1
|
Agostini LDC, Silva NNT, Belo VDA, Luizon MR, Lima AA, da Silva GN. Pharmacogenetics of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) in cardiovascular diseases. Eur J Pharmacol 2024; 981:176907. [PMID: 39154825 DOI: 10.1016/j.ejphar.2024.176907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Cardiovascular diseases (CVDs) have a high mortality rate, and despite the several available therapeutic targets, non-response to antihypertensives remains a common problem. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are important classes of drugs recommended as first-line therapy for several CVDs. However, response to ACEIs and ARBs varies among treated patients. Pharmacogenomics assesses how an individual's genetic characteristics affect their likely response to drug therapy. Currently, numerous studies suggest that genetic polymorphisms may contribute to variability in drug response. Moreover, further studies evaluating gene-gene interactions within signaling pathways in response to antihypertensives might help to unravel potential genetic predictors for antihypertensive response. This review summarizes the pharmacogenetic data for ACEIs and ARBs in patients with CVD, and discusses the potential pharmacogenetics of these classes of antihypertensives in clinical practice. However, replication studies in different populations are needed. In addition, studies that evaluate gene-gene interactions that share signaling pathways in the response to antihypertensive drugs might facilitate the discovery of genetic predictors for antihypertensive response.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Nayara Nascimento Toledo Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Vanessa de Almeida Belo
- Departamento de Farmácia (DEFAR), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Angelica Alves Lima
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Kazemi Asl S, Rahimzadegan M, Kazemi Asl A. Pharmacogenomics-based systematic review of coronary artery disease based on personalized medicine procedure. Heliyon 2024; 10:e28983. [PMID: 38601677 PMCID: PMC11004819 DOI: 10.1016/j.heliyon.2024.e28983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background Coronary artery disease (CAD) is the most common reason for mortality and disability-adjusted life years (DALYs) lost globally. This study aimed to suggest a new gene list for the treatment of CAD by a systematic review of bioinformatics analyses of pharmacogenomics impacts of potential genes and variants. Methods PubMed search was filtered by the title including Coronary Artery Disease during 2020-2023. To find the genes with pharmacogenetic impact on the CAD, additional filtrations were considered according to the variant annotations. Protein-Protein Interactions (PPIs), Gene-miRNA Interactions (GMIs), Protein-Drug Interactions (PDIs), and variant annotation assessments (VAAs) performed by STRING-MODEL (ver. 12), Cytoscape (ver. 3.10), miRTargetLink.2., NetworkAnalyst (ver 0.3.0), and PharmGKB. Results Results revealed 5618 publications, 1290 papers were qualified, and finally, 650 papers were included. 4608 protein-coding genes were extracted, among them, 1432 unique genes were distinguished and 530 evidence-based repeated genes remained. 71 genes showed a pharmacogenetics-related variant annotation in at least (entirely 6331 annotations). Variant annotation assessment (VAA) showed 532 potential variants for the final report, and finally, the concluding PGs list represented 175 variants. Based on the function and MAF, 57 nonsynonymous variants of 29 Pharmacogenomics-related genes were associated with CAD. Conclusion Conclusively, evaluating circulating miR33a in individuals' plasma with CAD, and genotyping of rs2230806, rs2230808, rs2487032, rs12003906, rs2472507, rs2515629, and rs4149297 (ABCA1 variants) lead to precisely prescribing of well-known drugs. Also, the findings of this review can be used in both whole-genome sequencing (WGS) and whole-exome sequencing (WES) analysis in the prognosis and diagnosis of CAD.
Collapse
Affiliation(s)
- Siamak Kazemi Asl
- Deputy of Education, Ministry of Health and Medical Education, Tehran, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemi Asl
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Tang SWY, Mai AS, Chew NWS, Tam WWS, Tan DSY. The clinical impact of anti-hypertensive treatment drug-gene pairs in the asian population: a systematic review of publications in the past decade. J Hum Hypertens 2023; 37:170-180. [PMID: 36302845 DOI: 10.1038/s41371-022-00765-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022]
Abstract
Pharmacogenetics play an important role in determining the anti-hypertensive effects of blood pressure-lowering medications and have the potential to improve future patient care. Current literature on the topic, however, has a heavy focus on Caucasians and may not be generalisable to the Asian populations. Therefore, we have conducted this systematic review to summarise and evaluate the literature of the past decade. PubMed, Embase, and the Cochrane Register of Controlled Trials were searched for relevant studies from 1 January 2011 to 23 July 2021. The outcome of interest was the response to anti-hypertensive treatment in Asians according to each genetic polymorphism. A total of 26 studies with a total of 8837 patients were included in our review, covering five classes of anti-hypertensive agents-namely, angiotensin-converting enzyme inhibitors (ACEI), angiotensin II receptor blockers (ARB), beta-blockers (BB), calcium channel blockers (CCB), and thiazide-like diuretics. Response to ACEI therapy was most susceptible to genotypic variations, while the efficacy of ARB and CCB were affected by pharmacogenetic differences to varying extent. For BB, only variations in the ADRB1 genotype significantly affects therapeutic response, while the therapeutic efficacy of thiazide-like diuretics was correlated with genotypic variations in the REN and ACE. This systematic review evaluated the impact of pharmacogenetic variations on the therapeutic efficacy of anti-hypertensive treatment in Asians and has described numerous drug-gene pairs that are potentially clinically important. Future prospective studies with larger sample sizes and longer follow-up periods are needed to better elucidate the impact of these drug-gene pairs.
Collapse
Affiliation(s)
- Sarah Wai Yee Tang
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Wilson Wai San Tam
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Doreen Su-Yin Tan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Wan Z, Li X, Sun J, Li X, Liu Z, Dong H, Zhou Q, Qiu H, Xu J, Yang T, Wang WJ, Ou Y. Peripheral Blood Transcripts Predict Preoperative Obstructive Total Anomalous Pulmonary Venous Connection. Front Cardiovasc Med 2022; 9:892000. [PMID: 35711367 PMCID: PMC9194086 DOI: 10.3389/fcvm.2022.892000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of accessible noninvasive tools to examine the molecular alterations limits our understanding of the causes of total anomalous pulmonary venous connection (TAPVC), as well as the identification of effective operational strategies. Here, we consecutively enrolled peripheral leukocyte transcripts of 26 preoperative obstructive and 22 non-obstructive patients with TAPVC. Two-hundred and fifty six differentially expressed mRNA and 27 differentially expressed long noncoding RNA transcripts were dysregulated. The up-regulated mRNA was enriched in the hydrogen peroxide catabolic process, response to mechanical stimulus, neutrophil degranulation, hemostasis, response to bacterium, and the NABA CORE MATRISOME pathway, all of which are associated with the development of fibrosis. Furthermore, we constructed predictive models using multiple machine-learning algorithms and tested the performance in the validation set. The mRNA NR3C2 and lncRNA MEG3 were screened based on multiple iterations. The random forest prediction model can predict preoperative obstruction patients in the validation set with high accuracy (area under curve = 1; sensitivity = 1). These data highlight the potential of peripheral leukocyte transcripts to evaluate obstructive-related pathophysiological alterations, leading to precision healthcare solutions that could improve patient survival after surgery. It also provides a novel direction for the study of preoperative obstructive TAPVC.
Collapse
Affiliation(s)
- Zunmin Wan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinghua Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xiaohua Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Haojian Dong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Hailong Qiu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Tingyu Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Yanqiu Ou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yanqiu Ou
| |
Collapse
|
5
|
Dumeny L, Vardeny O, Edelmann F, Pieske B, Duarte JD, Cavallari LH. NR3C2 genotype is associated with response to spironolactone in diastolic heart failure patients from the Aldo-DHF trial. Pharmacotherapy 2021; 41:978-987. [PMID: 34569641 DOI: 10.1002/phar.2626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023]
Abstract
STUDY OBJECTIVE This study aimed to determine if variants in NR3C2, which codes the target protein of spironolactone, or CYP11B2, which is involved in aldosterone synthesis, were associated with spironolactone response, focused on the primary end point of diastolic function (E/e'), in Aldosterone Receptor Blockade in Diastolic Heart Failure (Aldo-DHF) participants. DESIGN Post-hoc genetic analysis. DATA SOURCE Data and samples were derived from the multi-center, randomized, double-blind, placebo-controlled Aldo-DHF trial. PATIENTS Aldo-DHF participants treated with spironolactone (n = 184) or placebo (n = 178) were included. INTERVENTION Participants were genotyped for NR3C2 rs5522, NR3C2 rs2070951 and CYP11B2 rs1799998 via pyrosequencing. MEASUREMENTS In the placebo and spironolactone arms, separate multivariable linear regression analyses were performed for change in E/e' with each single nucleotide polymorphism (SNP), adjusted for age, sex, and baseline E/e'. To discern potential mechanisms of a genotype effect, associated SNPs were further examined for their association with change in blood pressure, circulating procollagen type III N-terminal peptide (PIIINP), and left atrial area. MAIN RESULTS Carriers of the rs5522 G allele in the placebo arm had a greater increase in E/e' over the 12-month course of the trial compared to noncarriers (β = 1.10; 95% confidence interval [CI]: 0.05-2.16; p = 0.04). No corresponding E/e' worsening by rs5522 genotype was observed in the spironolactone arm. None of the other genotypes were associated with change in E/e'. Compared to noncarriers, rs5522 G carriers also had a greater increase in left atrial area with placebo (β = 0.83; 95% CI: 0.17-1.48; p = 0.01) and a greater reduction in diastolic blood pressure with spironolactone (β = -3.56; 95% CI: -6.73 to -0.39; p = 0.03). Serum PIIINP levels were similar across rs5522 genotypes. CONCLUSIONS Our results suggest that spironolactone attenuates progression of diastolic dysfunction associated with the NR3C2 rs5522 G allele. Validation of our findings is needed.
Collapse
Affiliation(s)
- Leanne Dumeny
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Orly Vardeny
- Center for Care Delivery and Outcomes Research, Minneapolis Veteran Affairs Health Care System, Minneapolis, Minnesota, USA
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Larisa H Cavallari
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Ren H, Luo JQ, Ouyang F, Cheng L, Chen XP, Zhou HH, Huang WH, Zhang W. WNT3A rs752107(C > T) Polymorphism Is Associated With an Increased Risk of Essential Hypertension and Related Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:675222. [PMID: 34322525 PMCID: PMC8310949 DOI: 10.3389/fcvm.2021.675222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Essential Hypertension (EH) results in the burden of cardiovascular disease (CVD) such as Heart Failure (HF) and Ischemic Stroke (IS). A rapidly emerging field involving the role of Wnt/β-catenin signaling pathway in cardiovascular development and dysfunction has recently drawn extensive attention. In the present study, we conducted a genetic association between genomic variants in Wnt/β-catenin signaling pathway and EH, HF, IS. A total of 95 SNPs in 12 Wnt signaling genes (WNT3A, WNT3, WNT4, DKK1, DKK2, LRP5, LRP6, CTNNB1, APC, FZD1, FRZB, SFRP1) were genotyped in 1,860 participants (440 patients with EH, 535 patients with HF, 421 patients with IS and 464 normal control subjects) using Sequenom MassArray technology. WNT3A rs752107(C > T) was strongly associated with an increased risk of EH, HF and IS. Compared with WNT3A rs752107 CC genotype, the CT genotype carriers had a 48% increased risk of EH (OR = 1.48, 95% CI = 1.12-1.96, P = 0.006), the TT genotype conferred a 139% increased risk of EH (OR = 2.39, 95% CI = 1.32-4.34, P = 0.003). Regarding HF and IS, the risk of HF in the T allele carriers (CT + TT) was nearly increased by 58% (OR = 1.58, 95% CI = 1.22-2.04, P = 4.40 × 10-4) and the risk of IS was increased by 37% (OR = 1.37, 95% CI = 1.04-1.79, P = 0.025). Expression quantitative trait loci (eQTL) analysis indicated that rs752107 C allele corresponded to a significant reduction of WNT3A expression. We described a genetic variant of WNT3A rs752107 in Wnt/β-catenin signaling strongly associated with the risk of EH, HF and IS for the first time.
Collapse
Affiliation(s)
- Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jian-Quan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China
| | - Li Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
7
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
8
|
Luo L, Wang Y, Hu P, Wu J. Long Non-Coding RNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes Hypertension by Modulating the Hsa-miR-124-3p/Nuclear Receptor Subfamily 3, Group C, Member 2 (NR3C2) and Hsa-miR-135a-5p/NR3C2 Axis. Med Sci Monit 2020; 26:e920478. [PMID: 32222724 PMCID: PMC7139186 DOI: 10.12659/msm.920478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background This study was designed to investigate the role of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the proliferation as well as apoptosis of human umbilical vein endothelial cells (HUVECs), to offer a basis for therapy of hypertension. Material/Methods The lncRNA MALAT1 expression, hsa-miR-124-3p, hsa-miR-135a-5p, hsa-miR-135b-5p, and hsa-miR-455-5p in plasma were measured from 230 patients with hypertension and 230 non-hypertensive controls. The mechanism for lncRNA MALAT1 modulating the proliferation and apoptosis of HUVECs was explored by cell transfection, Cell Counting Kit-8 (CCK-8), quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and dual-luciferase reporter assays. Results The expression of hsa-miR-124-3p and hsa-miR-135a-5p was reduced and the expression of lncRNA MALAT1 was increased in the plasma of hypertensive patients. Moreover, the plasma levels of hsa-miR-124-3p and hsa-miR-135a-5p of hypertensive patients were negatively correlated with lncRNA MALAT1 (r=−0.64, −0.72; P<0.01, P<0.01, respectively). The level of nuclear receptor subfamily 3, group C, member 2 (NR3C2) protein was negatively correlated with hsa-miR-124-3p and hsa-miR-135a-5p (r=−0.74, −0.84; P<0.01, P<0.01, respectively). The proliferation of HUVECs was inhibited after the inhibition of MALAT. Additionally, after knocking down MALAT, the levels of hsa-miR-124-3p and hsa-miR-135a-5p in HUVECs were markedly increased, while the expression level of NR3C2 protein was decreased. The apoptotic rate of HUVECs after the transfection of MALAT1 small interfering RNA (si-MALAT1) (3.64±0.21%) was significantly reduced compared to that of transfected si-MALAT1 no template control (NC) (3.76±0.19%) and the control group (10.51±1.24%). Conclusions LncRNA MALAT1 regulates proliferation and apoptosis of HUVECs through the hsa-miR-124-3p/NR3C2 and/or hsa-miR-135a-5p/NR3C2 axis.
Collapse
Affiliation(s)
- Liju Luo
- Department of Geratology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Yu Wang
- Department of Cardiology, The Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Jiale Wu
- Department of Geratology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
9
|
Sarhan NM, Shahin MH, El Rouby NM, El-Wakeel LM, Solayman MH, Langaee T, Khorshid H, Schaalan MF, Sabri NA, Cavallari LH. Effect of Genetic and Nongenetic Factors on the Clinical Response to Mineralocorticoid Receptor Antagonist Therapy in Egyptians with Heart Failure. Clin Transl Sci 2019; 13:195-203. [PMID: 31560448 PMCID: PMC6951455 DOI: 10.1111/cts.12702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
This prospective cohort study evaluated the association between the renin angiotensin aldosterone system genotypes and response to spironolactone in 155 Egyptian patients with heart failure with reduced ejection fraction (HFrEF). Genotype frequencies for AGT rs699 were: CC = 16%, CT = 48%, and TT = 36%. Frequencies for CYP11B2 rs1799998 were: TT = 33%, TC = 50%, and CC = 17%. After 6 months of spironolactone treatment, change in the left ventricular ejection fraction (LVEF) differed by AGT rs699 (CC, 14.6%; TC, 7.9%; TT, 2.7%; P = 2.1E‐26), and CYP11B2 rs1799998 (TT, 9.1%; TC, 8.7%; CC, 1.4%; P = 0.0006) genotypes. Multivariate linear regression showed that the AGT rs699 and CYP11B2 rs1799998 polymorphisms plus baseline serum potassium explained 71% of variability in LVEF improvement (P = 0.001), 63% of variability in serum potassium increase (P = 2.25E‐08), and 39% of the variability in improvement in quality of life (P = 2.3E‐04) with spironolactone therapy. These data suggest that AGT and CYP11B2 genotypes as well as baseline serum K are predictors of spironolactone response in HFrEF.
Collapse
Affiliation(s)
- Neven M Sarhan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mohamed H Shahin
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Nihal M El Rouby
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Lamia M El-Wakeel
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Solayman
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Hazem Khorshid
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nagwa A Sabri
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Hirata RDC, Cerda A, Genvigir FDV, Hirata MH. Pharmacogenetic implications in the management of metabolic diseases in Brazilian populations. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Metabolomics coupled with system pharmacology reveal the protective effect of total flavonoids of Astragali Radix against adriamycin-induced rat nephropathy model. J Pharm Biomed Anal 2018; 158:128-136. [DOI: 10.1016/j.jpba.2018.05.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/22/2022]
|
12
|
Role of mineralocorticoid receptor activation in cardiac diastolic dysfunction. Biochim Biophys Acta Mol Basis Dis 2016; 1863:2012-2018. [PMID: 27989961 DOI: 10.1016/j.bbadis.2016.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023]
Abstract
The prevalence of cardiac diastolic dysfunction and heart failure with preserved ejection, a major cause of morbidity and mortality in the western world, is increasing due, in part, to increases in obesity and type 2 diabetes. Characteristics of cardiac diastolic dysfunction include increased myocardial stiffness and impaired left ventricular (LV) relaxation that is characterized by prolonged isovolumic LV relaxation and slow LV filling. Obesity, insulin resistance and type 2 diabetes, especially in females promote activation of mineralocorticoid receptor (MR) signaling with resultant increases in oxidative stress, maladaptive immune responses, inflammation, and impairment of coronary blood flow and cardiac interstitial fibrosis. This review highlights findings from the recent surge in cardiac diastolic dysfunction research. To this end it highlights our contemporary understanding of molecular mechanisms of MR regulation by genetic, epigenetic and posttranslational modifications and resultant cardiac diastolic dysfunction associated with insulin resistance, obesity and type 2 diabetes. This review also explores potential preventative and therapeutic strategies directed in the prevention of cardiac diastolic dysfunction and heart failure with preserved ejection. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure edited by Dr. Jun Ren & Yingmei Zhang.
Collapse
|
13
|
Eadon MT, Chapman AB. A Physiologic Approach to the Pharmacogenomics of Hypertension. Adv Chronic Kidney Dis 2016; 23:91-105. [PMID: 26979148 DOI: 10.1053/j.ackd.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hypertension is a multifactorial condition with diverse physiological systems contributing to its pathogenesis. Individuals exhibit significant variation in their response to antihypertensive agents. Traditional markers, such as age, gender, diet, plasma renin level, and ethnicity, aid in drug selection. However, this review explores the contribution of genetics to facilitate antihypertensive agent selection and predict treatment efficacy. The findings, reproducibility, and limitations of published studies are examined, with emphasis placed on candidate genetic variants affecting drug metabolism, the renin-angiotensin system, adrenergic signalling, and renal sodium reabsorption. Single-nucleotide polymorphisms identified and replicated in unbiased genome-wide association studies of hypertension treatment are reviewed to illustrate the evolving understanding of the disease's complex and polygenic pathophysiology. Implementation efforts at academic centers seek to overcome barriers to the broad adoption of pharmacogenomics in the treatment of hypertension. The level of evidence required to support the implementation of pharmacogenomics in clinical practice is considered.
Collapse
|
14
|
Ritter AMV, Fontana V, Faria APCD, Modolo R, Barbaro NR, Sabbatini AR, Peres H, Biagi C, Silva PS, Lopes PC, Tanus-Santos JE, Coelho EB, Moreno H. Association of Mineralocorticoid Receptor Polymorphism I180V With Left Ventricular Hypertrophy in Resistant Hypertension. Am J Hypertens 2016; 29:245-50. [PMID: 26049084 DOI: 10.1093/ajh/hpv070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Genetic polymorphisms on mineralocorticoid receptor gene (NC3C2) are associated with variability of mineralocorticoid receptor (MR) function and cardiovascular implications. We sought to investigate whether I180V (rs5522) and MRc.-2G_C (rs2070951) polymorphisms in NR3C2 gene are associated with resistance to antihypertensive treatment and target-organ damage in resistant hypertensive (RHTN) patients. METHODS One hundred and eighty-one RHTN and 122 mild to moderate hypertensive (HTN) patients were enrolled in this study. Genotypes were obtained by allelic discrimination assay using real-time polymerase chain reaction. We determined pulse wave velocity (PWV), microalbuminuria, and left ventricular mass index to assess target-organ damage. We compared clinical and laboratorial characteristics of AA vs. G carriers for rs5522 and AC vs. GG vs. CG for rs2070951. RESULTS We did not found differences in allele, genotype, and haplotype frequencies for both polymorphisms between HTN and RHTN subjects. We found increased levels of aldosterone and ambulatory blood pressure (BP) in G carriers only for rs5522. Left ventricular hypertrophy (LVH) was more prevalent in G carriers than AA homozygous for rs5522 but not for rs2070951 in RHTN. On the other hand, microalbuminuria and PWV were similar among genotypes for both polymorphisms. No differences were observed between the haplotypes, except for higher aldosterone concentration in GG compared to AG and AC haplotypes. CONCLUSION Our study suggests that rs5522 polymorphism might affect cardiac remodeling and aldosterone levels in RHTN subjects.
Collapse
Affiliation(s)
| | - Vanessa Fontana
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Ana Paula Cabral de Faria
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo Modolo
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Natália R Barbaro
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Andréa R Sabbatini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Heverton Peres
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Celso Biagi
- Santa Casa of Araçatuba, Araçatuba, SP, Brazil
| | - Pamela S Silva
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Paulo C Lopes
- Clinical Hospital - Hypertension Section, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Eduardo Tanus-Santos
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo B Coelho
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Heitor Moreno
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
15
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
16
|
Wang HB, Yang J. The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension. Saudi Med J 2015; 36:1151-1155. [PMID: 26446323 PMCID: PMC4621718 DOI: 10.15537/smj.2015.10.12458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Micro-ribonucleic acids (miRNAs) are small (21-25 nucleotide) single-stranded, evolutionarily conserved non-protein-coding RNAs, which control diverse cellular functions by interacting with the 3' untranslated region of specific target messenger RNAs at the post-transcriptional level. Research shows that an aberrant expression profile of miRNAs has been linked to a series of diseases, including hypertension. In the past few decades, it has been demonstrated that excessive activation of the renin-angiotensin aldosterone system (RAAS) involves in the pathogenesis of hypertension. This article reviews the latest insights in the identification of RAAS-correlative miRNAs and the potential mechanisms for their roles in hypertension.
Collapse
Affiliation(s)
- Hui-Bo Wang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, Hubei, China. E-mail.
| | | |
Collapse
|
17
|
Dalila N, Brockmöller J, Tzvetkov MV, Schirmer M, Haubrock M, Vormfelde SV. Impact of mineralocorticoid receptor polymorphisms on urinary electrolyte excretion with and without diuretic drugs. Pharmacogenomics 2015; 16:115-27. [DOI: 10.2217/pgs.14.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Polymorphisms in the mineralocorticoid receptor may affect urinary sodium and potassium excretion. We investigated polymorphisms in the MR gene in relation to urinary electrolyte excretion in two separate studies. Patients & methods: The genotype–phenotype association was studied in healthy volunteers after single doses of bumetanide, furosemide, torsemide, hydrochlorothiazide, triamterene and after NaCl restriction. Results: High potassium excretion under all conditions except torsemide, and high NaCl excretion after bumetanide and furosemide were associated with the A allele of the intron-3 polymorphism (rs3857080). This polymorphism explained 5–10% of the functional variation and in vitro, rs3857080 affected DNA binding of the transcription factor LHX4. Conclusion: rs3857080 may be a promising new candidate for research in cardiac and renal disorders and on antialdosteronergic drugs like spironolactone. Original submitted 23 June 2014; Revision submitted 5 November 2014
Collapse
Affiliation(s)
- Nawar Dalila
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Markus Schirmer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
18
|
An update on the pharmacogenetics of treating hypertension. J Hum Hypertens 2014; 29:283-91. [PMID: 25355012 DOI: 10.1038/jhh.2014.76] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/24/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
Hypertension is a leading cause of cardiovascular mortality, but only one third of patients achieve blood pressure goals despite antihypertensive therapy. Genetic polymorphisms may partially account for the interindividual variability and abnormal response to antihypertensive drugs. Candidate gene and genome-wide approaches have identified common genetic variants associated with response to antihypertensive drugs. However, there is no currently available pharmacogenetic test to guide hypertension treatment in clinical practice. In this review, we aimed to summarize the recent findings on pharmacogenetics of the most commonly used antihypertensive drugs in clinical practice, including diuretics, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, beta-blockers and calcium channel blockers. Notably, only a small percentage of the genetic variability on response to antihypertensive drugs has been explained, and the vast majority of the genetic variants associated with antihypertensives efficacy and toxicity remains to be identified. Despite some genetic variants with evidence of association with the variable response related to these most commonly used antihypertensive drug classes, further replication is needed to confirm these associations in different populations. Further studies on epigenetics and regulatory pathways involved in the responsiveness to antihypertensive drugs might provide a deeper understanding of the physiology of hypertension, which may favor the identification of new targets for hypertension treatment and genetic predictors of antihypertensive response.
Collapse
|
19
|
Abstract
Targeting a specific blood pressure based upon patient risk has been the approach to reducing cardiovascular risk in patients with hypertension. Drug selection was based upon compelling indications with titration and the addition of other agents as needed until the blood pressure target was achieved. However, new information has emerged describing improved methods for measuring blood pressure, a re-evaluation of blood pressure targets and additional therapeutic approaches that together may further reduce cardiovascular risk in patients with hypertension.
Collapse
|