1
|
Zhang JJ, Pogwizd SM, Fukuda K, Zimmermann WH, Fan C, Hare JM, Bolli R, Menasché P. Trials and tribulations of cell therapy for heart failure: an update on ongoing trials. Nat Rev Cardiol 2025; 22:372-385. [PMID: 39548233 DOI: 10.1038/s41569-024-01098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Heart failure (HF) remains a leading cause of mortality, responsible for 13% of all deaths worldwide. The prognosis for patients with HF is poor, with only a 50% survival rate within 5 years. A major challenge of ischaemia-driven HF is the loss of cardiomyocytes, compounded by the minimal regenerative capacity of the adult heart. To date, replacement of irreversibly damaged heart muscle can only be achieved by complete heart transplantation. In the past 20 years, cell therapy has emerged and evolved as a promising avenue for cardiac repair and regeneration. During this time, cell therapy for HF has encountered substantial barriers in both preclinical studies and clinical trials but the field continues to progress and evolve from lessons learned from such research. In this Review, we provide an overview of ongoing trials of cell-based and cell product-based therapies for the treatment of HF. Findings from these trials will facilitate the clinical translation of cardiac regenerative and reparative therapies not only by evaluating the safety and efficacy of specific cell-based therapeutics but also by establishing the feasibility of novel or underexplored treatment protocols such as repeated intravenous dosing, personalized patient selection based on pharmacogenomics, systemic versus intramural cell delivery, and epicardial engraftment of engineered tissue products.
Collapse
Affiliation(s)
- Jianyi Jay Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Steven M Pogwizd
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen - Georg-August-University, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Lower Saxony, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Joshua M Hare
- Department of Medicine, Interdisciplinary Stem Cell Institute (ISCI), University of Miami, Miami, FL, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, Paris, France
| |
Collapse
|
2
|
Hosseinpour A, Kamalpour J, Dehdari Ebrahimi N, Mirhosseini SA, Sadeghi A, Kavousi S, Attar A. Comparative effectiveness of mesenchymal stem cell versus bone-marrow mononuclear cell transplantation in heart failure: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 2024; 15:202. [PMID: 38971816 PMCID: PMC11227704 DOI: 10.1186/s13287-024-03829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND There is no clear evidence on the comparative effectiveness of bone-marrow mononuclear cell (BMMNC) vs. mesenchymal stromal cell (MSC) stem cell therapy in patients with chronic heart failure (HF). METHODS Using a systematic approach, eligible randomized controlled trials (RCTs) of stem cell therapy (BMMNCs or MSCs) in patients with HF were retrieved to perform a meta-analysis on clinical outcomes (major adverse cardiovascular events (MACE), hospitalization for HF, and mortality) and echocardiographic indices (including left ventricular ejection fraction (LVEF)) were performed using the random-effects model. A risk ratio (RR) or mean difference (MD) with corresponding 95% confidence interval (CI) were pooled based on the type of the outcome and subgroup analysis was performed to evaluate the potential differences between the types of cells. RESULTS The analysis included a total of 36 RCTs (1549 HF patients receiving stem cells and 1252 patients in the control group). Transplantation of both types of cells in patients with HF resulted in a significant improvement in LVEF (BMMNCs: MD (95% CI) = 3.05 (1.11; 4.99) and MSCs: MD (95% CI) = 2.82 (1.19; 4.45), between-subgroup p = 0.86). Stem cell therapy did not lead to a significant change in the risk of MACE (MD (95% CI) = 0.83 (0.67; 1.06), BMMNCs: RR (95% CI) = 0.59 (0.31; 1.13) and MSCs: RR (95% CI) = 0.91 (0.70; 1.19), between-subgroup p = 0.12). There was a marginally decreased risk of all-cause death (MD (95% CI) = 0.82 (0.68; 0.99)) and rehospitalization (MD (95% CI) = 0.77 (0.61; 0.98)) with no difference among the cell types (p > 0.05). CONCLUSION Both types of stem cells are effective in improving LVEF in patients with heart failure without any noticeable difference between the cells. Transplantation of the stem cells could not decrease the risk of major adverse cardiovascular events compared with controls. Future trials should primarily focus on the impact of stem cell transplantation on clinical outcomes of HF patients to verify or refute the findings of this study.
Collapse
Affiliation(s)
- Alireza Hosseinpour
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jahangir Kamalpour
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Alireza Sadeghi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Kavousi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Attar
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Olatunji G, Kokori E, Yusuf I, Ayanleke E, Damilare O, Afolabi S, Adetunji B, Mohammed S, Akinmoju O, Aboderin G, Aderinto N. Stem cell-based therapies for heart failure management: a narrative review of current evidence and future perspectives. Heart Fail Rev 2024; 29:573-598. [PMID: 37733137 DOI: 10.1007/s10741-023-10351-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Heart failure (HF) is a prevalent and debilitating global cardiovascular condition affecting around 64 million individuals, placing significant strain on healthcare systems and diminishing patients' quality of life. The escalating prevalence of HF underscores the urgent need for innovative therapeutic approaches that target the root causes and aim to restore normal cardiac function. Stem cell-based therapies have emerged as promising candidates, representing a fundamental departure from conventional treatments focused primarily on symptom management. This review explores the evolving landscape of stem cell-based therapies for HF management. It delves into the mechanisms of action, clinical evidence from both positive and negative outcomes, ethical considerations, and regulatory challenges. Key findings include the potential for improved cardiac function, enhanced quality of life, and long-term benefits associated with stem cell therapies. However, adverse events and patient vulnerabilities necessitate stringent safety assessments. Future directions in stem cell-based HF therapies include enhancing efficacy and safety through optimized stem cell types, delivery techniques, dosing strategies, and long-term safety assessments. Personalized medicine, combining therapies, addressing ethical and regulatory challenges, and expanding access while reducing costs are crucial aspects of the evolving landscape.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Osun, Nigeria
| | - Emmanuel Ayanleke
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Olakanmi Damilare
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Samson Afolabi
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Busayo Adetunji
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Saad Mohammed
- Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | - Gbolahan Aboderin
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria.
| |
Collapse
|
4
|
Soetisna TW, Thamrin AMH, Permadijana D, Ramadhani ANE, Sugisman, Santoso A, Mansyur M. Intramyocardial Stem Cell Transplantation during Coronary Artery Bypass Surgery Safely Improves Cardiac Function: Meta-Analysis of 20 Randomized Clinical Trials. J Clin Med 2023; 12:4430. [PMID: 37445467 DOI: 10.3390/jcm12134430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
IMSC transplantation during CABG is considered one of the most promising methods to effectively deliver stem cells and has been widely studied in many trials. But the results of outcomes and safety of this modality still vary widely. We conducted this meta-analysis of randomized controlled trials (RCTs) to evaluate not only the outcome but also the safety of this promising method. A meta-analysis was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, and Cochrane databases. Articles were thoroughly evaluated and analyzed. Twenty publications about IMSC during CABG were included. Primary outcomes were measured using LVEF, LVESV, LVESVI, LVESD, LVEDV, LVEDVI, LVEDD, WMSI, and 6-MWT. Safety measures were depicted by total deaths, MACE, CRD, CVA, myocardial infarction, ventricular arrhythmia, and cardiac-related readmission. IMSC transplantation during CABG significantly improved LVEF (MD = 3.89%; 95% CI = 1.31% to 6.46%; p = 0.003) and WMSI (MD = 0.28; 95% CI = 0.01-0.56; p = 0.04). Most of the other outcomes showed favorable results for the IMSC group but were not statistically significant. The safety analysis also showed no significant risk difference for IMSC transplantation compared to CABG alone. IMSC during CABG can safely improve cardiac function and tend to improve cardiac volumes and dimensions. The analysis and application of influencing factors that increase patients' responses to IMSC transplantation are important to achieve long-term improvement.
Collapse
Affiliation(s)
- Tri Wisesa Soetisna
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
- Department of Thoracic and Cardiovascular Surgery, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Ahmad Muslim Hidayat Thamrin
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
- Faculty of Medicine, Syarif Hidayatullah State Islamic University, Haji Hospital, Jakarta 13560, Indonesia
| | - Diajeng Permadijana
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
| | - Andi Nurul Erisya Ramadhani
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
| | - Sugisman
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
- Department of Thoracic and Cardiovascular Surgery, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Anwar Santoso
- Department of Cardiology and Vascular Medicine, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Muchtaruddin Mansyur
- Department of Community Medicine, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
5
|
Hafkamp FJ, Tio RA, Otterspoor LC, de Greef T, van Steenbergen GJ, van de Ven ART, Smits G, Post H, van Veghel D. Optimal effectiveness of heart failure management - an umbrella review of meta-analyses examining the effectiveness of interventions to reduce (re)hospitalizations in heart failure. Heart Fail Rev 2022; 27:1683-1748. [PMID: 35239106 PMCID: PMC8892116 DOI: 10.1007/s10741-021-10212-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a major health concern, which accounts for 1-2% of all hospital admissions. Nevertheless, there remains a knowledge gap concerning which interventions contribute to effective prevention of HF (re)hospitalization. Therefore, this umbrella review aims to systematically review meta-analyses that examined the effectiveness of interventions in reducing HF-related (re)hospitalization in HFrEF patients. An electronic literature search was performed in PubMed, Web of Science, PsycInfo, Cochrane Reviews, CINAHL, and Medline to identify eligible studies published in the English language in the past 10 years. Primarily, to synthesize the meta-analyzed data, a best-evidence synthesis was used in which meta-analyses were classified based on level of validity. Secondarily, all unique RCTS were extracted from the meta-analyses and examined. A total of 44 meta-analyses were included which encompassed 186 unique RCTs. Strong or moderate evidence suggested that catheter ablation, cardiac resynchronization therapy, cardiac rehabilitation, telemonitoring, and RAAS inhibitors could reduce (re)hospitalization. Additionally, limited evidence suggested that multidisciplinary clinic or self-management promotion programs, beta-blockers, statins, and mitral valve therapy could reduce HF hospitalization. No, or conflicting evidence was found for the effects of cell therapy or anticoagulation. This umbrella review highlights different levels of evidence regarding the effectiveness of several interventions in reducing HF-related (re)hospitalization in HFrEF patients. It could guide future guideline development in optimizing care pathways for heart failure patients.
Collapse
Affiliation(s)
| | - Rene A. Tio
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | - Luuk C. Otterspoor
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | - Tineke de Greef
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | | | - Arjen R. T. van de Ven
- Netherlands Heart Network, Veldhoven, The Netherlands
- St. Anna Hospital, Geldrop, The Netherlands
| | - Geert Smits
- Netherlands Heart Network, Veldhoven, The Netherlands
- Primary care group Pozob, Veldhoven, The Netherlands
| | - Hans Post
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | - Dennis van Veghel
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Campos de Carvalho AC, Kasai-Brunswick TH, Bastos Carvalho A. Cell-Based Therapies for Heart Failure. Front Pharmacol 2021; 12:641116. [PMID: 33912054 PMCID: PMC8072383 DOI: 10.3389/fphar.2021.641116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/11/2021] [Indexed: 02/05/2023] Open
Abstract
Heart failure has reached epidemic proportions with the advances in cardiovascular therapies for ischemic heart diseases and the progressive aging of the world population. Efficient pharmacological therapies are available for treating heart failure, but unfortunately, even with optimized therapy, prognosis is often poor. Their last therapeutic option is, therefore, a heart transplantation with limited organ supply and complications related to immunosuppression. In this setting, cell therapies have emerged as an alternative. Many clinical trials have now been performed using different cell types and injection routes. In this perspective, we will analyze the results of such trials and discuss future perspectives for cell therapies as an efficacious treatment of heart failure.
Collapse
Affiliation(s)
- Antonio Carlos Campos de Carvalho
- Laboratory of Cellular and Molecular Cardiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tais H. Kasai-Brunswick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Bastos Carvalho
- Laboratory of Cellular and Molecular Cardiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Liu Z, Mikrani R, Zubair HM, Taleb A, Naveed M, Baig MMFA, Zhang Q, Li C, Habib M, Cui X, Sembatya KR, Lei H, Zhou X. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations. Eur J Pharmacol 2020; 876:173049. [PMID: 32142771 DOI: 10.1016/j.ejphar.2020.173049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
In the beginning stage of heart disease, the blockage of blood flow frequently occurs due to the persistent damage and even death of myocardium. Cicatricial tissue developed after the death of myocardium can affect heart function, which ultimately leads to heart failure. In recent years, several studies carried out about the use of stem cells such as embryonic, pluripotent, cardiac and bone marrow-derived stem cells as well as myoblasts to repair injured myocardium. Current studies focus more on finding appropriate measures to enhance cell homing and survival in order to increase paracrine function. Until now, there is no universal delivery route for mesenchymal stem cells (MSCs) for different diseases. In this review, we summarize the advantages and challenges of the systemic and local pathways of MSC delivery. In addition, we also describe some advanced measures of cell delivery to improve the efficiency of transplantation. The combination of cells and therapeutic substances could be the most reliable method, which allows donor cells to deliver sufficient amounts of paracrine factors and provide long-lasting effects. The cardiac support devices or tissue engineering techniques have the potential to facilitate the controlled release of stem cells on local tissue for a sustained period. A novel promising epicardial drug delivery system is highlighted here, which not only provides MSCs with a favorable environment to promote retention but also increases the contact area and a number of cells recruited in the heart muscle.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | | | - Abdoh Taleb
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Mirza Muhammad Faran Asraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Murad Habib
- Department of Surgery, Ayub Teaching Hospital, Abbottabad, Pakistan
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Kiganda Raymond Sembatya
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Han Lei
- Department of Pharmacy, Jiangsu Worker Medical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 210017, PR China.
| |
Collapse
|
8
|
Wang Y, Xu F, Ma J, Shi J, Chen S, Liu Z, Liu J. Effect of stem cell transplantation on patients with ischemic heart failure: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2019; 10:125. [PMID: 30999928 PMCID: PMC6472092 DOI: 10.1186/s13287-019-1214-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell transplantation (SCT) has become a promising way to treat ischemic heart failure (IHF). We performed a large-scale meta-analysis of randomized clinical trials to investigate the efficacy and safety of SCT in IHF patients. Randomized controlled trials (RCTs) involving stem cell transplantation for the treatment of IHF were identified by searching the PubMed, EMBASE, SpringerLink, Web of Science, and Cochrane Systematic Review databases as well as from reviews and the reference lists of relevant articles. Fourteen eligible randomized controlled trials were included in this study, for a total of 669 IHF patients, of which 380 patients were treated with SCT. The weighted mean difference (WMD) was calculated for changes in the New York Heart Association (NYHA) class, left ventricular ejection fraction (LVEF), left ventricular end-diastolic and end-systolic volumes (LVEDV and LVESV), and Canadian Cardiovascular Society (CCS) angina grade using a fixed effects model, while relative risk (RR) was used for mortality. Compared with the control group, SCT significantly lowered the NYHA class (MD = − 0.73, 95% CI − 1.32 to − 0.14, P < 0.05), LVESV (MD = − 14.80, 95% CI − 20.88 to − 8.73, P < 0.05), and CCS grade (MD = − 0.81, 95% CI − 1.45 to − 0.17, P < 0.05). Additionally, SCT increased LVEF (MD = 6.55, 95% CI 5.93 to 7.16, P < 0.05). However, LVEDV (MD = − 0.33, 95% CI − 1.09 to 0.44, P > 0.05) and mortality (RR = 0.86, 95% CI 0.45 to 1.66, P > 0.05) did not differ between the two groups. This meta-analysis suggests that SCT may contribute to the improvement of LVEF, as well as the reduction of the NYHA class, CCS grade, and LVESV. In addition, SCT does not affect mortality.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fen Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jingwei Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junwei Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
9
|
Banovic M, Pusnik-Vrckovnik M, Nakou E, Vardas P. Myocardial regeneration therapy in heart failure: Current status and future therapeutic implications in clinical practice. Int J Cardiol 2018; 260:124-130. [DOI: 10.1016/j.ijcard.2018.01.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
|
10
|
Sterner RM, Sterner RC, Brenes-Salazar JA, Yu Ballard AC. Cellular therapies for chronic ischemic heart failure. Hellenic J Cardiol 2018; 59:78-90. [PMID: 29355725 DOI: 10.1016/j.hjc.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
The development of stem cell therapies for chronic ischemic heart failure is highly sought after to attempt to improve morbidity and mortality of this prevalent disease. This article reviews clinical trials that investigate stem cell therapy for chronic ischemic heart failure. To generate this review article, PubMed was searched using keywords "stem cell therapy heart failure" with the article type "Clinical Trial" selected on 10/04/2016. The raw search yielded 156 articles; 53 articles were selected for inclusion in the review between the original literature search and manual research/cross-referencing. Additional reviews and original articles were also manually researched and cross-referenced. Cellular-based therapies utilizing peripheral blood progenitor cells, bone marrow cells, mesenchymal stem cells, cells of cardiac origin, and embryonic stem cells have yielded mixed results, but some studies have shown modest efficacy. Skeletal myoblasts raised concerns about safety due to arrhythmias. Optimizing cell type and delivery method will be of critical importance in enhancing efficacy of therapy within various subsets of chronic ischemic heart failure patients. Although much more work needs to be done to optimize treatment strategies, developing stem cell therapies for chronic ischemic heart failure could be of critical importance to lessen the impactful health burden that heart failure has on patients and society.
Collapse
Affiliation(s)
- Rosalie M Sterner
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Robert C Sterner
- University of Wisconsin-Madison Medical Scientist Training Program, 750 Highland Avenue, Madison, WI, 53726, USA.
| | | | - Aimee C Yu Ballard
- Primary Care Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Fernández-Avilés F, Sanz-Ruiz R, Climent AM, Badimon L, Bolli R, Charron D, Fuster V, Janssens S, Kastrup J, Kim HS, Lüscher TF, Martin JF, Menasché P, Simari RD, Stone GW, Terzic A, Willerson JT, Wu JC. Global position paper on cardiovascular regenerative medicine. Eur Heart J 2017; 38:2532-2546. [PMID: 28575280 PMCID: PMC5837698 DOI: 10.1093/eurheartj/ehx248] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Francisco Fernández-Avilés
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Andreu M Climent
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Lina Badimon
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain
| | - Roberto Bolli
- Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Dominique Charron
- LabEx TRANSPLANTEX; HLA & Médecine "Jean Dausset" Laboratory Network, Hôpital Saint-Louis AP-HP, Université Paris Diderot, 75013, France
| | - Valentin Fuster
- CIBERCV, ISCIII, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of medicine at Mount Sinai, New York, NY, USA
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jens Kastrup
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Thomas F Lüscher
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Philippe Menasché
- Department of Cardiovascular Surgery Hôpital Européen Georges Pompidou; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Robert D Simari
- School of Medicine, University of Kansas, 3901 Rainbow Boulevard, Kansas City, KS, USA
| | - Gregg W Stone
- Center for Clinical Trials, Cardiovascular Research Foundation, New York, New York; Center for Clinical Trials, NewYork-Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Department of Cardiovascular Diseases, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, NY, USA
| | - James T Willerson
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine and Department of Radiology, Stanford University School of Medicine, CA, USA
| |
Collapse
|
12
|
Nigro P, Bassetti B, Cavallotti L, Catto V, Carbucicchio C, Pompilio G. Cell therapy for heart disease after 15 years: Unmet expectations. Pharmacol Res 2017; 127:77-91. [PMID: 28235633 DOI: 10.1016/j.phrs.2017.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Over the past two decades cardiac cell therapy (CCT) has emerged as a promising new strategy to cure heart diseases at high unmet need. Thousands of patients have entered clinical trials for acute or chronic heart conditions testing different cell types, including autologous or allogeneic bone marrow (BM)-derived mononuclear or selected cells, BM- or adipose tissue-derived mesenchymal cells, or cardiac resident progenitors based on their potential ability to regenerate scarred or dysfunctional myocardium. Nowadays, the original enthusiasm surrounding the regenerative medicine field has been cushioned by a cumulative body of evidence indicating an inefficient or modest efficacy of CCT in improving cardiac function, along with the continued lack of indisputable proof for long-term prognostic benefit. In this review, we have firstly comprehensively outlined the positive and negative results of cell therapy studies in patients with acute myocardial infarction, refractory angina and chronic heart failure. Next, we have discussed cell therapy- and patient-related variables (e.g. cell intrinsic and extrinsic characteristics as well as criteria of patient selection and proposed methodologies) that might have dampened the efficacy of past cell therapy trials. Finally, we have addressed critical factors to be considered before embarking on further clinical trials.
Collapse
Affiliation(s)
- Patrizia Nigro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Beatrice Bassetti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Corrado Carbucicchio
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
13
|
Fisher SA, Doree C, Mathur A, Taggart DP, Martin‐Rendon E, Cochrane Heart Group. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 2016; 12:CD007888. [PMID: 28012165 PMCID: PMC6463978 DOI: 10.1002/14651858.cd007888.pub3] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND A promising approach to the treatment of chronic ischaemic heart disease and congestive heart failure is the use of stem cells. The last decade has seen a plethora of randomised controlled trials developed worldwide, which have generated conflicting results. OBJECTIVES The critical evaluation of clinical evidence on the safety and efficacy of autologous adult bone marrow-derived stem/progenitor cells as a treatment for chronic ischaemic heart disease and congestive heart failure. SEARCH METHODS We searched CENTRAL in the Cochrane Library, MEDLINE, Embase, CINAHL, LILACS, and four ongoing trial databases for relevant trials up to 14 December 2015. SELECTION CRITERIA Eligible studies were randomised controlled trials comparing autologous adult stem/progenitor cells with no cells in people with chronic ischaemic heart disease and congestive heart failure. We included co-interventions, such as primary angioplasty, surgery, or administration of stem cell mobilising agents, when administered to treatment and control arms equally. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references for eligibility, assessed trial quality, and extracted data. We undertook a quantitative evaluation of data using random-effects meta-analyses. We evaluated heterogeneity using the I2 statistic and explored substantial heterogeneity (I2 greater than 50%) through subgroup analyses. We assessed the quality of the evidence using the GRADE approach. We created a 'Summary of findings' table using GRADEprofiler (GRADEpro), excluding studies with a high or unclear risk of selection bias. We focused our summary of findings on long-term follow-up of mortality, morbidity outcomes, and left ventricular ejection fraction measured by magnetic resonance imaging. MAIN RESULTS We included 38 randomised controlled trials involving 1907 participants (1114 cell therapy, 793 controls) in this review update. Twenty-three trials were at high or unclear risk of selection bias. Other sources of potential bias included lack of blinding of participants (12 trials) and full or partial commercial sponsorship (13 trials).Cell therapy reduced the incidence of long-term mortality (≥ 12 months) (risk ratio (RR) 0.42, 95% confidence interval (CI) 0.21 to 0.87; participants = 491; studies = 9; I2 = 0%; low-quality evidence). Periprocedural adverse events associated with the mapping or cell/placebo injection procedure were infrequent. Cell therapy was also associated with a long-term reduction in the incidence of non-fatal myocardial infarction (RR 0.38, 95% CI 0.15 to 0.97; participants = 345; studies = 5; I2 = 0%; low-quality evidence) and incidence of arrhythmias (RR 0.42, 95% CI 0.18 to 0.99; participants = 82; studies = 1; low-quality evidence). However, we found no evidence that cell therapy affects the risk of rehospitalisation for heart failure (RR 0.63, 95% CI 0.36 to 1.09; participants = 375; studies = 6; I2 = 0%; low-quality evidence) or composite incidence of mortality, non-fatal myocardial infarction, and/or rehospitalisation for heart failure (RR 0.64, 95% CI 0.38 to 1.08; participants = 141; studies = 3; I2 = 0%; low-quality evidence), or long-term left ventricular ejection fraction when measured by magnetic resonance imaging (mean difference -1.60, 95% CI -8.70 to 5.50; participants = 25; studies = 1; low-quality evidence). AUTHORS' CONCLUSIONS This systematic review and meta-analysis found low-quality evidence that treatment with bone marrow-derived stem/progenitor cells reduces mortality and improves left ventricular ejection fraction over short- and long-term follow-up and may reduce the incidence of non-fatal myocardial infarction and improve New York Heart Association (NYHA) Functional Classification in people with chronic ischaemic heart disease and congestive heart failure. These findings should be interpreted with caution, as event rates were generally low, leading to a lack of precision.
Collapse
Affiliation(s)
- Sheila A Fisher
- NHS Blood and TransplantSystematic Review InitiativeLevel 2, John Radcliffe HospitalHeadingtonOxfordOxonUKOX3 9BQ
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeLevel 2, John Radcliffe HospitalHeadingtonOxfordOxonUKOX3 9BQ
| | - Anthony Mathur
- William Harvey Research InstituteDepartment of Clinical PharmacologyCharterhouse SquareLondonUKEC1M 6BQ
| | | | - Enca Martin‐Rendon
- Radcliffe Department of Medicine, University of OxfordSystematic Review InitiativeOxfordUK
| | | |
Collapse
|
14
|
Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular Therapy for Heart Failure. Curr Cardiol Rev 2016; 12:195-215. [PMID: 27280304 PMCID: PMC5011188 DOI: 10.2174/1573403x12666160606121858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/31/1969] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management.
Collapse
Affiliation(s)
- Peter J Psaltis
- Co-Director of Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia 5000.
| | | | | | | |
Collapse
|
15
|
Choudhury T, Mozid A, Hamshere S, Yeo C, Pellaton C, Arnous S, Saunders N, Brookman P, Jain A, Locca D, Archbold A, Knight C, Wragg A, Davies C, Mills P, Parmar M, Rothman M, Choudry F, Jones DA, Agrawal S, Martin J, Mathur A. An exploratory randomized control study of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with ischaemic cardiomyopathy: the REGENERATE-IHD clinical trial. Eur J Heart Fail 2016; 19:138-147. [PMID: 27790824 PMCID: PMC5248636 DOI: 10.1002/ejhf.676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/28/2022] Open
Abstract
Aims The effect of combined cytokine and cell therapy in ischaemic cardiomyopathy is unknown. Meta‐analyses suggest improved cardiac function with cell therapy. The optimal cell delivery route remains unclear. We investigated whether granulocyte colony‐stimulating factor (G‐CSF) alone or in combination with intracoronary (i.c.) or intramyocardial (i.m.) injection of autologous bone marrow‐derived cells (BMCs) improves cardiac function. Methods and results Ninety patients with symptomatic ischaemic cardiomyopathy and no further treatment options were enrolled in the randomized, placebo‐controlled, single‐centre REGENERATE‐IHD study. Randomization was to one of three arms: peripheral, i.c., or i.m. In each arm, patients were randomized to active treatment or placebo. All patients, apart from the peripheral placebo group (saline only) received G‐CSF for 5 days. The i.c. and i.m. arms received either BMCs or serum (placebo). The primary endpoint was change in LVEF at 1 year assessed by cardiac magnetic resonance imaging/computed tomography. The i.m. BMC group showed a significant improvement in LVEF of 4.99% (95% confidence interval 0.33–9.6%; P = 0.038) at 1 year. This group also showed a reduction in NYHA class at 1 year and NT‐proBNP at 6 months. No other group showed a significant change in LVEF. This finding is supported by post‐hoc between‐group comparisons. Conclusion We have shown that G‐CSF combined with autologous i.m. BMCs has a beneficial effect on cardiac function and symptoms. However, this result should be considered preliminary in support of a clinical benefit of i.m. stem cell infusion in ‘no option’ patients and needs further exploration in a larger study.
Collapse
Affiliation(s)
- Tawfiq Choudhury
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Abdul Mozid
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Steve Hamshere
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Chia Yeo
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Cyril Pellaton
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Samer Arnous
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Natalie Saunders
- Stem Cell Laboratory, Barts Health NHS Trust and Blizard Institute, Queen Mary University of London, London, UK
| | - Pat Brookman
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Ajay Jain
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Didier Locca
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Andrew Archbold
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Charles Knight
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Andrew Wragg
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Ceri Davies
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Peter Mills
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | | | - Martin Rothman
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Fizzah Choudry
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Daniel A Jones
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Samir Agrawal
- Stem Cell Laboratory, Barts Health NHS Trust and Blizard Institute, Queen Mary University of London, London, UK
| | - John Martin
- British Heart Foundation Laboratories, Department of Medicine, University College London, London, UK
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| |
Collapse
|
16
|
Martin-Rendon E. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies: What Can Systematic Reviews Tell Us About Cell Therapies for Ischemic Heart Disease? Circ Res 2016; 118:1264-72. [PMID: 27081109 DOI: 10.1161/circresaha.115.307540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/17/2016] [Indexed: 12/17/2022]
Abstract
Controversies from basic science, discrepancies from clinical trials, and divergent results from meta-analyses have recently arisen in the field of cell therapies for cardiovascular repair and regeneration. Noticeably, there are almost as many systematic reviews and meta-analyses published as there are well-conducted clinical studies. But how do we disentangle the confusion they have raised? This article addresses why results obtained from systematic reviews and meta-analyses of human cell-based cardiac regeneration therapies are still valid to inform the design of future clinical trials. It also addresses how meta-analyses are not free from limitations and how important it is to assess the quality of the evidence and the quality of the systematic reviews and finally how stronger conclusions can be drawn when several pieces of evidence converge.
Collapse
Affiliation(s)
- Enca Martin-Rendon
- From the Systematic Review Initiative, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
17
|
Choudry FA, Yeo C, Mozid A, Martin JF, Mathur A. Increases in plasma Tβ4 after intracardiac cell therapy in chronic ischemic heart failure is associated with symptomatic improvement. Regen Med 2015; 10:403-10. [DOI: 10.2217/rme.15.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Tβ4 is an integral factor in repair of myocardium in animal models. To investigate whether Tβ4 is important in human cardiac disease and has a role in mediating the beneficial cardiac effects of bone-marrow-derived stem cell (BMSC) therapy, we measured serial plasma Tβ4 levels in patients enrolled on the REGENERATE-IHD cell therapy trial. Patients & Methods: Plasma Tβ4 concentrations were measured in 13 patients who received BMSCs and 14 controls. Results: There was a significant increase in plasma Tβ4 in the BMSC group 24 h after intracardiac injection. Increases in Tβ4 levels were associated with improvement in New York Heart Association symptom class. Conclusion: This exploratory study highlights the need for further study of Tβ4 in human cardiovascular disease.
Collapse
Affiliation(s)
- Fizzah A Choudry
- Department of Cardiology, London Chest Hospital, Barts Health Trust, London, E2 9JX, UK
| | - Chia Yeo
- Department of Cardiology, London Chest Hospital, Barts Health Trust, London, E2 9JX, UK
| | - Abdul Mozid
- Department of Cardiology, London Chest Hospital, Barts Health Trust, London, E2 9JX, UK
| | - John F Martin
- British Heart Foundation Laboratories, Department of Medicine, University College London, London, WC1E 6JJ, UK
| | - Anthony Mathur
- Department of Cardiology, London Chest Hospital, Barts Health Trust, London, E2 9JX, UK
- Centre for Clinical Pharmacology, Cardiovascular Biomedical Research Unit, The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
18
|
Fisher SA, Doree C, Mathur A, Martin-Rendon E. Meta-Analysis of Cell Therapy Trials for Patients With Heart Failure. Circ Res 2015; 116:1361-77. [DOI: 10.1161/circresaha.116.304386] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Sheila A Fisher
- From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.)
| | - Carolyn Doree
- From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.)
| | - Anthony Mathur
- From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.)
| | - Enca Martin-Rendon
- From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.)
| |
Collapse
|