1
|
Coates PM, Bailey RL, Blumberg JB, El-Sohemy A, Floyd E, Goldenberg JZ, Gould Shunney A, Holscher HD, Nkrumah-Elie Y, Rai D, Ritz BW, Weber WJ. The Evolution of Science and Regulation of Dietary Supplements: Past, Present, and Future. J Nutr 2024; 154:2335-2345. [PMID: 38971530 PMCID: PMC11375470 DOI: 10.1016/j.tjnut.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Dietary supplement use in the United States is widespread and increasing, especially among certain population groups, such as older Americans. The science surrounding dietary supplements has evolved substantially over the last few decades since their formal regulation in 1994. Much has been learned about the mechanisms of action of many dietary supplement ingredients, but the evidence on their health effects is still building. As is true of much nutrition research, there are many studies that point to health effects, but not all are at the level of scientific evidence (e.g., randomized controlled interventions), rigor, or quality needed for definitive statements of efficacy regarding clinical end points. New technologies and approaches are being applied to the science of dietary supplements, including nutrigenomics and microbiome analysis, data science, artificial intelligence (AI), and machine learning-all of which can elevate the science behind dietary supplements. Products can contain an array of bioactive compounds derived from foods as well as from medicinal plants, which creates enormous challenges in data collection and management. Clinical applications, particularly those aimed at providing personalized nutrition options for patients, have become more sophisticated as dietary supplements are incorporated increasingly into clinical practice and self-care. The goals of this article are to provide historical context for the regulation and science of dietary supplements, identify research resources, and suggest some future directions for science in this field.
Collapse
Affiliation(s)
- Paul M Coates
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN, United States.
| | - Regan L Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M University System, College Station, TX, United States
| | - Jeffrey B Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Floyd
- McIlhenny Botanical Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Joshua Z Goldenberg
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, United States
| | | | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | | - Deshanie Rai
- OmniActive Health Technologies, Morristown, NJ, United States
| | - Barry W Ritz
- Nestlé Health Science, Bridgewater, NJ, United States
| | - Wendy J Weber
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Szakály Z, Kovács B, Szakály M, T. Nagy-Pető D, Popovics P, Kiss M. Consumer acceptance of genetic-based personalized nutrition in Hungary. GENES & NUTRITION 2021; 16:3. [PMID: 33648454 PMCID: PMC7923598 DOI: 10.1186/s12263-021-00683-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/06/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Despite the increasing number of personalized nutrition services available on the market, nutrigenomics-based level of personalization is still the exception rather than a mainstream activity. This can be partly explained by various factors of consumer acceptance of the new technology. While consumer attitudes toward genetic tests aiming to reveal the risks of a predisposition to various illnesses have already been examined by several research studies worldwide; consumer acceptance of nutrigenomics-based personalized nutrition has only been examined by a significantly lower number of papers, especially in the Central and Eastern European region. OBJECTIVE The purpose of this paper is to examine consumer acceptance of genetic-based personalized nutrition in Hungary. Therefore a national representative survey was conducted involving 1000 individuals. The starting point of the model used is the assumption that the consumer acceptance of personalized nutrition is influenced by its consumer perceptions, which are affected by psychological processes that, in a more general sense, determine acceptance of food innovations. RESULTS The results show that 23.5% of respondents accept genetic test-based personalized nutrition. Women were found to reject the new technology in a significantly smaller proportion than men. The relationship between other demographic variables (i.e. age groups, education and subjective income level) and the perception of genetic-based personalized nutrition is also significant. Our results indicate that it is perceived cost/benefit that is most strongly related to genetically based personalized dietary preferences, followed by perceived risk and subjective norms. Perceived uncertainty and perceived behavioural control, however, have only a weak relationship with genetic-based personalized dietary preferences. CONCLUSIONS Compared with the magnitude of the effect of socio-demographic criteria, it can be concluded that, on the whole, psychological processes in the individual have a greater influence on the development of preferences for genetic-based personalized nutrition than any socio-demographic factor. This also confirms the trend that there are more and more value-added products or value propositions (where a significant part of the value added is to be found in product innovation), for which psychological characteristics are/should be given more emphasis among the segmentation criteria.
Collapse
Affiliation(s)
- Zoltán Szakály
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Bence Kovács
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Márk Szakály
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Dorka T. Nagy-Pető
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Péter Popovics
- Institute of Applied Economics Sciences, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Marietta Kiss
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| |
Collapse
|
3
|
Mustapa MAC, Amin L, Frewer LJ. Predictors of stakeholders’ intention to adopt nutrigenomics. GENES & NUTRITION 2020; 15:16. [PMID: 32962632 PMCID: PMC7509940 DOI: 10.1186/s12263-020-00676-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Background Nutrigenomics is an emerging science that studies the relationship between genes, diet and nutrients that can help prevent chronic disease. The development of this science depends on whether the public accept its application; therefore, predicting their intention to adopt it is important for its successful implementation. Objective This study aims to analyse Malaysian stakeholders’ intentions to adopt nutrigenomics, and determines the factors that influence their intentions. Methods A survey was conducted based on the responses of 421 adults (aged 18 years and older) and comprising two stakeholder groups: healthcare providers (n = 221) and patients (n = 200) who were located in the Klang Valley, Malaysia. The SPSS software was used to analyse the descriptive statistics of intention to adopt nutrigenomics and the SmartPLS software was used to determine the predicting factors affecting their decisions to adopt nutrigenomics. Results The results show that the stakeholders perceived the benefits of nutrigenomics as outweighing its risks, suggesting that the perceived benefits represent the most important direct predictor of the intention to adopt nutrigenomics. The perceived risks of nutrigenomics, trust in key players, engagement with medical genetics and religiosity also predict the intention to adopt nutrigenomics. Additionally, the perceived benefits of nutrigenomics served as a mediator for four factors: perceived risks of nutrigenomics, engagement with medical genetics, trust in key players and religiosity, whilst the perceived risks were a mediator for engagement with medical genetics. Conclusion The findings of this study suggest that the intentions of Malaysian stakeholders to adopt nutrigenomics are a complex decision-making process where all the previously mentioned factors interact. Although the results showed that the stakeholders in Malaysia were highly positive towards nutrigenomics, they were also cautious about adopting it.
Collapse
|
4
|
Žuntar I, Petric Z, Bursać Kovačević D, Putnik P. Safety of Probiotics: Functional Fruit Beverages and Nutraceuticals. Foods 2020; 9:E947. [PMID: 32708933 PMCID: PMC7404568 DOI: 10.3390/foods9070947] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, fruit juice consumption has increased. Their rise in popularity can be attributed to the belief that they are a quick way to consuming a dietary portion of fruit. Probiotics added to fruit juices produce various bioactive compounds, thus probiotic fruit juices can be considered as a new type of functional foods. Such combinations could improve nutritional properties and provide health benefits of fruit juices, due to delivering positive health attributes from both sources (fruit juices and probiotics). However, this review discusses the other side of the same coin, i.e., the one that challenges general beliefs that probiotics are undoubtedly safe. This topic deserves more acknowledgments from the medical and nutritional literature, as it is highly important for health care professionals and nutritionists who must be aware of potential probiotic issues. Still, clinical trials have not adequately questioned the safety of probiotics, as they are generally considered safe. Therefore, this reviews aims to give an evidence-based perspective of probiotic safety, focusing on probiotic fruit beverages and nutraceuticals, by providing documented clinical case reports and studies. Finally, the paper deals with some additional insights from the pharmacological and toxicological point of views, such as pharmacological repercussions of probiotics on health.
Collapse
Affiliation(s)
- Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
| | - Zvonimir Petric
- Unit of Pharmacokinetics and Drug Metabolism, Department of Pharmacology at the Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg, 40530 Göteborg, Sweden;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Elshani B, Kotori V, Daci A. Role of omega-3 polyunsaturated fatty acids in gestational diabetes, maternal and fetal insights: current use and future directions. J Matern Fetal Neonatal Med 2019; 34:124-136. [PMID: 30857450 DOI: 10.1080/14767058.2019.1593361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ω-3-Polyunsaturated fatty acids (ω-3 PUFAs) are widely used during pregnancy and gestational diabetes mellitus (GDM). ω-3 PUFAs are beneficial in the regulation of maternal and fetal metabolic function, inflammation, immunity, macrosomia (MAC), oxidative stress, preeclampsia, intrauterine growth, preterm birth, offspring metabolic function, and neurodevelopment. Dietary counseling is vital for improving therapeutic outcomes in patients with GDM. In maternal circulation, ω-3 PUFAs are transported via transporters, synthesis enzymes, and intracellular proteins, which activate nuclear receptors and play central roles in the cellular metabolic processes of placental trophoblasts. In patients with GDM, this process is compromised due to abnormal functioning of the placenta, which disrupts the normal mother to fetus transport. This results in reduced fetal levels of ω-3 PUFAs, which contributes negatively to fetal growth, metabolic function, and development. Dietary counseling and nutritional assessment remain challenging in the prevention and alleviation of GDM. Therefore, personalized approaches, including measurement of the ω-3 index, pharmacogenetic implementation strategies, and appropriate supplementation with ω-3 PUFAs are used to achieve sufficient distribution in the maternal and fetal fluids during the entire pregnancy period. Developing new dosing guidelines and personalized approaches, determining the mechanisms of ω-3 PUFAs in the placenta, and examining the pharmacodynamic and pharmacokinetics interactions involving ω-3 PUFAs will lead to better management and increase the quality of life of patients with GDM and their offspring. Moreover, different strategies for supplementing with ω-3 PUFAs, improving their placental transport, and pharmacological exploration of the maternal-fetal interactions will help to further elucidate the role of ω-3 PUFAs in women with GDM. In this review, we summarize the current information on the potential therapeutic benefits and clinical applicability of ω-3 PUFAs in patients with GDM and their offspring, highlighting recent progress and future perspectives in this field. Studies investigating the mechanisms of ω-3 PUFA transport to targeted tissues have spurred an interest in personalized treatment strategies for patients with GDM and their offspring. To implement such therapies, we need to clarify the index/ratio of ω-3 PUFAs in maternal and fetal fluids, delineate the ω-3 PUFA transport pathways, and establish the guidelines for FA profiling prepregnancy and during pregnancy-associated weight gain. Such therapies also need to take into account the gender of the fetus, and whether the patient is obese.
Collapse
Affiliation(s)
- Brikene Elshani
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Vjosa Kotori
- Department of Endocrinology, Pediatric Clinic, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
6
|
Kothari D, Patel S, Kim SK. Probiotic supplements might not be universally-effective and safe: A review. Biomed Pharmacother 2018; 111:537-547. [PMID: 30597307 DOI: 10.1016/j.biopha.2018.12.104] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023] Open
Abstract
Last few decades have witnessed the unprecedented growth in the application of probiotics for promoting the general gut health as well as their inception as biotherapeutics to alleviate certain clinical disorders related to dysbiosis. While numerous studies have substantiated the health-restoring potentials for a restricted group of microbial species, the marketed extrapolation of a similar probiotic label to a large number of partially characterized microbial formulations seems biased. In particular, the individuals under neonatal stages and/or those with some clinical conditions including malignancies, leaky gut, diabetes mellitus, and post-organ transplant convalescence likely fail to reap the benefits of probiotics. Further exacerbating the conditions, some probiotic strains might take advantage of the weak immunity in these vulnerable groups and turn into opportunistic pathogens engendering life-threatening pneumonia, endocarditis, and sepsis. Moreover, the unregulated and rampant use of probiotics potentially carry the risk of plasmid-mediated antibiotic resistance transfer to the gut infectious pathogens. In this review, we discuss the safety perspectives of probiotics and their therapeutic interventions in certain at-risk population groups. The embodied arguments and hypotheses certainly will shed light on the fact why probiotic usage should be treated with caution.
Collapse
Affiliation(s)
- Damini Kothari
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
7
|
Dwivedi SL, Lammerts van Bueren ET, Ceccarelli S, Grando S, Upadhyaya HD, Ortiz R. Diversifying Food Systems in the Pursuit of Sustainable Food Production and Healthy Diets. TRENDS IN PLANT SCIENCE 2017; 22:842-856. [PMID: 28716581 DOI: 10.1016/j.tplants.2017.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
Increasing demand for nutritious, safe, and healthy food because of a growing population, and the pledge to maintain biodiversity and other resources, pose a major challenge to agriculture that is already threatened by a changing climate. Diverse and healthy diets, largely based on plant-derived food, may reduce diet-related illnesses. Investments in plant sciences will be necessary to design diverse cropping systems balancing productivity, sustainability, and nutritional quality. Cultivar diversity and nutritional quality are crucial. We call for better cooperation between food and medical scientists, food sector industries, breeders, and farmers to develop diversified and nutritious cultivars that reduce soil degradation and dependence on external inputs, such as fertilizers and pesticides, and to increase adaptation to climate change and resistance to emerging pests.
Collapse
Affiliation(s)
- Sangam L Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Edith T Lammerts van Bueren
- Louis Bolk Institute, Hoofdstraat 24, 3972 LA Driebergen, The Netherlands; Wageningen University and Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | | | - Stefania Grando
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Department of Plant Breeding, Sundsvagen, 14 Box 101, 23053 Alnarp, Sweden.
| |
Collapse
|
8
|
El-Sohemy A, Brewer GJ, Prasad AS. Summaries of the Micronutrient Symposium of the 2016 Meeting of the American College of Nutrition. J Am Coll Nutr 2017; 36:310-316. [DOI: 10.1080/07315724.2017.1305256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ahmed El-Sohemy
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - George J. Brewer
- Sellner Emeritus Professor of Human Genetics and Emeritus Professor of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ananda S. Prasad
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Center, Detroit, Michigan
| |
Collapse
|
9
|
Celis-Morales C, Marsaux CF, Livingstone KM, Navas-Carretero S, San-Cristobal R, Fallaize R, Macready AL, O'Donovan C, Woolhead C, Forster H, Kolossa S, Daniel H, Moschonis G, Mavrogianni C, Manios Y, Surwillo A, Traczyk I, Drevon CA, Grimaldi K, Bouwman J, Gibney MJ, Walsh MC, Gibney ER, Brennan L, Lovegrove JA, Martinez JA, Saris WH, Mathers JC. Can genetic-based advice help you lose weight? Findings from the Food4Me European randomized controlled trial. Am J Clin Nutr 2017; 105:1204-1213. [PMID: 28381478 DOI: 10.3945/ajcn.116.145680] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/03/2017] [Indexed: 11/14/2022] Open
Abstract
Background: There has been limited evidence about whether genotype-tailored advice provides extra benefits in reducing obesity-related traits compared with the benefits of conventional one-size-fits-all advice.Objective: We determined whether the disclosure of information on fat-mass and obesity-associated (FTO) genotype risk had a greater effect on a reduction of obesity-related traits in risk carriers than in nonrisk carriers across different levels of personalized nutrition.Design: A total of 683 participants (women: 51%; age range: 18-73 y) from the Food4Me randomized controlled trial were included in this analysis. Participants were randomly assigned to 4 intervention arms as follows: level 0, control group; level 1, dietary group; level 2, phenotype group; and level 3, genetic group. FTO (single nucleotide polymorphism rs9939609) was genotyped at baseline in all participants, but only subjects who were randomly assigned to level 3 were informed about their genotypes. Level 3 participants were stratified into risk carriers (AA/AT) and nonrisk carriers (TT) of the FTO gene for analyses. Height, weight, and waist circumference (WC) were self-measured and reported at baseline and months 3 and 6.Results: Changes in adiposity markers were greater in participants who were informed that they carried the FTO risk allele (level 3 AT/AA carriers) than in the nonpersonalized group (level 0) but not in the other personalized groups (level 1 and 2). Mean reductions in weight and WC at month 6 were greater for FTO risk carriers than for noncarriers in the level 3 group [-2.28 kg (95% CI: -3.06, -1.48 kg) compared with -1.99 kg (-2.19, -0.19 kg), respectively (P = 0.037); and -4.34 cm (-5.63, -3.08 cm) compared with -1.99 cm (-4.04, -0.05 cm), respectively, (P = 0.048)].Conclusions: There are greater body weight and WC reductions in risk carriers than in nonrisk carriers of the FTO gene. This trial was registered at clinicaltrials.gov as NCT01530139.
Collapse
Affiliation(s)
- Carlos Celis-Morales
- Human Nutrition Research Center, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom.,Glasgow Cardiovascular Research Center, Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, United Kingdom
| | - Cyril Fm Marsaux
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Katherine M Livingstone
- Human Nutrition Research Center, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Santiago Navas-Carretero
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Rodrigo San-Cristobal
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Rosalind Fallaize
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Anna L Macready
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Clare O'Donovan
- University College Dublin (UCD) Institute of Food and Health, UCD, Dublin, Ireland
| | - Clara Woolhead
- University College Dublin (UCD) Institute of Food and Health, UCD, Dublin, Ireland
| | - Hannah Forster
- University College Dublin (UCD) Institute of Food and Health, UCD, Dublin, Ireland
| | - Silvia Kolossa
- Research Center of Nutrition and Food Sciences (ZIEL), Biochemistry Unit, Technical University of Munich, Munich, Germany
| | - Hannelore Daniel
- Research Center of Nutrition and Food Sciences (ZIEL), Biochemistry Unit, Technical University of Munich, Munich, Germany
| | - George Moschonis
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | - Iwona Traczyk
- National Food and Nutrition Institute, Warsaw, Poland
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Jildau Bouwman
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology Group, Zeist, Netherlands
| | - Mike J Gibney
- University College Dublin (UCD) Institute of Food and Health, UCD, Dublin, Ireland
| | - Marianne C Walsh
- University College Dublin (UCD) Institute of Food and Health, UCD, Dublin, Ireland
| | - Eileen R Gibney
- University College Dublin (UCD) Institute of Food and Health, UCD, Dublin, Ireland
| | - Lorraine Brennan
- University College Dublin (UCD) Institute of Food and Health, UCD, Dublin, Ireland
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Wim Hm Saris
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - John C Mathers
- Human Nutrition Research Center, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom;
| |
Collapse
|
10
|
Nielsen DE, El-Sohemy A. Disclosure of genetic information and change in dietary intake: a randomized controlled trial. PLoS One 2014; 9:e112665. [PMID: 25398084 PMCID: PMC4232422 DOI: 10.1371/journal.pone.0112665] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Proponents of consumer genetic tests claim that the information can positively impact health behaviors and aid in chronic disease prevention. However, the effects of disclosing genetic information on dietary intake behavior are not clear. METHODS A double-blinded, parallel group, 2:1 online randomized controlled trial was conducted to determine the short- and long-term effects of disclosing nutrition-related genetic information for personalized nutrition on dietary intakes of caffeine, vitamin C, added sugars, and sodium. Participants were healthy men and women aged 20-35 years (n = 138). The intervention group (n = 92) received personalized DNA-based dietary advice for 12-months and the control group (n = 46) received general dietary recommendations with no genetic information for 12-months. Food frequency questionnaires were collected at baseline and 3- and 12-months after the intervention to assess dietary intakes. General linear models were used to compare changes in intakes between those receiving general dietary advice and those receiving DNA-based dietary advice. RESULTS Compared to the control group, no significant changes to dietary intakes of the nutrients were observed at 3-months. At 12-months, participants in the intervention group who possessed a risk version of the ACE gene, and were advised to limit their sodium intake, significantly reduced their sodium intake (mg/day) compared to the control group (-287.3 ± 114.1 vs. 129.8 ± 118.2, p = 0.008). Those who had the non-risk version of ACE did not significantly change their sodium intake compared to the control group (12-months: -244.2 ± 150.2, p = 0.11). Among those with the risk version of the ACE gene, the proportion who met the targeted recommendation of 1500 mg/day increased from 19% at baseline to 34% after 12 months (p = 0.06). CONCLUSIONS These findings demonstrate that disclosing genetic information for personalized nutrition results in greater changes in intake for some dietary components compared to general population-based dietary advice. TRIAL REGISTRATION ClinicalTrials.gov NCT01353014.
Collapse
Affiliation(s)
- Daiva E Nielsen
- Department of Nutritional Sciences, University of Toronto, 150 College St, Toronto, ON, M5S 3E2, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, 150 College St, Toronto, ON, M5S 3E2, Canada
| |
Collapse
|