development of resistance against fluoropyrimidine-based therapy as well. This review therefore summarizes current knowledge on the role of drug transporters with particular focus on ATP-binding cassette transporters in fluoropyrimidine-based chemotherapy response.
Collapse
|
15
|
Froehlich TK, Amstutz U, Aebi S, Joerger M, Largiadèr CR. Clinical importance of risk variants in the dihydropyrimidine dehydrogenase gene for the prediction of early-onset fluoropyrimidine toxicity. Int J Cancer 2014; 136:730-9. [PMID: 24923815 DOI: 10.1002/ijc.29025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
We investigated the clinical relevance of dihydropyrimidine dehydrogenase gene (DPYD) variants to predict severe early-onset fluoropyrimidine (FP) toxicity, in particular of a recently discovered haplotype hapB3 and a linked deep intronic splice site mutation c.1129-5923C>G. Selected regions of DPYD were sequenced in prospectively collected germline DNA of 500 patients receiving FP-based chemotherapy. Associations of DPYD variants and haplotypes with hematologic, gastrointestinal, infectious, and dermatologic toxicity in therapy cycles 1-2 and resulting FP-dose interventions (dose reduction, therapy delay or cessation) were analyzed accounting for clinical and demographic covariates. Fifteen additional cases with toxicity-related therapy delay or cessation were retrospectively examined for risk variants. The association of c.1129-5923C>G/hapB3 (4.6% carrier frequency) with severe toxicity was replicated in an independent prospective cohort. Overall, c.1129-5923G/hapB3 carriers showed a relative risk of 3.74 (RR, 95% CI = 2.30-6.09, p = 2 × 10(-5)) for severe toxicity (grades 3-5). Of 31 risk variant carriers (c.1129-5923C>G/hapB3, c.1679T>G, c.1905+1G>A or c.2846A>T), 11 (all with c.1129-5923C>G/hapB3) experienced severe toxicity (15% of 72 cases, RR = 2.73, 95% CI = 1.61-4.63, p = 5 × 10(-6)), and 16 carriers (55%) required FP-dose interventions. Seven of the 15 (47%) retrospective cases carried a risk variant. The c.1129-5923C>G/hapB3 variant is a major contributor to severe early-onset FP toxicity in Caucasian patients. This variant may substantially improve the identification of patients at risk of FP toxicity compared to established DPYD risk variants (c.1905+1G>A, c.1679T>G and c.2846A>T). Pre-therapeutic DPYD testing may prevent 20-30% of life-threatening or lethal episodes of FP toxicity in Caucasian patients.
Collapse
Affiliation(s)
- Tanja K Froehlich
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|