1
|
Stewart AN, Kumari R, Bailey WM, Glaser EP, Bosse-Joseph CC, Park KA, Hammers GV, Wireman OH, Gensel JC. PTEN knockout using retrogradely transported AAVs transiently restores locomotor abilities in both acute and chronic spinal cord injury. Exp Neurol 2023; 368:114502. [PMID: 37558155 PMCID: PMC10498341 DOI: 10.1016/j.expneurol.2023.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Restoring function in chronic stages of spinal cord injury (SCI) has often been met with failure or reduced efficacy when regenerative strategies are delayed past the acute or sub-acute stages of injury. Restoring function in the chronically injured spinal cord remains a critical challenge. We found that a single injection of retrogradely transported adeno-associated viruses (AAVrg) to knockout the phosphatase and tensin homolog protein (PTEN) in chronic SCI can effectively target both damaged and spared axons and transiently restore locomotor functions in near-complete injury models. AAVrg's were injected to deliver cre recombinase and/or a red fluorescent protein (RFP) under the human Synapsin 1 promoter (hSyn1) into the spinal cords of C57BL/6 PTENFloxΔ/Δ mice to knockout PTEN (PTEN-KO) in a severe thoracic SCI crush model at both acute and chronic time points. PTEN-KO improved locomotor abilities in both acute and chronic SCI conditions over a 9-week period. Regardless of whether treatment was initiated at the time of injury (acute), or three months after SCI (chronic), mice with limited hindlimb joint movement gained hindlimb weight support after treatment. Interestingly, functional improvements were not sustained beyond 9 weeks coincident with a loss of RFP reporter-gene expression and a near-complete loss of treatment-associated functional recovery by 6 months post-treatment. Treatment effects were also specific to severely injured mice; animals with weight support at the time of treatment lost function over a 6-month period. Retrograde tracing with Fluorogold revealed viable neurons throughout the motor cortex despite a loss of RFP expression at 9 weeks post-PTEN-KO. However, few Fluorogold labeled neurons were detected within the motor cortex at 6 months post-treatment. BDA labeling from the motor cortex revealed a dense corticospinal tract (CST) bundle in all groups except chronically treated PTEN-KO mice, indicating a potential long-term toxic effect of PTEN-KO to neurons in the motor cortex which was corroborated by a loss of β-tubulin III labeling above the lesion within spinal cords after PTEN-KO. PTEN-KO mice had significantly more β-tubulin III labeled axons within the lesion when treatment was delivered acutely, but not chronically post-SCI. In conclusion, we have found that using AAVrg's to knockout PTEN is an effective manipulation capable of restoring motor functions in chronic SCI and can enhance axon growth of currently unidentified axon populations when delivered acutely after injury. However, the long-term consequences of PTEN-KO on neuronal health and viability should be further explored.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Reena Kumari
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ethan P Glaser
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher C Bosse-Joseph
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Kennedy A Park
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Gabrielle V Hammers
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Olivia H Wireman
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Stewart AN, Kumari R, Bailey WM, Glaser EP, Hammers GV, Wireman OH, Gensel JC. PTEN knockout using retrogradely transported AAVs restores locomotor abilities in both acute and chronic spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537179. [PMID: 37131840 PMCID: PMC10153160 DOI: 10.1101/2023.04.17.537179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Restoring function in chronic stages of spinal cord injury (SCI) has often been met with failure or reduced efficacy when regenerative strategies are delayed past the acute or sub-acute stages of injury. Restoring function in the chronically injured spinal cord remains a critical challenge. We found that a single injection of retrogradely transported adeno-associated viruses (AAVrg) to knockout the phosphatase and tensin homolog protein (PTEN) in chronic SCI can effectively target both damaged and spared axons and restore locomotor functions in near-complete injury models. AAVrg's were injected to deliver cre recombinase and/or a red fluorescent protein (RFP) under the human Synapsin 1 promoter (hSyn1) into the spinal cords of C57BL/6 PTEN FloxΔ / Δ mice to knockout PTEN (PTEN-KO) in a severe thoracic SCI crush model at both acute and chronic time points. PTEN-KO improved locomotor abilities in both acute and chronic SCI conditions over a 9-week period. Regardless of whether treatment was initiated at the time of injury (acute), or three months after SCI (chronic), mice with limited hindlimb joint movement gained hindlimb weight support after treatment. Interestingly, functional improvements were not sustained beyond 9 weeks coincident with a loss of RFP reporter-gene expression and a near-complete loss of treatment-associated functional recovery by 6 months post-treatment. Treatment effects were also specific to severely injured mice; animals with weight support at the time of treatment lost function over a 6-month period. Retrograde tracing with Fluorogold revealed viable neurons throughout the motor cortex despite a loss of RFP expression at 9 weeks post-PTEN-KO. However, few Fluorogold labeled neurons were detected within the motor cortex at 6 months post-treatment. BDA labeling from the motor cortex revealed a dense corticospinal tract (CST) bundle in all groups except chronically treated PTEN-KO mice indicating a potential long-term toxic effect of PTEN-KO to neurons in the motor cortex. PTEN-KO mice had significantly more β - tubulin III labeled axons within the lesion when treatment was delivered acutely, but not chronically post-SCI. In conclusion, we have found that using AAVrg's to knockout PTEN is an effective manipulation capable of restoring motor functions in chronic SCI and can enhance axon growth of currently unidentified axon populations when delivered acutely after injury. However, the long-term consequences of PTEN-KO may exert neurotoxic effects.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Reena Kumari
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - William M. Bailey
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Ethan P. Glaser
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Gabrielle V. Hammers
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Olivia H. Wireman
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - John C. Gensel
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
3
|
Cunningham C, Viskontas M, Janowicz K, Sani Y, Håkansson M, Heidari A, Huang W, Bo X. The potential of gene therapies for spinal cord injury repair: a systematic review and meta-analysis of pre-clinical studies. Neural Regen Res 2023; 18:299-305. [PMID: 35900407 PMCID: PMC9396485 DOI: 10.4103/1673-5374.347941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Currently, there is no cure for traumatic spinal cord injury but one therapeutic approach showing promise is gene therapy. In this systematic review and meta-analysis, we aim to assess the efficacy of gene therapies in pre-clinical models of spinal cord injury and the risk of bias. In this meta-analysis, registered at PROSPERO (Registration ID: CRD42020185008), we identified relevant controlled in vivo studies published in English by searching the PubMed, Web of Science, and Embase databases. No restrictions of the year of publication were applied and the last literature search was conducted on August 3, 2020. We then conducted a random-effects meta-analysis using the restricted maximum likelihood estimator. A total of 71 studies met our inclusion criteria and were included in the systematic review. Our results showed that overall, gene therapies were associated with improvements in locomotor score (standardized mean difference [SMD]: 2.07, 95% confidence interval [CI]:1.68–2.47, Tau2 = 2.13, I2 = 83.6%) and axonal regrowth (SMD: 2.78, 95%CI: 1.92–3.65, Tau2 = 4.13, I2 = 85.5%). There was significant asymmetry in the funnel plots of both outcome measures indicating the presence of publication bias. We used a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies) checklist to assess the risk of bias, finding that the median score was 4 (IQR:3–5). In particular, reports of allocation concealment and sample size calculations were lacking. In conclusion, gene therapies are showing promise as therapies for spinal cord injury repair, but there is no consensus on which gene or genes should be targeted.
Collapse
|
4
|
Sun T, Duan L, Li J, Guo H, Xiong M. Gypenoside XVII protects against spinal cord injury in mice by regulating the microRNA‑21‑mediated PTEN/AKT/mTOR pathway. Int J Mol Med 2021; 48:146. [PMID: 34132355 PMCID: PMC8208621 DOI: 10.3892/ijmm.2021.4979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Gypenoside XVII (GP‑17), one of the dominant active components of Gynostemma pentaphyllum, has been studied extensively and found to have a variety of pharmacological effects, including neuroprotective properties. However, the neuroprotective effects of GP‑17 against spinal cord injury (SCI), as well as its underlying mechanisms of action remain unknown. The present study aimed to investigate the effects of GP‑17 on motor recovery and histopathological changes following SCI and to elucidate the mechanisms underlying its neuroprotective effects in a mouse model of SCI. Motor recovery was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. Spinal cord edema was detected by the wet/dry weight method. H&E staining was performed to examine the effect of GP‑17 on spinal cord damage. Inflammatory response production was assessed by ELISA. Candidate miRNAs were identified following the integrated analysis of the Gene Expression Omnibus (GEO) dataset GSE67515. Western blot analysis was also performed to detect the expression levels of associated proteins. The results revealed that GP‑17 treatment improved functional recovery, and suppressed neuronal apoptosis and the inflammatory response in the mouse model of SCI. Moreover, it was observed that miR‑21 expression was downregulated following SCI, whereas it was upregulated following the administration of GP‑17. The inhibition of miR‑21 eliminated the protective effects of GP‑17 on SCI‑induced neuronal apoptosis and the inflammatory response. In addition, phosphatase and tensin homologue (PTEN), a key molecule in the activation of the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, was identified as a target of miR‑21, and PTEN expression was downregulated by GP‑17 through miR‑21. Furthermore, the PTEN/AKT/mTOR pathway was inactivated by SCI, whereas it was re‑activated by GP‑17 through the regulation of miR‑21 in mice with SCI. On the whole, the findings of the present study suggest that GP‑17 plays a protective role in SCI via regulating the miR‑21/PTEN/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Tianyu Sun
- Department of Traumatology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Liying Duan
- Department of Basic Medicine, Puyang Medical College, Puyang, Henan 457000, P.R. China
| | - Jiaju Li
- Department of Traumatology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Hongyu Guo
- Department of Traumatology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Mingyue Xiong
- Department of Traumatology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
5
|
Liu S, Jia J, Zhou H, Zhang C, Liu L, Liu J, Lu L, Li X, Kang Y, Lou Y, Cai Z, Ren Y, Kong X, Feng S. PTEN modulates neurites outgrowth and neuron apoptosis involving the PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2019; 20:4059-4066. [PMID: 31702028 PMCID: PMC6797942 DOI: 10.3892/mmr.2019.10670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to explore the role of the PTEN/Akt/mTOR signaling pathway in the neurite outgrowth and apoptosis of cortical neurons. Cortical neurons were seeded on or adjacent to chondroitin sulfate proteoglycans. The length, number and crossing behavior of the neurites were calculated. Immunohistochemical staining and TUNEL data were analyzed. Neurites treated with PTEN inhibitor exhibited significant enhancements in elongation, initiation and crossing abilities when they encountered chondroitin sulfate proteoglycans in vitro. These effects disappeared when the PTEN/Akt/mTOR signaling pathway was blocked. Neurons exhibited significant enhancements in survival ability following PTEN inhibition. The present study demonstrated that PTEN inhibition can promote axonal elongation and initiation in cerebral cortical neurons, as well as the ability to cross the chondroitin sulfate proteoglycan border. In addition, PTEN inhibition is useful for protecting the neuron from apoptosis. The PTEN/Akt/mTOR signaling pathway is an important signaling pathway.
Collapse
Affiliation(s)
- Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Jia
- Department of Trauma Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chi Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Lu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yi Kang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhiwei Cai
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yiming Ren
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
6
|
Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans In Vitro and Transforms Postlesion Inhibitory Environment to Promote Axonal Outgrowth in an Ex Vivo Model of Spinal Cord Injury. J Neurosci 2019; 39:8330-8346. [PMID: 31409666 DOI: 10.1523/jneurosci.0374-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Millions of patients suffer from debilitating spinal cord injury (SCI) without effective treatments. Elevating cAMP promotes CNS neuron growth in the presence of growth-inhibiting molecules. cAMP's effects on neuron growth are partly mediated by Epac, comprising Epac1 and Epac2; the latter predominantly expresses in postnatal neural tissue. Here, we hypothesized that Epac2 activation would enhance axonal outgrowth after SCI. Using in vitro assays, we demonstrated, for the first time, that Epac2 activation using a specific soluble agonist (S-220) significantly enhanced neurite outgrowth of postnatal rat cortical neurons and markedly overcame the inhibition by chondroitin sulfate proteoglycans and mature astrocytes on neuron growth. We further investigated the novel potential of Epac2 activation in promoting axonal outgrowth by an ex vivo rat model of SCI mimicking post-SCI environment in vivo and by delivering S-220 via a self-assembling Fmoc-based hydrogel that has suitable properties for SCI repair. We demonstrated that S-220 significantly enhanced axonal outgrowth across the lesion gaps in the organotypic spinal cord slices, compared with controls. Furthermore, we elucidated, for the first time, that Epac2 activation profoundly modulated the lesion environment by reducing astrocyte/microglial activation and transforming astrocytes into elongated morphology that guided outgrowing axons. Finally, we showed that S-220, when delivered by the gel at 3 weeks after contusion SCI in male adult rats, resulted in significantly better locomotor performance for up to 4 weeks after treatment. Our data demonstrate a promising therapeutic potential of S-220 in SCI, via beneficial effects on neurons and glia after injury to facilitate axonal outgrowth.SIGNIFICANCE STATEMENT During development, neuronal cAMP levels decrease significantly compared with the embryonic stage when the nervous system is established. This has important consequences following spinal cord injury, as neurons fail to regrow. Elevating cAMP levels encourages injured CNS neurons to sprout and extend neurites. We have demonstrated that activating its downstream effector, Epac2, enhances neurite outgrowth in vitro, even in the presence of an inhibitory environment. Using a novel biomaterial-based drug delivery system in the form of a hydrogel to achieve local delivery of an Epac2 agonist, we further demonstrated that specific activation of Epac2 enhances axonal outgrowth and minimizes glial activation in an ex vivo model of spinal cord injury, suggesting a new strategy for spinal cord repair.
Collapse
|
7
|
Wang T, Li B, Wang Z, Yuan X, Chen C, Zhang Y, Xia Z, Wang X, Yu M, Tao W, Zhang L, Wang X, Zhang Z, Guo X, Ning G, Feng S, Chen X. miR-155-5p Promotes Dorsal Root Ganglion Neuron Axonal Growth in an Inhibitory Microenvironment via the cAMP/PKA Pathway. Int J Biol Sci 2019; 15:1557-1570. [PMID: 31337984 PMCID: PMC6643145 DOI: 10.7150/ijbs.31904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Sensory dysfunction post spinal cord injury causes patients great distress. Sciatic nerve conditioning injury (SNCI) has been shown to restore sensory function after spinal cord dorsal column injury (SDCL); however, the underlying mechanism of this recovery remains unclear. We performed a microarray assay to determine the associated miRNAs that might regulate the process of SNCI promoting SDCL repair. In total, 13 miRNAs were identified according to our inclusion criteria, and RT-qPCR was used to verify the microarray results. Among the 13 miRNAs, the miR-155-5p levels were decreased at 9 h, 3 d, 7 d, 14 d, 28 d, 2 m and 3 m timepoints in the SDCL group, while the SNCI group had a smaller decrease. Thus, miR-155-5p was chosen for further study after a literature review and an analysis with the TargetScan online tool. Specifically, miR-155-5p targets PKI-α, and the expression pattern of PKI-α was opposite that of miR-155-5p in both the SDCL and SNCI groups. Interestingly, miR-155-5p could promote dorsal root ganglion (DRG) neuron axon growth via the cAMP/PKA pathway and in a TNF-α, IL-1β or MAG inhibitory microenvironment in vitro. Furthermore, miR-155-5p could regulate the cAMP/PKA pathway and promote sensory conduction function recovery post dorsal column injury as detected by NF-200 immunohistochemistry, somatosensory-evoked potentials, BBB scale and tape removal test. Collectively, our results demonstrated that miR-155-5p participates in the molecular mechanism by which SNCI promotes the repair of SDCL and that upregulated miR-155-5p can repair SDCL by enhancing DRG neuron axon growth via the cAMP/PKA pathway. These findings suggest a novel treatment target for spinal cord injury.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Chuanjie Chen
- Department of Orthopedics, Chengde Central Hospital, Chengde 067000, Hebei Province, P.R. China
| | - Yanjun Zhang
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Ziwei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xin Wang
- Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Mei Yu
- Leukemia Center, Chinese Academy of Medical Sciences & Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases, Tianjin 30020, P.R. China
| | - Wen Tao
- Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zheng Zhang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Xiaoling Guo
- Department of Neurology, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, P.R. China
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| |
Collapse
|
8
|
Wang T, Li B, Wang Z, Wang X, Xia Z, Ning G, Wang X, Zhang Y, Cui L, Yu M, Zhang L, Zhang Z, Yuan W, Guo X, Yuan X, Feng S, Chen X. Sorafenib promotes sensory conduction function recovery via miR-142-3p/AC9/cAMP axis post dorsal column injury. Neuropharmacology 2019; 148:347-357. [PMID: 30710569 DOI: 10.1016/j.neuropharm.2019.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Spinal cord injury results in sensation dysfunction. This study explored miR-142-3p, which acts a critical role in sciatic nerve conditioning injury (SNCI) promoting the repair of the dorsal column injury and validated its function on primary sensory neuron(DRG). miR-142-3p expression increased greatly in the spinal cord dorsal column lesion (SDCL) group and increased slightly in the SNCI group. Subsequently, the expression of adenylate cyclase 9 (AC9), the target gene of miR-142-3p, declined sharply in the SDCL group and declined limitedly in the SNCI group. The expression trend of cAMP was opposite to that of miR-142-3p. MiR-142-3p inhibitor improved the axon length, upregulated the expression of AC9, cAMP, p-CREB, IL-6, and GAP43, and downregulated the expression of GTP-RhoA. miR-142-3p inhibitor combined with AC9 siRNA showed shorter axon length, the expression of AC9, cAMP, p-CREB, IL-6, and GAP43 was decreased, and the expression of GTP-RhoA was increased. H89 and AG490, inhibitors of cAMP/PKA pathway and IL6/STAT3/GAP43 axis, respectively, declined the enhanced axonal growth by miR-142-3p inhibitor and altered the expression level of the corresponding proteins. Thus, a substitution therapy using Sorafenib that downregulates the miR-142-3p expression for SNCI was investigated. The results showed the effect of Sorafenib was similar to that of miR-142-3p inhibitor and SNCI on both axon growth in vitro and sensory conduction function recovery in vivo. In conclusion, miR-142-3p acts a pivotal role in SNCI promoting the repair of dorsal column injury. Sorafenib mimics the treatment effect of SNCI via downregulation of miR-142-3p, subsequently, promoting sensory conduction function recovery post dorsal column injury.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, PR China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei Province, PR China
| | - Xin Wang
- Chengde Medical University, Chengde, 067000, Hebei Province, PR China
| | - Ziwei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yanjun Zhang
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, PR China
| | - Libin Cui
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, PR China
| | - Mei Yu
- Leukemia Center, Chinese Academy of Medical Sciences & Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases, Tianjin, 30020, PR China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Zheng Zhang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, PR China
| | - Wenqi Yuan
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, PR China
| | - Xiaoling Guo
- Department of Neurology, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, PR China.
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, PR China.
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, PR China.
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, PR China.
| |
Collapse
|
9
|
Wang C, Liu Y, Wang Y, Wei Z, Suo D, Ning G, Wu Q, Feng S, Wan C. Low‑frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury. Mol Med Rep 2019; 19:1687-1693. [PMID: 30628673 PMCID: PMC6390012 DOI: 10.3892/mmr.2019.9820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022] Open
Abstract
Low-frequency pulsed electromagnetic fields (LPEMFs) have been reported to be protective for multiple diseases. However, whether the administration of LPEMFs inhibits inflammation and oxidative stress following spinal cord injury requires further investigation. In the current study, a contusion spinal cord injury model was used and LPEMFs administration was applied to investigate the molecular changes, including inflammation, oxidative stress and heat shock protein 70 (HSP70) levels. The results revealed that LPEMFs significantly promoted functional recovery following spinal cord injury, as demonstrated by an increased Basso, Beattie and Bresnahan score. The results demonstrated that LPEMFs decreased the expression of inflammatory factors, including tumor necrosis factor-α, interleukin-1β and nuclear factor-κB. Additionally, LPEMFs exposure reduced the levels of inducible nitric oxide synthase and reactive oxygen species, and upregulated the expression of catalase and superoxide dismutase. Furthermore, treatment with LPEMFs significantly enhanced the expression of HSP70 in spinal cord-injured rats. Overall, the present study revealed that LPEMFs promote functional recovery following spinal cord injury, potentially by modulating inflammation, oxidative stress and HSP70.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yao Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhijian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Dongmei Suo
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qiuli Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunxiao Wan
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
10
|
Wang Z, Yuan W, Li B, Chen X, Zhang Y, Chen C, Yu M, Xiu Y, Li W, Cao J, Wang X, Tao W, Guo X, Feng S, Wang T. PEITC promotes neurite growth in primary sensory neurons via the miR-17-5p/STAT3/GAP-43 axis. J Drug Target 2018; 27:82-93. [PMID: 29877111 DOI: 10.1080/1061186x.2018.1486405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study explored a key miRNA that plays a vital role in sciatic nerve conditioning injury promoting repair of injured dorsal column, and validated its function. Microarray analysis revealed miR-17-5p expression decreased sharply at 3, 7 and 14 days in the sciatic nerve conditioning injury group compared with the simple dorsal column lesion group. After miR-17-5p inhibition in DRG neurons, GAP-43 expression was upregulated and neurite growth was increased. STAT3 together with p-STAT3 showed opposite trends with miR-17-5p. MiR-17-5p inhibition extended neurite and upregulated STAT3, p-STAT3 and GAP-43. To further determine a substitution therapy for sciatic nerve conditioning injury, beta-phenethyl isothiocyanate (PEITC), which downregulates miR-17-5p, was assessed. The results showed that treatment with 10 µM PEITC resulted in longest neurite length. Further experiments demonstrated PEITC induced neurite growth by inhibiting miR-17-5p and further upregulating STAT3, p-STAT3 and GAP-43. The somatosensory evoked potential test confirmed similar treatment effects for PEITC, Ad-miRNA-17-5p inhibitor, and sciatic nerve conditioning injury on the dorsal column lesion. In conclusion, the miR-17-5p/STAT3/GAP-43 axis is an indispensable component of sciatic nerve conditioning injury promoting repair of injured dorsal column. PEITC could promote repair of injured dorsal column via the miR-17-5p/STAT3/GAP-43 axis, and could mimic the treatment effect of sciatic nerve conditioning injury.
Collapse
Affiliation(s)
- Zhijie Wang
- a Department of Pediatric Internal Medicine , Affiliated Hospital of Chengde Medical University , Chengde , Hebei Province , P.R. China
| | - Wenqi Yuan
- b Department of Spinal Surgery , General Hospital of Ningxia Medical University , Yinchuan , Ningxia , P.R. China.,c Department of Orthopedics , Tianjin Medical University General Hospital , Tianjin , P.R. China
| | - Bo Li
- c Department of Orthopedics , Tianjin Medical University General Hospital , Tianjin , P.R. China
| | - Xueming Chen
- d Department of Spine Surgery , Beijing Luhe Hospital, Capital Medical University , Beijing , P.R. China
| | - Yanjun Zhang
- d Department of Spine Surgery , Beijing Luhe Hospital, Capital Medical University , Beijing , P.R. China
| | - Chuanjie Chen
- e Department of Orthopedics , Chengde Central Hospital , Chengde , Hebei Province , P.R. China
| | - Mei Yu
- f Leukemia Center, Chinese Academy of Medical Sciences & Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases , Tianjin , P.R. China
| | - Yucai Xiu
- g Department of Orthopedics , The 266th Hospital of the Chinese People's Liberation Army , Chengde , Hebei Province , P.R. China
| | - Wenhua Li
- g Department of Orthopedics , The 266th Hospital of the Chinese People's Liberation Army , Chengde , Hebei Province , P.R. China
| | - Jiangang Cao
- h Department of Sports injury and Arthroscopy , Tianjin Hospital , Tianjin , P.R. China
| | - Xin Wang
- i Department of Neurology , The 266th Hospital of the Chinese People's Liberation Army , Chengde , Hebei Province , P.R. China
| | - Wen Tao
- i Department of Neurology , The 266th Hospital of the Chinese People's Liberation Army , Chengde , Hebei Province , P.R. China
| | - Xiaoling Guo
- i Department of Neurology , The 266th Hospital of the Chinese People's Liberation Army , Chengde , Hebei Province , P.R. China
| | - Shiqing Feng
- c Department of Orthopedics , Tianjin Medical University General Hospital , Tianjin , P.R. China
| | - Tianyi Wang
- c Department of Orthopedics , Tianjin Medical University General Hospital , Tianjin , P.R. China.,g Department of Orthopedics , The 266th Hospital of the Chinese People's Liberation Army , Chengde , Hebei Province , P.R. China
| |
Collapse
|
11
|
Yin H, Shen L, Xu C, Liu J. Lentivirus-Mediated Overexpression of miR-29a Promotes Axonal Regeneration and Functional Recovery in Experimental Spinal Cord Injury via PI3K/Akt/mTOR Pathway. Neurochem Res 2018; 43:2038-2046. [PMID: 30173324 DOI: 10.1007/s11064-018-2625-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs as a novel class of endogenous small non-coding RNAs, modulate negative gene expression at the post-transcriptional level. Our previous work has demonstrated that miR-29a reduces PTEN expression by directly targeting the 3'-UTRs (untranslated regions) of its mRNA, thus promoting neurite outgrowth. To further confirm the role of miR-29a in the recovery of SCI and its potential mechanisms, a recombinant lentiviral vector was used to promote miR-29a expression in the injured spinal cord. As compared with the LV-eGFP group and normal saline group, a significantly increased level of miR-29a expression and a markedly decreased level of PTEN expression were observed in the LV-miR-29a group. Overexpression of miR-29a increased the phosphorylation of two proteins (Akt and S6) of PI3K-AKT-mTOR signaling pathway and the expression of axonal regeneration associated key marker protein (neurofiament-200). Moreover, quantitative imaging analysis was performed to confirm that LV-miR-29a group expressed axonal regeneration at 4.0 ± 0.2-fold as much as the other two groups. Besides, miR-29a overexpression promoted hindlimb motor functional recovery. Collectively, these results suggested that miR-29a may be an important regulator for axon regeneration, and a potential therapeutic target for SCI recovery.
Collapse
Affiliation(s)
- Hua Yin
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.,Department of Orthopedics, The Jintan Affiliated Hospital of Jiangsu University, Jintan, 213200, Jiangsu, China
| | - Liming Shen
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jinbo Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|