1
|
Shahriary A, Sisakht M, Arabfard M, Behmard E, Najafi A. Targeting Trefoil Factor Family 3 in Obstructive Airway Diseases: A Computational Approach to Novel Therapeutics. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:159-170. [PMID: 40224201 PMCID: PMC11992343 DOI: 10.30476/ijms.2024.101737.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 04/15/2025]
Abstract
Background Airway remodeling, a hallmark of chronic obstructive pulmonary disease (COPD) and mustard lung disease, is influenced by the Trefoil Factor 3 (TFF3). This study sought to pinpoint a compound with minimal toxicity that can effectively suppress TFF3 expression and activity. Methods We employed an integrative approach, combining gene expression analysis, molecular docking, and molecular dynamics simulations to identify potential TFF3 inhibitors. Gene expression analysis utilized Z-scores from the Library of Integrated Network-Based Cellular Signatures (LINCS) database to identify compounds altering TFF3 expression. Drug-like properties were assessed through Lipinski's "Rule of Five." Molecular docking was conducted with AutoDock Vina (version 1.1.2), and molecular dynamics simulations were performed using Groningen Machine for Chemical Simulations (GROMACS) version 5.1. Toxicity evaluation leveraged a Graph Convolutional Network (GCN). Statistical significance was set at P<0.05. Results Eight of the compounds assessed significantly reduced TFF3 expression, with binding affinities (ΔG) ranging from -7 to -9.4 kcal/mol. Notably, genistein emerged as the frontrunner, showcasing potent TFF3 downregulation, minimal toxicity, and a robust inhibitory profile, as evidenced by molecular dynamics simulations. The significance of gene expression changes was indicated by Z-scores provided by the LINCS database rather than exact P values. Conclusion Genistein holds promise as a therapeutic agent for TFF3-mediated conditions, including mustard lung disease. Its potential to address the current therapeutic gaps is evident, but its clinical utility necessitates further in vitro and in vivo validation. A preprint of this article has already been published (https://assets.researchsquare.com/files/rs-3907985/v1/41b7e6e6-4d70-4573-81e6-4d5a913950bd.pdf?c=1707752778).
Collapse
Affiliation(s)
- Alireza Shahriary
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhang B, Gao S, Liu S, Gong X, Wu J, Zhang Y, Ma L, Sheng L. Regenerative mechanisms of stem cells and their clinical applications for degenerative eye diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:42. [PMID: 40224196 PMCID: PMC11992415 DOI: 10.4103/jrms.jrms_358_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2025]
Abstract
There are different types of treatment for eye diseases. Although the majority of eye diseases are curable with primary treatments and surgery, some of degenerative eye damages need regeneration that is not gained by conventional procedures. Stem cells, such as mesenchymal stem cells, human embryonic stem cell-derived retinal pigmented epithelium, and inducible pluripotent stem cells, are now considered one of the most important and safe methods for regeneration of various damaged tissues or organs. However, how will stem cell therapy contribute to regeneration and overcome degenerative eye diseases? This review discusses the regenerative mechanisms, clinical applications, and advantages of different types of stem cells for restoring degenerative eye diseases.
Collapse
Affiliation(s)
- Baodong Zhang
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Shusong Gao
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Shibo Liu
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Xuewu Gong
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jing Wu
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Zhang
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Li Ma
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lijie Sheng
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
3
|
Akbaribazm M. Exploring the Regenerative Potential of Stem Cells for Treating Eye Diseases: A Review of the New Findings. OBM GENETICS 2024; 08:1-14. [DOI: 10.21926/obm.genet.2401212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The escalating prevalence of vision loss due to eye diseases has instigated a quest for innovative therapies, given that conventional approaches often fall short in repairing and regenerating damaged eye tissues, particularly the retina. Stem cell-based interventions have emerged as a promising avenue, with numerous studies in animal models and human trials exploring their potential to enhance visual acuity. Beyond addressing conditions like age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies demonstrate efficacy in treating genetic disorders such as retinitis pigmentosa (RP). In severe eye damage necessitating regeneration, stem cells play a pivotal role, leveraging their regenerative capabilities. Noteworthy is the transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), showcasing promising results in preclinical models and clinical studies, leading to improved retinal function without severe side effects. Mesenchymal stem cells (MSCs) have successfully treated optic neuropathy, RP, DR, and glaucoma, yielding positive clinical outcomes. The safety of adult stem cells, particularly MSCs derived from adipose tissue or bone marrow, has been firmly established. This review highlights significant advancements in utilizing human ESC-derived retinal pigmented epithelium and iPSCs for treating eye injuries. While cell-based therapy is relatively nascent, with numerous clinical trials pending review, stem cells' regenerative potential and clinical applications in addressing eye diseases offer substantial promise. This study aims to comprehensively examine the applications of stem cells in the context of eye diseases and their potential role in regenerative medicine.
Collapse
|
4
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Puranik N, Arukha AP, Yadav SK, Yadav D, Jin JO. Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives. Curr Stem Cell Res Ther 2022; 17:113-125. [PMID: 35135462 DOI: 10.2174/1574888x16666210810103838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
:
Several human neurological disorders, such as Parkinson’s disease, Alzheimer’s disease,
amyotrophic lateral sclerosis, Huntington’s disease, spinal cord injury, multiple sclerosis, and brain
stroke, are caused by the injury to neurons or glial cells. The recent years have witnessed the successful
generation of neurons and glia cells driving efforts to develop stem-cell-based therapies for
patients to combat a broad spectrum of human neurological diseases. The inadequacy of suitable
cell types for cell replacement therapy in patients suffering from neurological disorders has hampered
the development of this promising therapeutic approach. Attempts are thus being made to reconstruct
viable neurons and glial cells from different stem cells, such as embryonic stem cells,
mesenchymal stem cells, and neural stem cells. Dedicated research to cultivate stem cell-based
brain transplantation therapies has been carried out. We aim at compiling the breakthroughs in the
field of stem cell-based therapy for the treatment of neurodegenerative maladies, emphasizing the
shortcomings faced, victories achieved, and the future prospects of the therapy in clinical settings.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Biological Science, Bharathiar University, Coimbatore, Tamil Nadu-641046, India
| | - Ananta Prasad Arukha
- Comparative Diagnostic
and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville- 32608, U.S.A
| | - Shiv Kumar Yadav
- Department of Botany, Government Lal Bahadur Shastri PG college, Sironj, Vidisha, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
| | - Jun O. Jin
- Department
of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
6
|
Mechanism of Adipose-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying miR-21-5p in Hyperoxia-Induced Lung Injury. Stem Cell Rev Rep 2021; 18:1007-1024. [PMID: 34882302 DOI: 10.1007/s12015-021-10311-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/10/2023]
Abstract
Hyperoxia-induced lung injury (HILI) tends to develop bronchopulmonary dysplasia. Adipose-derived mesenchymal stem cell (ADMSC)-derived extracellular vesicles (EVs) hold great promise in alleviating lung injury. This study explored the mechanism of ADMSC-EVs in HILI. ADMSC-EVs were isolated and identified. The murine and cell models of HILI were established. HILI mice and cells were pre-treated with ADMSC-EVs. The lung dry/wet ratio, pathological structure, apoptosis, and inflammation of HILI mice were measured. The viability, apoptosis, and oxidative stress of HILI cells were measured. The internalization of EVs in lung and cells was observed by fluorescence labeling. The binding relationships between miR-21-5p and SKP2, and Nr2f2 and C/EBPα were analyzed. The binding of SKP2 and Nr2f2 and the Nr2f2 ubiquitination level were detected. ADMSC-EVs exerted preventive effects on HILI mice, evidenced by reduced lung dry/wet ratio, inflammation, and apoptosis in HILI mice. In vitro, EVs enhanced HILI cell viability and reduced apoptosis, inflammation, and oxidative stress. EVs carried miR-21-5p into lung cells to upregulate miR-21-5p expression and thereby target SKP2. SKP2 bound to Nr2f2 and promoted its ubiquitination degradation. EVs inhibited the binding of Nr2f2 and C/EBPα and further suppressed C/EBPα transcription. Collectively, ADMSC-EVs carrying miR-21-5p alleviated HILI via the SKP2/Nr2f2/C/EBPα axis. Role and mechanism of adipose-derived mesenchymal stem cell-derived extracellular vesicles in hyperoxia-induced lung injury. ADMSC-EVs upregulated miR-21-5p expression in cells by carrying miR-21-5p into lung cells, thereby promoting the binding of miR-21-5p and SKP2 mRNA, inhibiting the expression of SKP2, reducing the ubiquitination level of Nr2f2, increasing the expression of Nr2f2, promoting the binding of Nr2f2 and the C/EBPα promoter, upregulating C/EBPα mRNA level, and eventually alleviating HILI.
Collapse
|
7
|
Azadian Z, Hosseini S, Dizjikan ZP, Kazemi J, Marzouni ET, Wang PY, Alipour A, Shahsavarani H. Computational and in vitro validation of cardiogenic induction of quercetin on adipose-derived mesenchymal stromal cells through the inhibition of Wnt and non-Smad-dependent TGF-β pathways. J Cell Biochem 2021; 123:450-468. [PMID: 34825407 DOI: 10.1002/jcb.30189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022]
Abstract
Exploiting human mesenchymal stem cells (hMSCs) was proposed as a promising therapeutic approach for cardiovascular disease due to their capacity to differentiate into cardiac cells. Though modulation of the intracellular signaling pathways dominantly WNT/β catenin and transforming growth factor-β (TGF-β) have been reported to promote differentiation of hMSCs into cardiomyocytes in the prevailing literature, a safe and reproducible system for their clinical application has not yet turned into reality. In the present study, the molecular docking-based strategy was first applied for evaluating the potency of some natural phenolic compounds in the modulation of Wnt and TGF-β signaling pathways using a vital class of crystallographic protein structures of WNT signaling regulators such as Frizzled, Disheveled, GSK3-β, β-catenin, LRP 5/6 extracellular domain, Tankyrase and their variety of active pockets. Then, the impacts of plant-derived chemical compounds on the regulation of the relevant signals for the differentiation of hMSCs into the definitive mesoderm lineage and cardiac progenitors were assessed in vitro. Data obtained revealed the synergistic activity of Wnt and TGF-β superfamily to direct cardiac differentiation in human cardiogenesis by comparing cardiac gene expression in the presence and absence of the TGF-β inhibitors. We found that the inhibitory effect of canonical Wnt/β-catenin is sufficient to cause proper cardiomyocyte differentiation, but the TGF-β pathway plays a vital role in enhancing the expression of the cardiomyocyte-specific marker (cTnT). It was found that quercetin, a p38MAPK inhibitor with the high energy dock to the active pocket of Wnt receptors, promotes cardiac differentiation via the inhibition of both Wnt and non-Smad TGF-β pathways. Altogether, data presented here can contribute to the development of a feasible and efficient cardiac differentiation protocol as an "off-the-shelf" therapeutic source using novel natural agents for cardiac repair or regeneration.
Collapse
Affiliation(s)
- Zahra Azadian
- Department of Cell and Molecular Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Saadi Hosseini
- Department of Cell and Molecular Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Zohre Panahi Dizjikan
- Department of Cell and Molecular Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Javad Kazemi
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Peng-Yuan Wang
- Stem Cell Bioengineering Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur institute of Iran, Tehran, Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Šimoliūnas E, Ivanauskienė I, Bagdzevičiūtė L, Rinkūnaitė I, Alksnė M, Baltriukienė D. Surface stiffness depended gingival mesenchymal stem cell sensitivity to oxidative stress. Free Radic Biol Med 2021; 169:62-73. [PMID: 33862162 DOI: 10.1016/j.freeradbiomed.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are widely used in the fields of cell therapy and tissue engineering, due to their wide spectrum of differentiation potential, immunomodulation function and ongoing oxidative stress (OS) reduction. Nevertheless, OS impact is often overlooked in these research fields. It is not only responsible for the induction and development of many ailments, e.g., diabetes, lung fibrosis, and cancer, moreover, OS causes stem cell death and senescence during cell therapy and tissue engineering practices. As MSCs are used to treat various tissues, they interact with different tissue-specific mechanical environments, thus it is important to understand how the mechanical environment impacts MSC sensitivity to OS. In this work, for the first time, as known to the authors, it was shown that gingival MSCs (GMSCs) sensitivity to OS depends on the stiffness of the surface, on which the cells are grown. Furthermore, the activity and expression of mitogen activated protein kinases ERK, JNK, and p38 were surface stiffness dependent. GMSCs isolated from intermediate/stiff gingiva tissue (~20 kPa) have shown the best proliferative and survival properties, then grown on the stiffest tissues mimicking polyacrylamide hydrogels (40 kPa). Therefore, MSC source might determine their sensitivity to OS in different stiffness environments and should be accounted when developing a treatment strategy.
Collapse
Affiliation(s)
- Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Indrė Ivanauskienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Bagdzevičiūtė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Rinkūnaitė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Alksnė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Wang LT, Liu KJ, Sytwu HK, Yen ML, Yen BL. Advances in mesenchymal stem cell therapy for immune and inflammatory diseases: Use of cell-free products and human pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Transl Med 2021; 10:1288-1303. [PMID: 34008922 PMCID: PMC8380447 DOI: 10.1002/sctm.21-0021] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell therapy (MSCT) for immune and inflammatory diseases continues to be popular based on progressive accumulation of preclinical mechanistic evidence. This has led to further expansion in clinical indications from graft rejection, autoimmune diseases, and osteoarthritis, to inflammatory liver and pulmonary diseases including COVID‐19. A clear trend is the shift from using autologous to allogeneic MSCs, which can be immediately available as off‐the‐shelf products. In addition, new products such as cell‐free exosomes and human pluripotent stem cell (hPSC)‐derived MSCs are exciting developments to further prevalent use. Increasing numbers of trials have now published results in which safety of MSCT has been largely demonstrated. While reports of therapeutic endpoints are still emerging, efficacy can be seen for specific indications—including graft‐vs‐host‐disease, strongly Th17‐mediated autoimmune diseases, and osteoarthritis—which are more robustly supported by mechanistic preclinical evidence. In this review, we update and discuss outcomes in current MSCT clinical trials for immune and inflammatory disease, as well as new innovation and emerging trends in the field.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan, Republic of China.,Department & Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, NHRI, Zhunan, Taiwan, Republic of China
| |
Collapse
|