1
|
Melocchi A, Schmittlein B, Sadhu S, Nayak S, Lares A, Uboldi M, Zema L, di Robilant BN, Feldman SA, Esensten JH. Automated manufacturing of cell therapies. J Control Release 2025; 381:113561. [PMID: 39993639 DOI: 10.1016/j.jconrel.2025.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Advanced therapy medicinal products (ATMPs), particularly genetically engineered cell-based therapies, are a major class of drugs with several high-profile Food and Drug Administration (FDA) approvals in the past decade. However, the high cost and limited production capacity of these drugs remain a barrier to access. These costs are primarily due to the complex manufacturing processes (often a single batch for a single patient), which increases personnel and facility expenses, and the challenges associated with tech-transfer from research and development stages to clinical-stage production. In order to scale up and scale out in a cost-effective way, automated solutions capable of multi-step manufacturing have been developed in academia and industry. The aim of the present article is to summarize the design approaches and key features of current multi-step automated systems for cell therapy manufacturing. For each system described in the literature, we will discuss different aspects in detail such as cell specificity, modularity, processing models, manufacturing locations, and integrated quality control. Our analysis highlights that developers need to balance competing needs in an environment where the biological, business, and technological factors are constantly evolving. Thus, designing engineering solutions that align with the pharmaceutical end-user is essential. Adopting a risk-based approach grounded in published data is the most effective strategy to evaluate existing and emerging automated systems.
Collapse
Affiliation(s)
- Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy; Multiply Labs, San Francisco, CA, USA.
| | | | | | | | | | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | | | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan H Esensten
- Advanced Biotherapy Center (ABC), Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
2
|
Zhu K, Ding Y, Chen Y, Su K, Zheng J, Zhang Y, Hu Y, Wei J, Wang Z. Advancing regenerative medicine: the Aceman system's pioneering automation and machine learning in mesenchymal stem cell biofabrication. Biofabrication 2025; 17:025021. [PMID: 39970480 DOI: 10.1088/1758-5090/adb803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Mesenchymal stem cells (MSCs) are pivotal in advancing regenerative medicine; however, the large-scale production of MSCs for clinical applications faces significant challenges related to efficiency, cost, and quality assurance. We introduce the Automated Cell Manufacturing System (Aceman), a revolutionary solution that leverages machine learning and robotics integration to optimize MSC production. This innovative system enhances both efficiency and quality in the field of regenerative medicine. With a modular design that adheres to good manufacturing practice standards, Aceman allows for scalable adherent cell cultures. A sophisticated machine learning algorithm has been developed to streamline cell counting and confluence assessment, while the accompanying control software features customization options, robust data management, and real-time monitoring capabilities. Comparative studies reveal that Aceman achieves superior efficiency in analytical and repeatable tasks compared to traditional manual methods. The system's continuous operation minimizes human error, offering substantial long-term benefits. Comprehensive cell biology assays, including Bulk RNA-Seq analysis and flow cytometry, support that the cells produced by Aceman function comparably to those cultivated through conventional techniques. Importantly, Aceman maintains the characteristic immunophenotype of MSCs during automated subcultures, representing a significant advancement in cell production technology. This system lays a solid foundation for future innovations in healthcare biomanufacturing, ultimately enhancing the potential of MSCs in therapeutic applications.
Collapse
Affiliation(s)
- Kai Zhu
- School of Automation and Electrical Engineering, University of Jinan, Jinan, Shandong, People's Republic of China
- Tronz Biomedical Engineering Pte. Ltd, Jinan, Shandong, People's Republic of China
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yi Ding
- Artificial Intelligence Institute (School of Information Science ϑ Engineering), University of Jinan, Jinan, Shandong, People's Republic of China
| | - Yuqiang Chen
- Tronz Biomedical Engineering Pte. Ltd, Jinan, Shandong, People's Republic of China
| | - Kechuan Su
- Tronz Biomedical Engineering Pte. Ltd, Jinan, Shandong, People's Republic of China
| | - Jintu Zheng
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Ying Hu
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Jun Wei
- School of Automation and Electrical Engineering, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Zenan Wang
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Melocchi A, Schmittlein B, Jones AL, Ainane Y, Rizvi A, Chan D, Dickey E, Pool K, Harsono K, Szymkiewicz D, Scarfogliero U, Bhatia V, Sivanantham A, Kreciglowa N, Hunter A, Gomez M, Tanner A, Uboldi M, Batish A, Balcerek J, Kutova-Stoilova M, Paruthiyil S, Acevedo LA, Stadnitskiy R, Carmichael S, Aulbach H, Hewitt M, Jeu XDMD, Robilant BD, Parietti F, Esensten JH. Development of a robotic cluster for automated and scalable cell therapy manufacturing. Cytotherapy 2024; 26:1095-1104. [PMID: 38647505 DOI: 10.1016/j.jcyt.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AIMS The production of commercial autologous cell therapies such as chimeric antigen receptor T cells requires complex manual manufacturing processes. Skilled labor costs and challenges in manufacturing scale-out have contributed to high prices for these products. METHODS We present a robotic system that uses industry-standard cell therapy manufacturing equipment to automate the steps involved in cell therapy manufacturing. The robotic cluster consists of a robotic arm and customized modules, allowing the robot to manipulate a variety of standard cell therapy instruments and materials such as incubators, bioreactors, and reagent bags. This system enables existing manual manufacturing processes to be rapidly adapted to robotic manufacturing, without having to adopt a completely new technology platform. Proof-of-concept for the robotic cluster's expansion module was demonstrated by expanding human CD8+ T cells. RESULTS The robotic cultures showed comparable cell yields, viability, and identity to those manually performed. In addition, the robotic system was able to maintain culture sterility. CONCLUSIONS Such modular robotic solutions may support scale-up and scale-out of cell therapies that are developed using classical manual methods in academic laboratories and biotechnology companies. This approach offers a pathway for overcoming manufacturing challenges associated with manual processes, ultimately contributing to the broader accessibility and affordability for personalized immunotherapies.
Collapse
Affiliation(s)
- Alice Melocchi
- Multiply Labs, San Francisco, California, USA; Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy.
| | | | - Alexis L Jones
- Multiply Labs, San Francisco, California, USA; Department of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Ali Rizvi
- Multiply Labs, San Francisco, California, USA
| | - Darius Chan
- Multiply Labs, San Francisco, California, USA
| | | | - Kelsey Pool
- Multiply Labs, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | - Marco Uboldi
- Multiply Labs, San Francisco, California, USA; Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Arpit Batish
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joanna Balcerek
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mariella Kutova-Stoilova
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sreenivasan Paruthiyil
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Luis A Acevedo
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Rachel Stadnitskiy
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | | - Matthew Hewitt
- Charles River Scientific, Wilmington, Massachusetts, USA
| | | | | | | | - Jonathan H Esensten
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA; The Advanced Biotherapy Center (ABC), Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
4
|
Feng Y, Che B, Fu J, Sun Y, Ma W, Tian J, Dai L, Jing G, Zhao W, Sun D, Zhang C. From Chips-in-Lab to Point-of-Care Live Cell Device: Development of a Microfluidic Device for On-Site Cell Culture and High-Throughput Drug Screening. ACS Biomater Sci Eng 2024; 10:5399-5408. [PMID: 39031055 DOI: 10.1021/acsbiomaterials.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Live cell assays provide real-time data of cellular responses. In combination with microfluidics, applications such as automated and high-throughput drug screening on live cells can be accomplished in small devices. However, their application in point-of-care testing (POCT) is limited by the requirement for bulky equipment to maintain optimal cell culture conditions. In this study, we propose a POCT device that allows on-site cell culture and high-throughput drug screening on live cells. We first observe that cell viabilities are substantially affected by liquid evaporation within the microfluidic device, which is intrinsic to the polydimethylsiloxane (PDMS) material due to its hydrophobic nature and nanopatterned surface. The unwanted PDMS-liquid-air interface in the cell culture environment can be eliminated by maintaining a persistent humidity of 95-100% or submerging the whole microfluidic device under water. Our results demonstrate that in the POCT device equipped with a water tank, both primary cells and cell lines can be maintained for up to 1 week without the need for external cell culture equipment. Moreover, this device is powered by a standard alkali battery and can automatically screen over 5000 combinatorial drug conditions for regulating neural stem cell differentiation. By monitoring dynamic variations in fluorescent markers, we determine the optimal doses of platelet-derived growth factor and epidermal growth factor to suppress proinflammatory S100A9-induced neuronal toxicities. Overall, this study presents an opportunity to transform lab-on-a-chip technology from a laboratory-based approach to actual point-of-care devices capable of performing complex experimental procedures on-site and offers significant advancements in the fields of personalized medicine and rapid clinical diagnostics.
Collapse
Affiliation(s)
- Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Bingchen Che
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Jiahao Fu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Yu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710127, China
| | - Wenju Ma
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710127, China
- Center for Automated and Innovative Drug Discovery, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Guangyin Jing
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
- Center for Automated and Innovative Drug Discovery, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| |
Collapse
|
5
|
Shah M, Krull A, Odonnell L, de Lima MJ, Bezerra E. Promises and challenges of a decentralized CAR T-cell manufacturing model. FRONTIERS IN TRANSPLANTATION 2023; 2:1238535. [PMID: 38993860 PMCID: PMC11235344 DOI: 10.3389/frtra.2023.1238535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 07/13/2024]
Abstract
Autologous chimeric antigen receptor-modified T-cell (CAR T) products have demonstrated un-precedent efficacy in treating many relapsed/refractory B-cell and plasma cell malignancies, leading to multiple commercial products now in routine clinical use. These positive responses to CAR T therapy have spurred biotech and big pharma companies to evaluate innovative production methods to increase patient access while maintaining adequate quality control and profitability. Autologous cellular therapies are, by definition, manufactured as single patient batches, and demand has soared for manufacturing facilities compliant with current Good Manufacturing Practice (cGMP) regulations. The use of a centralized production model is straining finite resources even in developed countries in North America and the European Union, and patient access is not feasible for most of the developing world. The idea of having a more uniform availability of these cell therapy products promoted the concept of point-of-care (POC) manufacturing or decentralized in-house production. While this strategy can potentially decrease the cost of manufacturing, the challenge comes in maintaining the same quality as currently available centrally manufactured products due to the lack of standardized manufacturing techniques amongst institutions. However, academic medical institutions and biotech companies alike have forged ahead innovating and adopting new technologies to launch clinical trials of CAR T products produced exclusively in-house. Here we discuss POC production of CAR T products.
Collapse
Affiliation(s)
- Manan Shah
- Department of Hematology, the James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Ashley Krull
- Department of Cell Therapy Manufacturing and Engineering, the James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Lynn Odonnell
- Department of Hematology, Cellular Therapy Lab, the James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Marcos J. de Lima
- Department of Hematology, The James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Evandro Bezerra
- Department of Hematology, The James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Ochs J, Hanga MP, Shaw G, Duffy N, Kulik M, Tissin N, Reibert D, Biermann F, Moutsatsou P, Ratnayake S, Nienow A, Koenig N, Schmitt R, Rafiq Q, Hewitt CJ, Barry F, Murphy JM. Needle to needle robot-assisted manufacture of cell therapy products. Bioeng Transl Med 2022; 7:e10387. [PMID: 36176619 PMCID: PMC9472012 DOI: 10.1002/btm2.10387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 12/20/2022] Open
Abstract
Advanced therapeutic medicinal products (ATMPs) have emerged as novel therapies for untreatable diseases, generating the need for large volumes of high-quality, clinically-compliant GMP cells to replace costly, high-risk and limited scale manual expansion processes. We present the design of a fully automated, robot-assisted platform incorporating the use of multiliter stirred tank bioreactors for scalable production of adherent human stem cells. The design addresses a needle-to-needle closed process incorporating automated bone marrow collection, cell isolation, expansion, and collection into cryovials for patient delivery. AUTOSTEM, a modular, adaptable, fully closed system ensures no direct operator interaction with biological material; all commands are performed through a graphic interface. Seeding of source material, process monitoring, feeding, sampling, harvesting and cryopreservation are automated within the closed platform, comprising two clean room levels enabling both open and closed processes. A bioprocess based on human MSCs expanded on microcarriers was used for proof of concept. Utilizing equivalent culture parameters, the AUTOSTEM robot-assisted platform successfully performed cell expansion at the liter scale, generating results comparable to manual production, while maintaining cell quality postprocessing.
Collapse
Affiliation(s)
- Jelena Ochs
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Mariana P. Hanga
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
- Chemical EngineeringUniversity College LondonLondonUK
| | - Georgina Shaw
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - Niamh Duffy
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - Michael Kulik
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Nokilaj Tissin
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Daniel Reibert
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | | | - Panagiota Moutsatsou
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
| | - Shibani Ratnayake
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
| | - Alvin Nienow
- Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Niels Koenig
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Robert Schmitt
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
- Faculty of Mechanical EngineeringRWTH Aachen UniversityAachenGermany
| | - Qasim Rafiq
- Biochemical Engineering, Advanced Centre for Biochemical EngineeringUniversity College LondonLondonUK
| | | | - Frank Barry
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - J. Mary Murphy
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| |
Collapse
|
7
|
Abou-El-Enein M, Elsallab M, Feldman SA, Fesnak AD, Heslop HE, Marks P, Till BG, Bauer G, Savoldo B. Scalable Manufacturing of CAR T cells for Cancer Immunotherapy. Blood Cancer Discov 2021; 2:408-422. [PMID: 34568831 PMCID: PMC8462122 DOI: 10.1158/2643-3230.bcd-21-0084] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As of April 2021, there are five commercially available chimeric antigen receptor (CAR) T cell therapies for hematological malignancies. With the current transition of CAR T cell manufacturing from academia to industry, there is a shift toward Good Manufacturing Practice (GMP)-compliant closed and automated systems to ensure reproducibility and to meet the increased demand for cancer patients. In this review we describe current CAR T cells clinical manufacturing models and discuss emerging technological advances that embrace scaling and production optimization. We summarize measures being used to shorten CAR T-cell manufacturing times and highlight regulatory challenges to scaling production for clinical use. Statement of Significance ∣ As the demand for CAR T cell cancer therapy increases, several closed and automated production platforms are being deployed, and others are in development.This review provides a critical appraisal of these technologies that can be leveraged to scale and optimize the production of next generation CAR T cells.
Collapse
Affiliation(s)
- Mohamed Abou-El-Enein
- Division of Medical Oncology, Department of Medicine, and Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Joint USC/CHLA Cell Therapy Program, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Magdi Elsallab
- Joint USC/CHLA Cell Therapy Program, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Steven A Feldman
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Palo Alto, CA
| | - Andrew D Fesnak
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Peter Marks
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Brian G Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures (IRC), University of California Davis, Sacramento, California, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Haeusner S, Herbst L, Bittorf P, Schwarz T, Henze C, Mauermann M, Ochs J, Schmitt R, Blache U, Wixmerten A, Miot S, Martin I, Pullig O. From Single Batch to Mass Production-Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product. Front Med (Lausanne) 2021; 8:712917. [PMID: 34485343 PMCID: PMC8414576 DOI: 10.3389/fmed.2021.712917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Advanced Therapy Medicinal Products (ATMP) provide promising treatment options particularly for unmet clinical needs, such as progressive and chronic diseases where currently no satisfying treatment exists. Especially from the ATMP subclass of Tissue Engineered Products (TEPs), only a few have yet been translated from an academic setting to clinic and beyond. A reason for low numbers of TEPs in current clinical trials and one main key hurdle for TEPs is the cost and labor-intensive manufacturing process. Manual production steps require experienced personnel, are challenging to standardize and to scale up. Automated manufacturing has the potential to overcome these challenges, toward an increasing cost-effectiveness. One major obstacle for automation is the control and risk prevention of cross contaminations, especially when handling parallel production lines of different patient material. These critical steps necessitate validated effective and efficient cleaning procedures in an automated system. In this perspective, possible technologies, concepts and solutions to existing ATMP manufacturing hurdles are discussed on the example of a late clinical phase II trial TEP. In compliance to Good Manufacturing Practice (GMP) guidelines, we propose a dual arm robot based isolator approach. Our novel concept enables complete process automation for adherent cell culture, and the translation of all manual process steps with standard laboratory equipment. Moreover, we discuss novel solutions for automated cleaning, without the need for human intervention. Consequently, our automation concept offers the unique chance to scale up production while becoming more cost-effective, which will ultimately increase TEP availability to a broader number of patients.
Collapse
Affiliation(s)
- Sebastian Haeusner
- Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research, Wuerzburg, Germany.,Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura Herbst
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Patrick Bittorf
- Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research, Wuerzburg, Germany
| | - Thomas Schwarz
- Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research, Wuerzburg, Germany
| | - Chris Henze
- Fraunhofer Institute for Process Engineering and Packaging IVV, Dresden, Germany
| | - Marc Mauermann
- Fraunhofer Institute for Process Engineering and Packaging IVV, Dresden, Germany
| | - Jelena Ochs
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Robert Schmitt
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany.,Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany
| | - Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Anke Wixmerten
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sylvie Miot
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Oliver Pullig
- Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research, Wuerzburg, Germany.,Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 2020; 9:1509-1530. [PMID: 32691994 PMCID: PMC7695641 DOI: 10.1002/sctm.19-0135] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.
Collapse
Affiliation(s)
- Christopher S. Ahuja
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Andrea Mothe
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Mohamad Khazaei
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Jetan H. Badhiwala
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Emily A. Gilbert
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Derek van der Kooy
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Cindi M. Morshead
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Charles Tator
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| |
Collapse
|
10
|
Silva Couto P, Rotondi M, Bersenev A, Hewitt C, Nienow A, Verter F, Rafiq Q. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 2020; 45:107636. [DOI: 10.1016/j.biotechadv.2020.107636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/01/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
|
11
|
Gorman E, Millar J, McAuley D, O'Kane C. Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Rev Respir Med 2020; 15:301-324. [PMID: 33172313 DOI: 10.1080/17476348.2021.1848555] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Mesenchymal stromal (stem) cell (MSC) therapies are emerging as a promising therapeutic intervention in patients with Acute Respiratory Distress Syndrome (ARDS) and sepsis due to their reparative, immunomodulatory, and antimicrobial properties.Areas covered: This review provides an overview of Mesenchymal stromal cells (MSCs) and their mechanisms of effect in ARDS and sepsis. The preclinical and clinical evidence to support MSC therapy in ARDS and sepsis is discussed. The potential for MSC therapy in COVID-19 ARDS is discussed with insights from respiratory viral models and early clinical reports of MSC therapy in COVID-19. Strategies to optimize the therapeutic potential of MSCs in ARDS and sepsis are considered including preconditioning, altered gene expression, and alternative cell-free MSC-derived products, such as extracellular vesicles and conditioned medium.Expert opinion: MSC products present considerable therapeutic promise for ARDS and sepsis. Preclinical investigations report significant benefits and early phase clinical studies have not highlighted safety concerns. Optimization of MSC function in preclinical models of ARDS and sepsis has enhanced their beneficial effects. MSC-derived products, as cell-free alternatives, may provide further advantages in this field. These strategies present opportunity for the clinical development of MSCs and MSC-derived products with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Ellen Gorman
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| | - Jonathan Millar
- Division of Functional Genetics and Development, Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Danny McAuley
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| | - Cecilia O'Kane
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| |
Collapse
|
12
|
Holland I, Davies JA. Automation in the Life Science Research Laboratory. Front Bioeng Biotechnol 2020; 8:571777. [PMID: 33282848 PMCID: PMC7691657 DOI: 10.3389/fbioe.2020.571777] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022] Open
Abstract
Protocols in the academic life science laboratory are heavily reliant on the manual manipulation of tools, reagents and instruments by a host of research staff and students. In contrast to industrial and clinical laboratory environments, the usage of automation to augment or replace manual tasks is limited. Causes of this 'automation gap' are unique to academic research, with rigid short-term funding structures, high levels of protocol variability and a benevolent culture of investment in people over equipment. Automation, however, can bestow multiple benefits through improvements in reproducibility, researcher efficiency, clinical translation, and safety. Less immediately obvious are the accompanying limitations, including obsolescence and an inhibitory effect on the freedom to innovate. Growing the range of automation options suitable for research laboratories will require more flexible, modular and cheaper designs. Academic and commercial developers of automation will increasingly need to design with an environmental awareness and an understanding that large high-tech robotic solutions may not be appropriate for laboratories with constrained financial and spatial resources. To fully exploit the potential of laboratory automation, future generations of scientists will require both engineering and biology skills. Automation in the research laboratory is likely to be an increasingly critical component of future research programs and will continue the trend of combining engineering and science expertise together to answer novel research questions.
Collapse
Affiliation(s)
- Ian Holland
- Deanery of Biomedical Science and Synthsys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
13
|
Smith D, Heathman TRJ, Klarer A, LeBlon C, Tada Y, Hampson B. Towards Automated Manufacturing for Cell Therapies. Curr Hematol Malig Rep 2020; 14:278-285. [PMID: 31254154 DOI: 10.1007/s11899-019-00522-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW Many cell therapy products are beginning to reach the commercial finish line and a rapidly escalating pipeline of products are in clinical development. The need to develop manufacturing capability that will support a successful commercial business model has become a top priority as many cell therapy developers look to secure long-term visions to enable both funding and treatment success. RECENT FINDINGS Manufacturing automation is both highly compelling and very challenging at the same time as a key tactic to address quality, cost of goods, scale, and sustainability that are fundamental drivers for commercially viable manufacturing. This paper presents an overview and strategic drivers for application of automation to cell therapy manufacturing. It also explores unique automation considerations for patient-specific cell therapy (PSCT) where each full-scale lot is for one patient vs off-the-shelf cell therapy (OTSCT) where a full-scale lot will treat many patients, and finally some practical considerations for implementing automation.
Collapse
Affiliation(s)
- David Smith
- Hitachi Chemical Advanced Therapeutics Solutions LLC, Allendale, NJ, USA.
| | | | - Alex Klarer
- Hitachi Chemical Advanced Therapeutics Solutions LLC, Allendale, NJ, USA
| | - Courtney LeBlon
- Hitachi Chemical Advanced Therapeutics Solutions LLC, Allendale, NJ, USA
| | | | - Brian Hampson
- Hitachi Chemical Advanced Therapeutics Solutions LLC, Allendale, NJ, USA
| |
Collapse
|
14
|
Moutsatsou P, Ochs J, Schmitt RH, Hewitt CJ, Hanga MP. Automation in cell and gene therapy manufacturing: from past to future. Biotechnol Lett 2019; 41:1245-1253. [PMID: 31541330 PMCID: PMC6811377 DOI: 10.1007/s10529-019-02732-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/12/2019] [Indexed: 01/19/2023]
Abstract
As more and more cell and gene therapies are being developed and with the increasing number of regulatory approvals being obtained, there is an emerging and pressing need for industrial translation. Process efficiency, associated cost drivers and regulatory requirements are issues that need to be addressed before industrialisation of cell and gene therapies can be established. Automation has the potential to address these issues and pave the way towards commercialisation and mass production as it has been the case for 'classical' production industries. This review provides an insight into how automation can help address the manufacturing issues arising from the development of large-scale manufacturing processes for modern cell and gene therapy. The existing automated technologies with applicability in cell and gene therapy manufacturing are summarized and evaluated here.
Collapse
Affiliation(s)
- P Moutsatsou
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B7 4ET, UK
| | - J Ochs
- Fraunhofer Institut für Produktionstechnologie IPT, Steinbachstrasse 17, 52074, Aachen, Germany
| | - R H Schmitt
- Fraunhofer Institut für Produktionstechnologie IPT, Steinbachstrasse 17, 52074, Aachen, Germany.,Laboratory for Machine Tools and Production Engineering (WZL), RWTH, Aachen, Germany
| | - C J Hewitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B7 4ET, UK
| | - M P Hanga
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B7 4ET, UK.
| |
Collapse
|
15
|
Harrison RP, Rafiq QA, Medcalf N. Centralised versus decentralised manufacturing and the delivery of healthcare products: A United Kingdom exemplar. Cytotherapy 2018; 20:873-890. [DOI: 10.1016/j.jcyt.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/25/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
16
|
Harrison RP, Medcalf N, Rafiq QA. Cell therapy-processing economics: small-scale microfactories as a stepping stone toward large-scale macrofactories. Regen Med 2018; 13:159-173. [PMID: 29509065 DOI: 10.2217/rme-2017-0103] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM Manufacturing methods for cell-based therapies differ markedly from those established for noncellular pharmaceuticals and biologics. Attempts to 'shoehorn' these into existing frameworks have yielded poor outcomes. Some excellent clinical results have been realized, yet emergence of a 'blockbuster' cell-based therapy has so far proved elusive. MATERIALS & METHODS The pressure to provide these innovative therapies, even at a smaller scale, remains. In this process, economics research paper, we utilize cell expansion research data combined with operational cost modeling in a case study to demonstrate the alternative ways in which a novel mesenchymal stem cell-based therapy could be provided at small scale. RESULTS & CONCLUSIONS This research outlines the feasibility of cell microfactories but highlighted that there is a strong pressure to automate processes and split the quality control cost-burden over larger production batches. The study explores one potential paradigm of cell-based therapy provisioning as a potential exemplar on which to base manufacturing strategy.
Collapse
Affiliation(s)
- Richard P Harrison
- Centre for Biological Engineering, Holywell Park, Loughborough University, Loughborough, LE11 3TU, UK.,Wolfson Centre for Stem cells, Tissue Engineering & Modelling (STEM), The University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, UK.,Department for Biochemical Engineering, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Nicholas Medcalf
- Centre for Biological Engineering, Holywell Park, Loughborough University, Loughborough, LE11 3TU, UK
| | - Qasim A Rafiq
- Department of Biochemical Engineering, Faculty of Engineering Science, University College London, Gower Street, London, WC1E 6BT, UK.,Department for Biochemical Engineering, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
17
|
Harrison RP, Ruck S, Medcalf N, Rafiq QA. Decentralized manufacturing of cell and gene therapies: Overcoming challenges and identifying opportunities. Cytotherapy 2017; 19:1140-1151. [DOI: 10.1016/j.jcyt.2017.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/25/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
18
|
Turajane T, Chaveewanakorn U, Fongsarun W, Aojanepong J, Papadopoulos KI. Avoidance of Total Knee Arthroplasty in Early Osteoarthritis of the Knee with Intra-Articular Implantation of Autologous Activated Peripheral Blood Stem Cells versus Hyaluronic Acid: A Randomized Controlled Trial with Differential Effects of Growth Factor Addition. Stem Cells Int 2017; 2017:8925132. [PMID: 29056974 PMCID: PMC5625803 DOI: 10.1155/2017/8925132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
In this randomized controlled trial, in early osteoarthritis (OA) that failed conservative intervention, the need for total knee arthroplasty (TKA) and WOMAC scores were evaluated, following a combination of arthroscopic microdrilling mesenchymal cell stimulation (MCS) and repeated intra-articular (IA) autologous activated peripheral blood stem cells (AAPBSCs) with growth factor addition (GFA) and hyaluronic acid (HA) versus IA-HA alone. Leukapheresis-harvested AAPBSCs were administered as three weekly IA injections combined with HA and GFA (platelet-rich plasma [PRP] and granulocyte colony-stimulating factor [hG-CSF]) and MCS in group 1 and in group 2 but without hG-CSF while group 3 received IA-HA alone. Each group of 20 patients was evaluated at baseline and at 1, 6, and, 12 months. At 12 months, all patients in the AAPBSC groups were surgical intervention free compared to three patients needing TKA in group 3 (p < 0.033). Total WOMAC scores showed statistically significant improvements at 6 and 12 months for the AAPBSC groups versus controls. There were no notable adverse events. We have shown avoidance of TKA in the AAPBSC groups at 12 months and potent, early, and sustained symptom alleviation through GFA versus HA alone. Differential effects of hG-CSF were noted with an earlier onset of symptom alleviation throughout.
Collapse
Affiliation(s)
- Thana Turajane
- Department of Orthopedic Surgery, Police General Hospital, Bangkok, Thailand
| | | | | | - Jongjate Aojanepong
- Department of Gynecology and Obstetrics, Police General Hospital, Bangkok, Thailand
| | | |
Collapse
|
19
|
Daniszewski M, Crombie DE, Henderson R, Liang HH, Wong RCB, Hewitt AW, Pébay A. Automated Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell Studies. SLAS Technol 2017; 23:315-325. [PMID: 28574793 DOI: 10.1177/2472630317712220] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pluripotent stem cells are an extremely powerful tool in modeling human diseases and hold much promise for personalized regenerative or cell replacement therapies. There is an increasing need for reproducible large-scale stem cell and differentiated progeny production, with minimal variation, rendering manual approaches impracticable. Here, we provide an overview of systems currently available for automated stem cell culture, and undertake a review of their capacities, capabilities, and relative limitations. With the merging of modern technology and stem cell biology, an increased demand and implementation of automated platforms for stem cell studies is anticipated.
Collapse
Affiliation(s)
- Maciej Daniszewski
- 1 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,2 Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Duncan E Crombie
- 1 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,2 Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Rachael Henderson
- 1 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,2 Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Helena H Liang
- 1 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,2 Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Raymond C B Wong
- 1 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,2 Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Alex W Hewitt
- 1 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,2 Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia.,3 School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Alice Pébay
- 1 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,2 Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|