1
|
Taei A, Sajadi FS, Salahi S, Enteshari Z, Falah N, Shiri Z, Abasalizadeh S, Hajizadeh-Saffar E, Hassani SN, Baharvand H. The cell replacement therapeutic potential of human pluripotent stem cells. Expert Opin Biol Ther 2025; 25:47-67. [PMID: 39679436 DOI: 10.1080/14712598.2024.2443079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION The remarkable ability of human pluripotent stem cells (hPSCs) to differentiate into specialized cells of the human body emphasizes their immense potential in treating various diseases. Advances in hPSC technology are paving the way for personalized and allogeneic cell-based therapies. The first-in-human studies showed improved treatment of diseases with no adverse effects, which encouraged the industrial production of this type of medicine. To ensure the quality, safety and efficacy of hPSC-based products throughout their life cycle, it is important to monitor and control their clinical translation through good practices (GxP) regulations. Understanding these rules in advance will help ensure that the industrial development of hPSC-derived products for widespread clinical implementation is feasible and progresses rapidly. AREAS COVERED In this review, we discuss the key translational obstacles of hPSCs, outline the current hPSC-based clinical trials, and present a workflow for putative clinical hPSC-based products. Finally, we highlight some future therapeutic opportunities for hPSC-derivatives. EXPERT OPINION hPSC-based products continue to show promise for the treatment of a variety of diseases. While clinical trials support the relative safety and efficacy of hPSC-based products, further investigation is required to explore the clinical challenges and achieve exclusive regulations for hPSC-based cell therapies.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh-Sadat Sajadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Sarvenaz Salahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Enteshari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasrin Falah
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
2
|
Perspectives on the cost of goods for hPSC banks for manufacture of cell therapies. NPJ Regen Med 2022; 7:54. [PMID: 36175440 PMCID: PMC9522845 DOI: 10.1038/s41536-022-00242-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
|
3
|
The Essential Need for a Validated Potency Assay for Cell-Based Therapies in Cardiac Regenerative and Reparative Medicine. A Practical Approach to Test Development. Stem Cell Rev Rep 2021; 17:2235-2244. [PMID: 34463902 PMCID: PMC8599250 DOI: 10.1007/s12015-021-10244-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 01/04/2023]
Abstract
Biological treatments are one of the medical breakthroughs in the twenty-first century. The initial enthusiasm pushed the field towards indiscriminatory use of cell therapy regardless of the pathophysiological particularities of underlying conditions. In the reparative and regenerative cardiovascular field, the results of the over two decades of research in cell-based therapies, although promising still could not be translated into clinical scenario. Now, when we identified possible deficiencies and try to rebuild its foundations rigorously on scientific evidence, development of potency assays for the potential therapeutic product is one of the steps which will bring our goal of clinical translation closer. Although, highly challenging, the potency tests for cell products are considered as a priority by the regulatory agencies. In this paper we describe the main characteristics and challenges for a cell therapy potency test focusing on the cardiovascular field. Moreover, we discuss different steps and types of assays that should be taken into consideration for an eventual potency test development by tying together two fundamental concepts: target disease and expected mechanism of action.
Collapse
|
4
|
Meftahpour V, Malekghasemi S, Baghbanzadeh A, Aghebati-Maleki A, Pourakbari R, Fotouhi A, Aghebati-Maleki L. Platelet lysate: a promising candidate in regenerative medicine. Regen Med 2021; 16:71-85. [PMID: 33543999 DOI: 10.2217/rme-2020-0065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human platelet lysate has attracted much interest from many researchers as it is growth-factor rich for cell expansion, which is employed as a new therapeutic strategy. Not only are human platelet lysates used for cell therapy, but they are also used for the completion of basal media in mesenchymal stem cell cultures. Due to the presence of a large number of growth factors, platelet lysates have potential roles in wound healing, treatment of ocular graft-versus-host disease, osteoarthritis, Parkinson's disease, tendon regeneration, infertility, androgenetic alopecia, nerve repair and regenerative tissue, such as bone regeneration. In this review, we summarize that platelet lysates could be valuable candidates for the treatment of a variety of diseases in regenerative medicine.
Collapse
Affiliation(s)
- Vafa Meftahpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Somaiyeh Malekghasemi
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51656 65811, Iran
| |
Collapse
|
5
|
Vitillo L, Durance C, Hewitt Z, Moore H, Smith A, Vallier L. GMP-grade neural progenitor derivation and differentiation from clinical-grade human embryonic stem cells. Stem Cell Res Ther 2020; 11:406. [PMID: 32948237 PMCID: PMC7501686 DOI: 10.1186/s13287-020-01915-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND A major challenge for the clinical use of human pluripotent stem cells is the development of safe, robust and controlled differentiation protocols. Adaptation of research protocols using reagents designated as research-only to those which are suitable for clinical use, often referred to as good manufacturing practice (GMP) reagents, is a crucial and laborious step in the translational pipeline. However, published protocols to assist this process remain very limited. METHODS We adapted research-grade protocols for the derivation and differentiation of long-term neuroepithelial stem cell progenitors (lt-NES) to GMP-grade reagents and factors suitable for clinical applications. We screened the robustness of the protocol with six clinical-grade hESC lines deposited in the UK Stem Cell Bank. RESULTS Here, we present a new GMP-compliant protocol to derive lt-NES, which are multipotent, bankable and karyotypically stable. This protocol resulted in robust and reproducible differentiation of several clinical-grade embryonic stem cells from which we derived lt-NES. Furthermore, GMP-derived lt-NES demonstrated a high neurogenic potential while retaining the ability to be redirected to several neuronal sub-types. CONCLUSIONS Overall, we report the feasibility of derivation and differentiation of clinical-grade embryonic stem cell lines into lt-NES under GMP-compliant conditions. Our protocols could be used as a flexible tool to speed up translation-to-clinic of pluripotent stem cells for a variety of neurological therapies or regenerative medicine studies.
Collapse
Affiliation(s)
- Loriana Vitillo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre; Department of Surgery, University of Cambridge, Cambridge, CB2 0AW, UK.
| | - Catherine Durance
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre; Department of Surgery, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Zoe Hewitt
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Harry Moore
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre; Department of Surgery, University of Cambridge, Cambridge, CB2 0AW, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre; Department of Surgery, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
6
|
Raman S, Srinivasan G, Brookhouser N, Nguyen T, Henson T, Morgan D, Cutts J, Brafman DA. A Defined and Scalable Peptide-Based Platform for the Generation of Human Pluripotent Stem Cell-Derived Astrocytes. ACS Biomater Sci Eng 2020; 6:3477-3490. [PMID: 32550261 PMCID: PMC7284803 DOI: 10.1021/acsbiomaterials.0c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 01/07/2023]
Abstract
![]()
Astrocytes
comprise the most abundant cell type in the central
nervous system (CNS) and play critical roles in maintaining neural
tissue homeostasis. In addition, astrocyte dysfunction and death has
been implicated in numerous neurological disorders such as multiple
sclerosis, Alzheimer’s disease, amyotrophic lateral sclerosis
(ALS), and Parkinson’s disease (PD). As such, there is much
interest in using human pluripotent stem cell (hPSC)-derived astrocytes
for drug screening, disease modeling, and regenerative medicine applications.
However, current protocols for generation of astrocytes from hPSCs
are limited by the use of undefined xenogeneic components and two-dimensional
(2D) culture surfaces, which limits their downstream applications
where large-quantities of cells generated under defined conditions
are required. Here, we report the use of a completely synthetic, peptide-based
substrate that allows for the differentiation of highly pure populations
of astrocytes from several independent hPSC lines, including those
derived from patients with neurodegenerative disease. This substrate,
which we demonstrate is compatible with both conventional 2D culture
formats and scalable microcarrier (MC)-based technologies, leads to
the generation of cells that express high levels of canonical astrocytic
markers as well as display properties characteristic of functionally
mature cells including production of apolipoprotein E (ApoE), responsiveness
to inflammatory stimuli, ability to take up amyloid-β (Aβ),
and appearance of robust calcium transients. Finally, we show that
these astrocytes can be cryopreserved without any loss of functionality.
In the future, we anticipate that these methods will enable the development
of bioprocesses for the production of hPSC-derived astrocytes needed
for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona 85004, United States
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tanner Henson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Daylin Morgan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Kamal MM, Kassem DH. Therapeutic Potential of Wharton's Jelly Mesenchymal Stem Cells for Diabetes: Achievements and Challenges. Front Cell Dev Biol 2020; 8:16. [PMID: 32064260 PMCID: PMC7000356 DOI: 10.3389/fcell.2020.00016] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is an alarming metabolic disease in which insulin secreting β-cells are damaged to various extent. Unfortunately, although currently available treatments help to manage the disease, however, patients usually develop complications, as well as decreased life quality and increased mortality. Thus, efficient therapeutic interventions to treat diabetes are urgently warranted. During the past years, mesenchymal stem cells (MSCs) have made their mark as a potential weapon in various regenerative medicine applications. The main fascination about MSCs lies in their potential to exert reparative effects on an amazingly wide spectrum of tissue injury. This is further reinforced by their ease of isolation and large ex vivo expansion capacity, as well as demonstrated multipotency and immunomodulatory activities. Among all the sources of MSCs, those isolated from umbilical cord-Wharton's jelly (WJ-MSCs), have been proved to provide a great source of MSCs. WJ-MSCs do not impose any ethical concerns as those which exist regarding ESCs, and represent a readily available non-invasive source, and hence suggested to become the new gold standard for MSC-based therapies. In the current review, we shall overview achievements, as well as challenges/hurdles which are standing in the way to utilize WJ-MSCs as a novel efficient therapeutic modality for DM.
Collapse
Affiliation(s)
- Mohamed M. Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Center for Drug Research and Development, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dina H. Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Vitillo L, Tovell VE, Coffey P. Treatment of Age-Related Macular Degeneration with Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Curr Eye Res 2019; 45:361-371. [DOI: 10.1080/02713683.2019.1691237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Loriana Vitillo
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Victoria E. Tovell
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Pete Coffey
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
- Center for Stem Cell Biology and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
9
|
Henriques D, Moreira R, Schwamborn J, Pereira de Almeida L, Mendonça LS. Successes and Hurdles in Stem Cells Application and Production for Brain Transplantation. Front Neurosci 2019; 13:1194. [PMID: 31802998 PMCID: PMC6877657 DOI: 10.3389/fnins.2019.01194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Brain regenerative strategies through the transplantation of stem cells hold the potential to promote functional rescue of brain lesions caused either by trauma or neurodegenerative diseases. Most of the positive modulations fostered by stem cells are fueled by bystander effects, namely increase of neurotrophic factors levels and reduction of neuroinflammation. Nevertheless, the ultimate goal of cell therapies is to promote cell replacement. Therefore, the ability of stem cells to migrate and differentiate into neurons that later become integrated into the host neuronal network replacing the lost neurons has also been largely explored. However, as most of the preclinical studies demonstrate, there is a small functional integration of graft-derived neurons into host neuronal circuits. Thus, it is mandatory to better study the whole brain cell therapy approach in order to understand what should be better comprehended concerning graft-derived neuronal and glial cells migration and integration before we can expect these therapies to be ready as a viable solution for brain disorder treatment. Therefore, this review discusses the positive mechanisms triggered by cell transplantation into the brain, the limitations of adult brain plasticity that might interfere with the neuroregeneration process, as well as some strategies tested to overcome some of these limitations. It also considers the efforts that have been made by the regulatory authorities to lead to better standardization of preclinical and clinical studies in this field in order to reduce the heterogeneity of the obtained results.
Collapse
Affiliation(s)
- Daniel Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jens Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Liliana S Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Stacey GN, Andrews PW, Barbaric I, Boiers C, Chandra A, Cossu G, Csontos L, Frith TJ, Halliwell JA, Hewitt Z, McCall M, Moore HD, Parmar M, Panico MB, Pisupati V, Shichkin VP, Stacey AR, Tedesco FS, Thompson O, Wagey R. Stem cell culture conditions and stability: a joint workshop of the PluriMes Consortium and Pluripotent Stem Cell Platform. Regen Med 2019; 14:243-255. [PMID: 30938271 PMCID: PMC7611410 DOI: 10.2217/rme-2019-0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human stem cells have the potential to transform medicine. However, hurdles remain to ensure that manufacturing processes produce safe and effective products. A thorough understanding of the biological processes occurring during manufacture is fundamental to assuring these qualities and thus, their acceptability to regulators and clinicians. Leaders in both human pluripotent and somatic stem cells, were brought together with experts in clinical translation, biomanufacturing and regulation, to discuss key issues in assuring appropriate manufacturing conditions for delivery of effective and safe products from these cell types. This report summarizes the key issues discussed and records consensus reached by delegates and emphasizes the need for accurate language and nomenclature in the scientific discourse around stem cells.
Collapse
Affiliation(s)
- Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire SG8 8HZ, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Charlotta Boiers
- Department of Cancer Biology, University College London, London, WC1E 6DD, UK
- Cancer Institute, University College London, London, WC1E 6DD, UK
| | | | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, M13 9PL, UK
| | | | - Thomas Jr Frith
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jason A Halliwell
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Zoe Hewitt
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark McCall
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Harry D Moore
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Malin Parmar
- Developmental & Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, S221 84, Sweden
- Lund Stem Cell Center, Lund University, Lund, S221 84, Sweden
| | - M Beatrice Panico
- Medicines & Healthcare products Regulatory Agency, London, E14 4PU, UK
| | - Venkat Pisupati
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Valentin P Shichkin
- Research Centre of Immunology & Biomedical Technologies, Open International University of Human Development Ukraine, Kyiv 03115, Ukraine
- Bienta Ltd, 78 Chervonotkatska Str., Kyiv 02094, Ukraine
| | - Alison R Stacey
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, M13 9PL, UK
| | - Francesco S Tedesco
- Department of Cell & Developmental Biology & Great Ormond Street Institute of Child Health, University College London, WC1E 6DE, UK
- The Dubowitz Neuromuscular Centre, Greta Ormond Street Institute of Child Health, University College London, WC1N 1EH, London, UK
| | - Oliver Thompson
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|