1
|
Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C. Genetic Insights into the Molecular Pathophysiology of Depression in Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1138. [PMID: 37374342 DOI: 10.3390/medicina59061138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Parkinson's disease (PD) is a clinically heterogeneous disorder with poorly understood pathological contributing factors. Depression presents one of the most frequent non-motor PD manifestations, and several genetic polymorphisms have been suggested that could affect the depression risk in PD. Therefore, in this review we have collected recent studies addressing the role of genetic factors in the development of depression in PD, aiming to gain insights into its molecular pathobiology and enable the future development of targeted and effective treatment strategies. Materials and Methods: we have searched PubMed and Scopus databases for peer-reviewed research articles published in English (pre-clinical and clinical studies as well as relevant reviews and meta-analyses) investigating the genetic architecture and pathophysiology of PD depression. Results: in particular, polymorphisms in genes related to the serotoninergic pathway (sodium-dependent serotonin transporter gene, SLC6A4, tryptophan hydrolase-2 gene, TPH2), dopamine metabolism and neurotransmission (dopamine receptor D3 gene, DRD3, aldehyde dehydrogenase 2 gene, ALDH2), neurotrophic factors (brain-derived neurotrophic factor gene, BDNF), endocannabinoid system (cannabinoid receptor gene, CNR1), circadian rhythm (thyrotroph embryonic factor gene, TEF), the sodium-dependent neutral amino acid transporter B(0)AT2 gene, SLC6A15), and PARK16 genetic locus were detected as altering susceptibility to depression among PD patients. However, polymorphisms in the dopamine transporter gene (SLC6A3), monoamine oxidase A (MAOA) and B (MAOB) genes, catechol-O-methyltransferase gene (COMT), CRY1, and CRY2 have not been related to PD depression. Conclusions: the specific mechanisms underlying the potential role of genetic diversity in PD depression are still under investigation, however, there is evidence that they may involve neurotransmitter imbalance, mitochondrial impairment, oxidative stress, and neuroinflammation, as well as the dysregulation of neurotrophic factors and their downstream signaling pathways.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Selangor, Malaysia
| | | | - Sokratis G Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
2
|
Liu JS, Chen Y, Shi DD, Zhang BR, Pu JL. Pharmacogenomics-a New Frontier for Individualized Treatment of Parkinson's Disease. Curr Neuropharmacol 2023; 21:536-546. [PMID: 36582064 PMCID: PMC10207905 DOI: 10.2174/1570159x21666221229154830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with a significant public health burden. It is characterized by the gradual degeneration of dopamine neurons in the central nervous system. Although symptomatic pharmacological management remains the primary therapeutic method for PD, clinical experience reveals significant inter-individual heterogeneity in treatment effectiveness and adverse medication responses. The mechanisms behind the observed interindividual variability may be elucidated by investigating the role of genetic variation in human-to-human variances in medication responses and adverse effects. OBJECTIVE This review aims to explore the impact of gene polymorphism on the efficacy of antiparkinsonian drugs. The identification of factors associated with treatment effectiveness variability might assist the creation of a more tailored pharmacological therapy with higher efficacy, fewer side outcomes, and cheaper costs. METHODS In this review, we conducted a thorough search in databases such as PubMed, Web of Science, and Google Scholar, and critically examined current discoveries on Parkinson's disease pharmacogenetics. The ethnicity of the individuals, research methodologies, and potential bias of these studies were thoroughly compared, with the primary focus on consistent conclusions. RESULTS This review provides a summary of the existing data on PD pharmacogenetics, identifies its limitations, and offers insights that may be beneficial for future research. Previous studies have investigated the impact of gene polymorphism on the effectiveness and adverse effects of levodopa. The trendiest genes are the COMT gene, DAT gene, and DRD2 gene. However, limited study on other anti-Parkinson's drugs has been conducted. CONCLUSION Therefore, In order to develop an individualized precision treatment for PD, it is an inevitable trend to carry out multi-center, prospective, randomized controlled clinical trials of PD pharmacogenomics covering common clinical anti-PD drugs in large, homogeneous cohorts.
Collapse
Affiliation(s)
- Jia-Si Liu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Ying Chen
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Dan-Dan Shi
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
3
|
Hernández-Parra H, Cortés H, Avalos-Fuentes JA, Del Prado-Audelo M, Florán B, Leyva-Gómez G, Sharifi-Rad J, Cho WC. Repositioning of drugs for Parkinson's disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnology 2022; 20:413. [PMID: 36109747 PMCID: PMC9479294 DOI: 10.1186/s12951-022-01612-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) significantly affects patients' quality of life and represents a high economic burden for health systems. Given the lack of safe and effective treatments for PD, drug repositioning seeks to offer new medication alternatives, reducing research time and costs compared to the traditional drug development strategy. This review aimed to collect evidence of drugs proposed as candidates to be reused in PD and identify those with the potential to be reformulated into nanocarriers to optimize future repositioning trials. We conducted a detailed search in PubMed, Web of Science, and Scopus from January 2015 at the end of 2021, with the descriptors "Parkinson's disease" and "drug repositioning" or "drug repurposing". We identified 28 drugs as potential candidates, and six of them were found in repositioning clinical trials for PD. However, a limitation of many of these drugs to achieve therapeutic success is their inability to cross the blood-brain barrier (BBB), as is the case with nilotinib, which has shown promising outcomes in clinical trials. We suggest reformulating these drugs in biodegradable nanoparticles (NPs) based on lipids and polymers to perform future trials. As a complementary strategy, we propose functionalizing the NPs surface by adding materials to the surface layer. Among other advantages, functionalization can promote efficient crossing through the BBB and improve the affinity of NPs towards certain brain regions. The main parameters to consider for the design of NPs targeting the central nervous system are highlighted, such as size, PDI, morphology, drug load, and Z potential. Finally, current advances in the use of NPs for Parkinson's disease are cited.
Collapse
Affiliation(s)
- Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, 14380 Ciudad de México, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
4
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
5
|
Advancing Personalized Medicine in Common Forms of Parkinson's Disease through Genetics: Current Therapeutics and the Future of Individualized Management. J Pers Med 2021; 11:jpm11030169. [PMID: 33804504 PMCID: PMC7998972 DOI: 10.3390/jpm11030169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a condition with heterogeneous clinical manifestations that vary in age at onset, rate of progression, disease course, severity, motor and non-motor symptoms, and a variable response to antiparkinsonian drugs. It is considered that there are multiple PD etiological subtypes, some of which could be predicted by genetics. The characterization and prediction of these distinct molecular entities provides a growing opportunity to use individualized management and personalized therapies. Dissecting the genetic architecture of PD is a critical step in identifying therapeutic targets, and genetics represents a step forward to sub-categorize and predict PD risk and progression. A better understanding and separation of genetic subtypes has immediate implications in clinical trial design by unraveling the different flavors of clinical presentation and development. Personalized medicine is a nascent area of research and represents a paramount challenge in the treatment and cure of PD. This manuscript summarizes the current state of precision medicine in the PD field and discusses how genetics has become the engine to gain insights into disease during our constant effort to develop potential etiological based interventions.
Collapse
|
6
|
Dos Santos EUD, da Silva IIFG, Asano AGC, Asano NMJ, De Mascena Diniz Maia M, de Souza PRE. Pharmacogenetic profile and the development of the dyskinesia induced by levodopa-therapy in Parkinson's disease patients: a population-based cohort study. Mol Biol Rep 2020; 47:8997-9004. [PMID: 33151475 DOI: 10.1007/s11033-020-05956-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Levodopa-induced dyskinesia (LID) is an adverse effect that negatively impacts the quality of life of patients with Parkinson's disease (PD). Studies report that genetic variations in the genes of the pharmacogenetic pathway of the levodopa (L-DOPA) might be associated with LID development. The goal of the present study was to investigate a possible influence of functional genetic variants in the DRD1 (rs4532), DRD2 (rs1800497), DAT1 (rs28363170), and COMT (rs4680) genes with LID development. A total of 220 patients with idiopathic PD were enrolled. The genotyping for DRD1 (rs4532), DRD2 (rs1800497), DAT1 (rs28363170), and COMT (rs4680) polymorphisms were performed using Restriction Fragment Length Polymorphism (PCR-RFLP). Univariate and multivariate analyses were performed to assess the association of these polymorphisms and risk factors with LID development. Multivariate Cox regression analysis showed increased risk to LID development for both Levodopa Dose Equivalency (LED) (Hazard ratios (HR) = 1.001; 95% CI 1.00-1.01; p = 0.009) and individuals carrying the COMT L/L genotype (HR = 2.974; 95% CI 1.12-7.83; p = 0.010). Furthermore, when performed a Cox regression analysis adjusted for a total LED, we observed that the genotype COMT L/L had a 3.84-fold increased risk for LID development (HR = 3.841; 95% CI 1.29-11.37; p = 0.012). Our results suggest that before treating LID in PD patients, it is important to take into consideration genetic variant in the COMT gene, since COMT LL genotype may increase the risk for LID development.
Collapse
Affiliation(s)
- Erinaldo Ubirajara Damasceno Dos Santos
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Rua Dom Manuel de Medeiros, S/N -Dois Irmãos, CEP:52171-900, Recife, PE, Brazil
| | | | - Amdore Guescel C Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of the Clinical Hospital of the Federal University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | - Nadja Maria Jorge Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of the Clinical Hospital of the Federal University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | | | - Paulo Roberto Eleutério de Souza
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Rua Dom Manuel de Medeiros, S/N -Dois Irmãos, CEP:52171-900, Recife, PE, Brazil. .,Graduate Program in Genetics, Federal University of Pernambuco (UFPE), Recife, PE, Brazil. .,Department of Biology, Federal Rural University of Pernambuco (UFRPE), Recife, PE, Brazil.
| |
Collapse
|
7
|
Redenšek S, Dolžan V. The role of pharmacogenomics in the personalization of Parkinson's disease treatment. Pharmacogenomics 2020; 21:1033-1043. [PMID: 32893736 DOI: 10.2217/pgs-2020-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD)-related phenotypes can vary among patients substantially, including response to dopaminergic treatment in terms of efficacy and occurrence of adverse events. Many pharmacogenetic studies have already been conducted to find genetic markers of response to dopaminergic treatment. Integration of genetic and clinical data has already resulted in construction of clinical pharmacogenetic models for prediction of adverse events. However, the results of pharmacogenetic studies are inconsistent. More comprehensive genome-wide approaches are needed to find genetic biomarkers of PD-related phenotypes to better explain the variability in response to treatment. These genetic markers should be integrated with clinical, environmental, imaging, and other omics data to build clinically useful algorithms for personalization of PD management.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Stocchi F, Fossati B, Torti M. Safety considerations when using non-ergot dopamine agonists to treat Parkinson's disease. Expert Opin Drug Saf 2020; 19:1155-1172. [PMID: 32869676 DOI: 10.1080/14740338.2020.1804550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Nonergot dopamine agonists (NEDA) represent an excellent treatment option for Parkinson's disease (PD) patients, in both early and advanced stages of the disease. The post-marketing phase of NEDA has highlighted, though, the occurrence of important long-term adverse events. AREAS COVERED This review reports recent updates on NEDA adverse events, analyzing neurobiological bases and risk factors of these complications. A literature search has been performed using Medline and reviewing the bibliographies of selected articles. EXPERT OPINION NEDA represents a very important option in the treatment of PD. Criticisms on their use can be overcome through a better knowledge of these molecules and of the risk factors for adverse events which allow specialists to prevent the occurrence of undesired complications and consent a tailor-based approach. Abbreviations: PD: Parkinson's disease, DA: dopamine agonists, NEDA: non-ergot dopamine agonists, ICD: impulse control disorders, DAWS: dopamine agonist withdrawal syndrome, CYP: Cytochrome P, PK: pharmacokinetic, AUC: area under the curve, HRT: hormone replacement therapy, AV: atrioventricular, HF: heart failure, OH: orthostatic hypotension, RBD: REM behavior disorders, PDP: Parkinson's disease psychosis, DRT: dopamine replacement therapy, DDS: dopamine dysregulation syndrome, MMSE: Mini-Mental state examination, EDS: excessive daytime somnolence.
Collapse
Affiliation(s)
- Fabrizio Stocchi
- Neurology, Institute for Research and Medical Care IRCCS San Raffaele Pisana , Rome, Italy.,Neurology, San Raffaele University , Rome, Italy
| | - Barbara Fossati
- Department of Neuroscience and Rehabilitation, Casa Di Cura Privata Del Policlinico , Milano, Italy
| | - Margherita Torti
- Neurology, Institute for Research and Medical Care IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
9
|
Dos Santos EUD, Duarte EBC, Miranda LMR, Asano AGC, Asano NMJ, Maia MDMD, de Souza PRE. Influence of DRD1 and DRD3 Polymorphisms in the Occurrence of Motor Effects in Patients with Sporadic Parkinson's Disease. Neuromolecular Med 2019; 21:295-302. [PMID: 31119645 DOI: 10.1007/s12017-019-08549-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a multisystem disorder that affects 2-3% of the population ≥ 65 years of age. The main pharmacologic agent use in the treatment of clinical symptoms of PD is levodopa (L-DOPA). However, the chronic use of L-DOPA might result in the emergence of motor complications such as motor fluctuation and dyskinesia. Previous studies have shown that the inter-individual variability and pharmacogenetic profile of PD patients seem to influence the occurrence of motor complications. For these reasons, the purpose of this study was to evaluate a possible relationship between DRD1 A48G and DRD3 Ser9Gly genetic variants with the occurrence of motor complications in PD patients in a Brazilian population. A total of 228 patients with idiopathic PD were enrolled. Patients were genotyped for DRD1 A48G and DRD3 Ser9Gly polymorphisms using PCR-RFLP. The univariate and multivariate analyses were performed to assess the association of these polymorphisms with the occurrence of motor fluctuation and dyskinesia in PD patients. Multiple Poisson regression analyses showed a protector effect to the occurrence of dyskinesia for individuals carrying of the DRD1 G/G genotype (PR 0.294; CI 0.09-0.87; p ≤ 0.020) after the threshold Bonferroni's. Besides, we verified risk increased to the occurrence of motor complications with daily L-DOPA dosage, disease duration, and users of rasagiline, selegiline, or entacapone (p < 0.05 for all). Our results suggest that the DRD1 A48G polymorphism and the presence of extrinsic and intrinsic factors may role an effect in the occurrence of dyskinesia in PD patients.
Collapse
Affiliation(s)
| | | | - Laura Maria Ramos Miranda
- Postgraduate Program in Tropical Animal Science, Rural Federal University of Pernambuco (UFRPE), Recife, PE, Brazil
| | - Andore Guescel C Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of Clinical Hospital of Federal, University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | - Nadja Maria Jorge Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of Clinical Hospital of Federal, University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | - Maria de Mascena Diniz Maia
- Department of Biology, Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N - Dois Irmãos, CEP: 52171-900, Recife, PE, Brazil
| | - Paulo Roberto Eleutério de Souza
- Postgraduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, PE, Brazil. .,Postgraduate Program in Tropical Animal Science, Rural Federal University of Pernambuco (UFRPE), Recife, PE, Brazil. .,Department of Biology, Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N - Dois Irmãos, CEP: 52171-900, Recife, PE, Brazil.
| |
Collapse
|
10
|
The Association between DRD3 Ser9Gly Polymorphism and Depression Severity in Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:1642087. [PMID: 31143436 PMCID: PMC6501220 DOI: 10.1155/2019/1642087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 01/04/2023]
Abstract
More and more evidence suggests that dopamine receptor D3 gene (DRD3) plays an important role in the clinical manifestations and the treatment of Parkinson's disease (PD). DRD3 Ser9Gly polymorphism is the most frequently studied variant point. Our aim was to investigate the potential effect of DRD3 Ser9Gly polymorphism on modulating resting-state brain function and associative clinical manifestations in PD patients. We consecutively recruited 61 idiopathic PD patients and 47 healthy controls (HC) who were evaluated by clinical scales, genotyped for variant Ser9Gly in DRD3, and underwent resting-state functional magnetic resonance imaging. Based on DRD3 Ser9Gly polymorphism, PD patients and HCs were divided into four subgroups. Then, two-way analysis of covariance (ANCOVA) was applied to investigate main effects and interactions of PD and DRD3 Ser9Gly polymorphism on the brain function via amplitude of low-frequency fluctuations (ALFF) approach. The association between DRD3 Ser9Gly-modulated significantly different brain regions, and clinical manifestations were detected by Spearman's correlations. PD patients exhibited decreased ALFF values in the right inferior occipital gyrus, lingual gyrus, and fusiform gyrus. A significant difference in the interaction of “groups × genotypes” was observed in the right medial frontal gyrus. The ALFF value of the cluster showing significant interactions was positively correlated with HAMD-17 scores (r=0.489, p=0.011) and anhedonia scores (r=0.512, p=0.008) in PD patients with the Ser/Gly or Gly/Gly genotypes. Therefore, D3 gene Ser9Gly polymorphism might be associated with the severity of depression characterized by anhedonia in PD patients.
Collapse
|
11
|
Ciccacci C, Borgiani P. Pharmacogenomics in Parkinson's disease: which perspective for developing a personalized medicine? Neural Regen Res 2019; 14:75-76. [PMID: 30531077 PMCID: PMC6263000 DOI: 10.4103/1673-5374.243706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Cinzia Ciccacci
- Department of Biomedicine and Prevention, Section of Genetics, School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Section of Genetics, School of Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Botzer A, Finkelstein Y, Grossman E, Moult J, Unger R. Iatrogenic hypertension: a bioinformatic analysis. THE PHARMACOGENOMICS JOURNAL 2018; 19:337-346. [PMID: 30393374 DOI: 10.1038/s41397-018-0062-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023]
Abstract
It is well known that a myriad of medications and substances can induce side effects that are related to blood pressure (BP) regulation. This study aims to investigate why certain drugs tend to cause iatrogenic hypertension (HTN) and focus on drug targets that are implicated in these conditions.Databases and resources such as SIDER, DrugBank, and Genomatix were utilized in order to bioinformatically investigate HTN-associated drug target-genes for which HTN is a side effect. A tree-like map was created, representing interactions between 198 human genes that relate to the blood pressure system. 72 HTN indicated drugs and 160 HTN-inducing drugs were investigated. HTN-associated genes affected by these drugs were identified. HTN indicated drugs, which target nearly all branches of the interaction tree, were shown to exert an effect on most functional sub-systems of the BP regulatory system; and specifically, for the adrenergic and dopaminergic receptor pathways. High prevalence (25 genes) of shared targets between the HTN indicated and HTN-inducing drug categories was demonstrated. We focus on six drug families which are not indicated for HTN treatment, yet are reported as a major cause for blood pressure side effects. We show the molecular mechanisms that may lead to this iatrogenic effect. Such an analysis may have clinical implications that could allow for the development of tailored medicine with fewer side effects.
Collapse
Affiliation(s)
- Alon Botzer
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Yoram Finkelstein
- Neurology and Toxicology Service and Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ehud Grossman
- Department of Internal Medicine D and Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - John Moult
- Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, Rockville, MD, USA
| | - Ron Unger
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
13
|
Dos Santos EUD, Sampaio TF, Tenório Dos Santos AD, Bezerra Leite FC, da Silva RC, Crovella S, Asano AGC, Asano NMJ, de Souza PRE. The influence of SLC6A3 and DRD2 polymorphisms on levodopa-therapy in patients with sporadic Parkinson's disease. J Pharm Pharmacol 2018; 71:206-212. [PMID: 30353564 DOI: 10.1111/jphp.13031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/29/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate a possible relationship between DRD2/ANKK1 (rs1800497) and SLC6A3/DAT1 (rs28363170) gene polymorphisms with the response to levodopa (L-DOPA)-therapy in patients with Parkinson's disease (PD). METHODS One hundred and ninety-five patients with idiopathic PD were investigated. Patients were genotyped for rs1800497 and rs28363170 polymorphisms using PCR-RFLP. Logistic regression was performed to assess the association of polymorphisms with the occurrence of the chronic complications of L-DOPA therapy. KEY FINDINGS Our results showed association between the occurrence of dyskinesia with an increased greater disease severity (P = 0.007), higher L-DOPA dose (P = 0.007) and use of dopamine agonist (P = 0.020). Moreover, there were significant protective effects for age (P = 0.004) and male subjects (P = 0.006). CONCLUSIONS Clinical and demographic characteristics of Brazilian PD patients and differences in DRD2 and DAT1 genes may to determine individual variations in the therapeutic response to L-DOPA in the Brazilian PD patients.
Collapse
Affiliation(s)
| | - Tiago F Sampaio
- Postgraduate Program of Applied Biology for Health, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | | | - Ronaldo C da Silva
- Keizo Asami Immunopathology Laboratory - LIKA, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Sergio Crovella
- Keizo Asami Immunopathology Laboratory - LIKA, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Amdore Guescel C Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of Clinical Hospital of Federal University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | - Nadja Maria Jorge Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of Clinical Hospital of Federal University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | - Paulo Roberto E de Souza
- Postgraduate Program of Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, PE, Brazil.,Postgraduate Program of Applied Biology for Health, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Department of Biology, Federal Rural University of Pernambuco (UFRPE), Recife, PE, Brazil
| |
Collapse
|
14
|
Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, Cascella R, Giardina E. Application of Precision Medicine in Neurodegenerative Diseases. Front Neurol 2018; 9:701. [PMID: 30190701 PMCID: PMC6115491 DOI: 10.3389/fneur.2018.00701] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
One of the main challenges for healthcare systems is the increasing prevalence of neurodegenerative pathologies together with the rapidly aging populations. The enormous progresses made in the field of biomedical research and informatics have been crucial for improving the knowledge of how genes, epigenetic modifications, aging, nutrition, drugs and microbiome impact health and disease. In fact, the availability of high technology and computational facilities for large-scale analysis enabled a deeper investigation of neurodegenerative disorders, providing a more comprehensive overview of disease and encouraging the development of a precision medicine approach for these pathologies. On this subject, the creation of collaborative networks among medical centers, research institutes and highly qualified specialists can be decisive for moving the precision medicine from the bench to the bedside. To this purpose, the present review has been thought to discuss the main components which may be part of precise and personalized treatment programs applied to neurodegenerative disorders. Parkinson Disease will be taken as an example to understand how precision medicine approach can be clinically useful and provide substantial benefit to patients. In this perspective, the realization of web-based networks can be decisive for the implementation of precision medicine strategies across different specialized centers as well as for supporting clinical/therapeutical decisions and promoting a more preventive and participative medicine for neurodegenerative disorders. These collaborative networks are essentially addressed to find innovative, sustainable and effective strategies able to provide optimal and safer therapies, discriminate at risk individuals, identify patients at preclinical or early stage of disease, set-up individualized and preventative strategies for improving prognosis and patient's quality of life.
Collapse
Affiliation(s)
- Claudia Strafella
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Emotest Laboratory, Pozzuoli, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Maria R Galota
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Stefania Zampatti
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | | | | | - Raffaella Cascella
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.,Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
15
|
Lu L, Marisetty A, Liu B, Kamal MM, Gumin J, Veo B, Cai Y, Kassem DH, Weng C, Maynard ME, Hood KN, Fuller GN, Pan ZZ, Cykowski MD, Dash PK, Majumder S. REST overexpression in mice causes deficits in spontaneous locomotion. Sci Rep 2018; 8:12083. [PMID: 30108242 PMCID: PMC6092433 DOI: 10.1038/s41598-018-29441-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Overexpression of REST has been implicated in brain tumors, ischemic insults, epilepsy, and movement disorders such as Huntington's disease. However, owing to the lack of a conditional REST overexpression animal model, the mechanism of action of REST overexpression in these disorders has not been established in vivo. We created a REST overexpression mouse model using the human REST (hREST) gene. Our results using these mice confirm that hREST expression parallels endogenous REST expression in embryonic mouse brains. Further analyses indicate that REST represses the dopamine receptor 2 (Drd2) gene, which encodes a critical nigrostriatal receptor involved in regulating movement, in vivo. Overexpression of REST using Drd2-Cre in adult mice results in increased REST and decreased DRD2 expression in the striatum, a major site of DRD2 expression, and phenocopies the spontaneous locomotion deficits seen upon global DRD2 deletion or specific DRD2 deletion from indirect-pathway medium spiny neurons. Thus, our studies using this mouse model not only reveal a new function of REST in regulating spontaneous locomotion but also suggest that REST overexpression in DRD2-expressing cells results in spontaneous locomotion deficits.
Collapse
Affiliation(s)
- Li Lu
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anantha Marisetty
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohamed Mostafa Kamal
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bethany Veo
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pediatrics/Hematology and Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - YouQing Cai
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dina Hamada Kassem
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Connie Weng
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhizhong Z Pan
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sadhan Majumder
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Neuro-oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies. Neuromolecular Med 2018; 20:1-17. [PMID: 29305687 DOI: 10.1007/s12017-017-8473-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
17
|
Abstract
Pharmacogenetics is the study of how genetics influences drug treatment outcomes. Much research has been conducted to identify and characterize gene variants that impact the pharmacokinetic and pharmacodynamic aspects of medications used to treat neurologic and psychiatric disorders. This chapter reviews the current state of pharmacogenetic aspects of these treatments. Medications with supporting pharmacogenetic information in product labeling, clinical guidelines, or important mechanistic implications are discussed. At this time, clinically relevant genetic variation in drug metabolizing enzymes may inform drug dosing for a number of medications metabolized in the liver. Additionally, genetic variation in immunological genes may be tested to assess risk for severe hypersensitivity reactions to some anticonvulsant drugs. Finally, a growing body of research highlights that genetic polymorphisms in drug targets may influence symptom response or tolerability to some treatments.
Collapse
Affiliation(s)
- Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
18
|
Hutz MH, Rieder CR. The future of pharmacogenetics in Parkinson's disease treatment. Pharmacogenomics 2017; 19:171-174. [PMID: 29191064 DOI: 10.2217/pgs-2017-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mara H Hutz
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Carlos Rm Rieder
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| |
Collapse
|
19
|
Guin D, Mishra MK, Talwar P, Rawat C, Kushwaha SS, Kukreti S, Kukreti R. A systematic review and integrative approach to decode the common molecular link between levodopa response and Parkinson's disease. BMC Med Genomics 2017; 10:56. [PMID: 28927418 PMCID: PMC5606117 DOI: 10.1186/s12920-017-0291-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/24/2017] [Indexed: 11/26/2022] Open
Abstract
Background PD is a progressive neurodegenerative disorder commonly treated by levodopa. The findings from genetic studies on adverse effects (ADRs) and levodopa efficacy are mostly inconclusive. Here, we aim to identify predictive genetic biomarkers for levodopa response (LR) and determine common molecular link with disease susceptibility. A systematic review for LR was conducted for ADR, and drug efficacy, independently. All included articles were assessed for methodological quality on 14 parameters. GWAS of PD were also reviewed. Protein-protein interaction (PPI) analysis using STRING and functional enrichment using WebGestalt was performed to explore the common link between LR and PD. Results From 37 candidate studies on levodopa toxicity, 18 genes were found associated, of which, CAn STR 13, 14 (DRD2) was most significantly associated with dyskinesia, followed by rs1801133 (MTHFR) with hyper-homocysteinemia, and rs474559 (HOMER1) with hallucination. Similarly, 8 studies on efficacy resulted in 4 genes in which rs28363170, rs3836790 (SLC6A3) and rs4680 (COMT), were significant. To establish the molecular connection between LR with PD, we identified 35 genes significantly associated with PD. With 19 proteins associated with LR and 35 with PD, two independent PPI networks were constructed. Among the 67 nodes (263 edges) in LR, and 62 nodes (190 edges) in PD pathophysiology, UBC, SNCA, FYN, SRC, CAMK2A, and SLC6A3 were identified as common potential candidates. Conclusion Our study revealed the genetically significant polymorphism concerning the ADRs and levodopa efficacy. The six common genes may be used as predictive markers for therapy optimization and as putative drug target candidates. Electronic supplementary material The online version of this article (10.1186/s12920-017-0291-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India.,Department of Chemistry, Nucleic Acids Research Lab, University of Delhi (North Campus), Delhi, India
| | - Puneet Talwar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India
| | - Suman S Kushwaha
- Institute of Human Behaviour and Allied Sciences, Dilshad Garden, Delhi, India
| | - Shrikant Kukreti
- Department of Chemistry, Nucleic Acids Research Lab, University of Delhi (North Campus), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR- Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.
| |
Collapse
|
20
|
Titova N, Chaudhuri KR. Personalized medicine in Parkinson's disease: Time to be precise. Mov Disord 2017; 32:1147-1154. [PMID: 28605054 PMCID: PMC5575483 DOI: 10.1002/mds.27027] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/13/2017] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nataliya Titova
- Federal State Budgetary Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Healthcare of the Russian FederationMoscowRussia
| | - K. Ray Chaudhuri
- National Parkinson Foundation International Centre of Excellence, King's College London and King's College HospitalLondonUK
- Department of Basic and Clinical NeuroscienceThe Maurice Wohl Clinical Neuroscience Institute, King's College LondonLondonUK
- National Institute for Health Research South London and Maudsley NHS Foundation Trust and King's College LondonLondonUK
| |
Collapse
|
21
|
Payami H. The emerging science of precision medicine and pharmacogenomics for Parkinson's disease. Mov Disord 2017; 32:1139-1146. [PMID: 28686320 DOI: 10.1002/mds.27099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/12/2017] [Accepted: 06/18/2017] [Indexed: 12/12/2022] Open
Abstract
Current therapies for Parkinson's disease are problematic because they are symptomatic and have adverse effects. New drugs have failed in clinical trials because of inadequate efficacy. At the core of the problem is trying to make one drug work for all Parkinson's disease patients, when we know this premise is wrong because (1) Parkinson's disease is not a single disease, and (2) no two individuals have the same biological makeup. Precision medicine is the goal to strive for, but we are only at the beginning stages of building the infrastructure for one of the most complex projects in the history of science, and it will be a long time before Parkinson's disease reaps the benefits. Pharmacogenomics, a cornerstone of precision medicine, has already proven successful for many conditions and could also propel drug discovery and improve treatment for Parkinson's disease. To make progress in the pharmacogenomics of Parkinson's disease, we need to change course from small inconclusive candidate gene studies to large-scale rigorously planned genome-wide studies that capture the nuclear genome and the microbiome. Pharmacogenomic studies must use homogenous subtypes of Parkinson's disease or apply the brute force of statistical power to overcome heterogeneity, which will require large sample sizes achievable only via internet-based methods and electronic databases. Large-scale pharmacogenomic studies, together with biomarker discovery efforts, will yield the knowledge necessary to design clinical trials with precision to alleviate confounding by disease heterogeneity and interindividual variability in drug response, two of the major impediments to successful drug discovery and effective treatment. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Haydeh Payami
- Departments of Neurology and Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| |
Collapse
|
22
|
Single nucleotide polymorphisms in genes of dopaminergic pathways are associated with bruxism. Clin Oral Investig 2017; 22:331-337. [DOI: 10.1007/s00784-017-2117-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
23
|
Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci 2017; 18:E551. [PMID: 28273839 PMCID: PMC5372567 DOI: 10.3390/ijms18030551] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most important age-related neurodegenerative disorder in developed societies, after Alzheimer's disease, with a prevalence ranging from 41 per 100,000 in the fourth decade of life to over 1900 per 100,000 in people over 80 years of age. As a movement disorder, the PD phenotype is characterized by rigidity, resting tremor, and bradykinesia. Parkinson's disease -related neurodegeneration is likely to occur several decades before the onset of the motor symptoms. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. Parkinson's disease neuropathology is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta, with widespread involvement of other central nervous system (CNS) structures and peripheral tissues. Pathogenic mechanisms associated with genomic, epigenetic and environmental factors lead to conformational changes and deposits of key proteins due to abnormalities in the ubiquitin-proteasome system together with dysregulation of mitochondrial function and oxidative stress. Conventional pharmacological treatments for PD are dopamine precursors (levodopa, l-DOPA, l-3,4 dihidroxifenilalanina), and other symptomatic treatments including dopamine agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, pergolide, pramipexole, ropinirole, rotigotine), monoamine oxidase (MAO) inhibitors (selegiline, rasagiline), and catechol-O-methyltransferase (COMT) inhibitors (entacapone, tolcapone). The chronic administration of antiparkinsonian drugs currently induces the "wearing-off phenomenon", with additional psychomotor and autonomic complications. In order to minimize these clinical complications, novel compounds have been developed. Novel drugs and bioproducts for the treatment of PD should address dopaminergic neuroprotection to reduce premature neurodegeneration in addition to enhancing dopaminergic neurotransmission. Since biochemical changes and therapeutic outcomes are highly dependent upon the genomic profiles of PD patients, personalized treatments should rely on pharmacogenetic procedures to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
| |
Collapse
|
24
|
Titova N, Chaudhuri KR. Personalized Medicine and Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:1257-1281. [DOI: 10.1016/bs.irn.2017.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Transcriptome Profile Changes in Mice with MPTP-Induced Early Stages of Parkinson's Disease. Mol Neurobiol 2016; 54:6775-6784. [PMID: 27757834 DOI: 10.1007/s12035-016-0190-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Despite progress in the study of the molecular, genetic, and pathogenic mechanisms of PD, it is unclear which processes trigger the development of the pathology associated with PD. Models of the presymptomatic and early symptomatic stages of PD induced by MPTP have been used to analyze changes in transcriptome profile in brain tissues, to identify specific patterns and mechanisms underlying neurodegeneration in PD. The whole-transcriptome analysis in the brain tissues of the mice with MPTP-induced PD showed that striatum is involved in the pathogenesis in the earliest stages and the processes associated with vesicular transport may be altered. The expression profiles of the genes studied in the substantia nigra and peripheral blood confirm that lymphocytes from peripheral blood may reflect processes occurring in the brain. These data suggest that messenger RNA (mRNA) levels in peripheral blood may provide potential biomarkers of the neurodegeneration occurring in PD. The changes in expression at the mRNA and protein levels suggest that Snca may be involved in neurodegeneration and Drd2 may participate in the development of the compensatory mechanisms in the early stages of PD pathogenesis. Our data suggest that the brain cortex may be involved in the pathological processes in the early stages of PD, including the presymptomatic stage.
Collapse
|
26
|
Xu S, Liu J, Yang X, Qian Y, Xiao Q. Association of the DRD2 CA n-STR and DRD3 Ser9Gly polymorphisms with Parkinson's disease and response to dopamine agonists. J Neurol Sci 2016; 372:433-438. [PMID: 27817855 DOI: 10.1016/j.jns.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/06/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022]
Abstract
Dopamine agonists (DAs) play important roles in the treatment of Parkinson's disease (PD). Currently, it is thought that genetic variations in the genes encoding dopamine receptors (DR) are important factors in determining inter-individual variability in drug responses. To investigate the association between Dopamine receptor D type 2 (DRD2) dinucleotide short tandem repeat (CAn-STR) and Dopamine receptor D type 3 (DRD3) Ser9Gly polymorphisms and the risk of PD, as well as the possible reasons for PD patients using different doses of DAs, we recruited 168 idiopathic PD patients and 182 controls. There were no significant differences in DRD2 CAn-STR and DRD3 Ser9Gly genotypes (p=0.184, p=0.196) or in allele frequencies (p=0.239, p=0.290) between PD patients and controls. There was no association between DRD2 CAn-STR polymorphism and doses of DAs. Among three different DRD3 Ser9Gly genotypes (Ser/Ser, Ser/Gly, Gly/Gly), patients carrying Gly/Gly genotype used higher doses of DAs than patients with Ser/Gly and Ser/Ser genotypes (p=0.001). In pramipexole subgroup, the Gly/Gly group took more pramipexole than the other genotype groups (p<0.001), whereas the doses of piribedil were not significantly different among three genotypes (p=0.735). Our results suggest that genotype in DRD3 Ser9Gly was the main factor determining different doses of DAs and PD patients carrying Gly/Gly genotype require higher doses of pramipexole for effective treatment. This study may provide insights into understanding possible reasons for different responses to DAs in Chinese PD patients.
Collapse
Affiliation(s)
- Shaoqing Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Jiujiang Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Xiaodong Yang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Yiwei Qian
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Qin Xiao
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
27
|
Masellis M, Collinson S, Freeman N, Tampakeras M, Levy J, Tchelet A, Eyal E, Berkovich E, Eliaz RE, Abler V, Grossman I, Fitzer-Attas C, Tiwari A, Hayden MR, Kennedy JL, Lang AE, Knight J. Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson's disease: a pharmacogenetic study. Brain 2016; 139:2050-62. [PMID: 27190009 DOI: 10.1093/brain/aww109] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/16/2016] [Indexed: 01/26/2023] Open
Abstract
The treatment of early Parkinson's disease with dopaminergic agents remains the mainstay of symptomatic therapy for this incurable neurodegenerative disorder. However, clinical responses to dopaminergic drugs vary substantially from person to person due to individual-, drug- and disease-related factors that may in part be genetically determined. Using clinical data and DNA samples ascertained through the largest placebo-controlled clinical trial of the monoamine oxidase B inhibitor, rasagiline (ClinicalTrials.gov number, NCT00256204), we examined how polymorphisms in candidate genes associate with the clinical response to rasagiline in early Parkinson's disease. Variants in genes that express proteins involved in the pharmacokinetics and pharmacodynamics of rasagiline, and genes previously associated with the risk to develop Parkinson's disease were genotyped. The LifeTechnologies OpenArray NT genotyping platform and polymerase chain reaction-based methods were used to analyse 204 single nucleotide polymorphisms and five variable number tandem repeats from 30 candidate genes in 692 available DNA samples from this clinical trial. The peak symptomatic response to rasagiline, the rate of symptom progression, and their relation to genetic variation were examined controlling for placebo effects using general linear and mixed effects models, respectively. Single nucleotide polymorphisms, rs2283265 and rs1076560, in the dopamine D2 receptor gene (DRD2) were found to be significantly associated with a favourable peak response to rasagiline at 12 weeks in early Parkinson's disease after controlling for multiple testing. From a linear regression, the betas were 2.5 and 2.38, respectively, with false discovery rate-corrected P-values of 0.032. These polymorphisms were in high linkage disequilibrium with each other (r(2) = 0.96) meaning that the same clinical response signal was identified by each of them. No polymorphisms were associated with slowing the rate of worsening in Parkinson symptoms from Weeks 12 to 36 after correction for multiple testing. This is the largest and most comprehensive pharmacogenetics study to date examining clinical response to an anti-parkinsonian drug and the first to be conducted in patients with early stage Parkinson's disease receiving monotherapy. The results indicate a clinically meaningful benefit to rasagiline in terms of the magnitude of improvement in parkinsonian symptoms for those with the favourable response genotypes. Future work is needed to elucidate the specific mechanisms through which these DRD2 variants operate in modulating the function of the nigrostriatal dopaminergic system.media-1vid110.1093/brain/aww109_video_abstractaww109_video_abstract.
Collapse
Affiliation(s)
- Mario Masellis
- 1 Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Centre, Toronto, Canada 2 Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada 3 Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada 4 Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada 5 Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Shannon Collinson
- 4 Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - Natalie Freeman
- 4 Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - Maria Tampakeras
- 4 Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | | | | | - Eli Eyal
- 6 Teva Pharmaceutical Industries, Israel
| | | | | | | | | | | | - Arun Tiwari
- 4 Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | | | - James L Kennedy
- 4 Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada 5 Institute of Medical Science, University of Toronto, Toronto, Canada 7 Department of Psychiatry, University of Toronto, Toronto, Canada 8 Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Anthony E Lang
- 3 Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada 9 Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada 10 The Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Jo Knight
- 4 Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada 5 Institute of Medical Science, University of Toronto, Toronto, Canada 7 Department of Psychiatry, University of Toronto, Toronto, Canada 8 Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada 11 Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada 12 Lancaster Medical School and Data Science Institute, Lancaster University, Lancaster, UK
| | | |
Collapse
|
28
|
Altmann V, Schumacher-Schuh AF, Rieck M, Callegari-Jacques SM, Rieder CRM, Hutz MH. Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson's disease. Pharmacogenomics 2016; 17:481-8. [PMID: 27019953 DOI: 10.2217/pgs.15.183] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM Levodopa is first-line treatment of Parkinson's disease motor symptoms but, dose response is highly variable. Therefore, the aim of this study was to determine how much levodopa dose could be explained by biological, pharmacological and genetic factors. PATIENTS & METHODS A total of 224 Parkinson's disease patients were genotyped for SV2C and SLC6A3 polymorphisms by allelic discrimination assays. Comedication, demographic and clinical data were also assessed. RESULTS All variables with p < 0.20 were included in a multiple regression analysis for dose prediction. The final model explained 23% of dose variation (F = 11.54; p < 0.000001). CONCLUSION Although a good prediction model was obtained, it still needs to be tested in an independent sample to be validated.
Collapse
Affiliation(s)
- Vivian Altmann
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Mariana Rieck
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Carlos R M Rieder
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mara H Hutz
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
29
|
Kurzawski M, Białecka M, Droździk M. Pharmacogenetic considerations in the treatment of Parkinson's disease. Neurodegener Dis Manag 2016; 5:27-35. [PMID: 25711452 DOI: 10.2217/nmt.14.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, a lot of progress has been made in the identification of genetic biomarkers of drug response. Efforts to define the role of genetic polymorphisms in optimizing pharmacotherapy of Parkinson's disease were also undertaken. This report presents the current state of knowledge on pharmacogenetics of PD, including genes encoding enzymes involved in drug metabolism, drug transporters and direct targets of antiparkinsonian drugs. In most of cases, available data on pharmacogenetic factors that could turn out to be significant modifiers of therapy with anti-PD drugs is still very incomplete and makes it impossible to reach final conclusion about their usefulness in the clinic. More extensive studies, in more uniform, large patient groups, including genome-wide association studies, should be undertaken to finally confirm or deny the value of genetic tests in PD therapy individualization.
Collapse
Affiliation(s)
- Mateusz Kurzawski
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | | | | |
Collapse
|
30
|
Rieck M, Schumacher-Schuh AF, Callegari-Jacques SM, Altmann V, Schneider Medeiros M, Rieder CR, Hutz MH. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson's disease patients? Pharmacogenomics 2015; 16:573-82. [PMID: 25872644 DOI: 10.2217/pgs.15.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIM Levodopa is first line treatment of Parkinson's disease (PD). However, its use is associated with the presence of motor fluctuations and dyskinesias. In recent years, adenosine A2A receptor (A2AR) is rising as a therapeutic target for PD. The aim of the present study was to investigate whether ADORA2A is associated with levodopa adverse effects. PATIENTS & METHODS Two hundred and eight PD patients on levodopa therapy were investigated. rs2298383 and rs3761422 at the ADORA2A gene were genotyped by allelic discrimination assays. RESULTS A trend for association was observed for both polymorphism and diplotypes with dyskinesia. CONCLUSION The present results should be considered as positive preliminary evidence. Further studies are needed to determine the association between ADORA2A and dyskinesia. Original submitted 3 December 2014; Revision submitted 13 February 2015.
Collapse
Affiliation(s)
- Mariana Rieck
- Departmento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa postal 15053, Porto Alegre, RS, 91501-970, Brazil
| | | | | | | | | | | | | |
Collapse
|