1
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
2
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Kuramoto T. Positional cloning of rat mutant genes reveals new functions of these genes. Exp Anim 2023; 72:1-8. [PMID: 36058846 PMCID: PMC9978133 DOI: 10.1538/expanim.22-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The laboratory rat (Rattus norvegicus) is a key model organism for biomedical research. Rats can be subjected to strict genetic and environmental controls. The rat's large body size is suitable for both surgical operations and repeated measurements of physiological parameters. These advantages have led to the development of numerous rat models for genetic diseases. Forward genetics is a proven approach for identifying the causative genes of these disease models but requires genome resources including genetic markers and genome sequences. Over the last few decades, rat genome resources have been developed and deposited in bioresource centers, which have enabled us to perform positional cloning in rats. To date, more than 100 disease-related genes have been identified by positional cloning. Since some disease models are more accessible in rats than mice, the identification of causative genes in these models has sometimes led to the discovery of novel functions of genes. As before, various mutant rats are also expected to be discovered and developed as disease models in the future. Thus, the forward genetics continues to be an important approach to find genes involved in disease phenotypes in rats. In this review, I provide an overview the development of rat genome resources and describe examples of positional cloning in rats in which novel gene functions have been identified.
Collapse
Affiliation(s)
- Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
4
|
Sharma D, Sehgal P, Sivasubbu S, Scaria V. A genome-wide circular RNA transcriptome in rat. Biol Methods Protoc 2021; 6:bpab016. [PMID: 34527809 PMCID: PMC8435660 DOI: 10.1093/biomethods/bpab016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that back-splice from 5ʹ donor site and 3ʹ acceptor sites to form a circular structure. A number of circRNAs have been discovered in model organisms including human, mouse, Drosophila, among other organisms. There are a few candidate-based studies on circRNAs in rat, a well-studied model organism as well. A number of pipelines have been published to identify the back splice junctions for the discovery of circRNAs but studies comparing these tools have suggested that a combination of tools would be a better approach to identify high-confidence circRNAs. The availability of a recent dataset of transcriptomes encompassing 11 tissues, 4 developmental stages, and 2 genders motivated us to explore the landscape of circRNAs in the organism in this context. In order to understand the difference among different pipelines, we employed five different combinations of tools to identify circular RNAs from the dataset. We compared the results of the different combination of tools/pipelines with respect to alignment, total number of circRNAs identified and read-coverage. In addition, we identified tissue-specific, development-stage specific and gender-specific circRNAs and further independently validated 16 circRNA junctions out of 24 selected candidates in 5 tissue samples and estimated the quantitative expression of five circRNA candidates using real-time polymerase chain reaction and our analysis suggests three candidates as tissue-enriched. This study is one of the most comprehensive studies which provides a map of circRNAs transcriptome as well as to understand the difference among different computational pipelines in rat.
Collapse
Affiliation(s)
- Disha Sharma
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110025, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
| | - Paras Sehgal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road (CSIR-IGIB), Delhi 110025, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road (CSIR-IGIB), Delhi 110025, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110025, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
| |
Collapse
|
5
|
Reed E, Lutsenko S, Bandmann O. Animal models of Wilson disease. J Neurochem 2018; 146:356-373. [PMID: 29473169 PMCID: PMC6107386 DOI: 10.1111/jnc.14323] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism manifesting with hepatic, neurological and psychiatric symptoms. The limitations of the currently available therapy for WD (particularly in the management of neuropsychiatric disease), together with our limited understanding of key aspects of this illness (e.g. neurological vs. hepatic presentation) justify the ongoing need to study WD in suitable animal models. Four animal models of WD have been established: the Long-Evans Cinnamon rat, the toxic-milk mouse, the Atp7b knockout mouse and the Labrador retriever. The existing models of WD all show good similarity to human hepatic WD and have been helpful in developing an improved understanding of the human disease. As mammals, the mouse, rat and canine models also benefit from high homology to the human genome. However, important differences exist between these mammalian models and human disease, particularly the absence of a convincing neurological phenotype. This review will first provide an overview of our current knowledge of the orthologous genes encoding ATP7B and the closely related ATP7A protein in C. elegans, Drosophila and zebrafish (Danio rerio) and then summarise key characteristics of rodent and larger mammalian models of ATP7B-deficiency.
Collapse
Affiliation(s)
- Emily Reed
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| | | | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| |
Collapse
|
6
|
Inshaw JRJ, Walker NM, Wallace C, Bottolo L, Todd JA. The chromosome 6q22.33 region is associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5 years of age. Diabetologia 2018; 61:147-157. [PMID: 28983737 PMCID: PMC5719131 DOI: 10.1007/s00125-017-4440-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The genetic risk of type 1 diabetes has been extensively studied. However, the genetic determinants of age at diagnosis (AAD) of type 1 diabetes remain relatively unexplained. Identification of AAD genes and pathways could provide insight into the earliest events in the disease process. METHODS Using ImmunoChip data from 15,696 cases, we aimed to identify regions in the genome associated with AAD. RESULTS Two regions were convincingly associated with AAD (p < 5 × 10-8): the MHC on 6p21, and 6q22.33. Fine-mapping of 6q22.33 identified two AAD-associated haplotypes in the region nearest to the genes encoding protein tyrosine phosphatase receptor kappa (PTPRK) and thymocyte-expressed molecule involved in selection (THEMIS). We examined the susceptibility to type 1 diabetes at these SNPs by performing a meta-analysis including 19,510 control participants. Although these SNPs were not associated with type 1 diabetes overall (p > 0.001), the SNP most associated with AAD, rs72975913, was associated with susceptibility to type 1 diabetes in those individuals diagnosed at less than 5 years old (p = 2.3 × 10-9). CONCLUSION/INTERPRETATION PTPRK and its neighbour THEMIS are required for early development of the thymus, which we can assume influences the initiation of autoimmunity. Non-HLA genes may only be detectable as risk factors for the disease in individuals diagnosed under the age 5 years because, after that period of immune development, their role in disease susceptibility has become redundant.
Collapse
Affiliation(s)
- Jamie R J Inshaw
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK.
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Neil M Walker
- Clinical Informatics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chris Wallace
- Department of Medicine, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
| | - Leonardo Bottolo
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK.
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Gene Expression Profiles of Human Phosphotyrosine Phosphatases Consequent to Th1 Polarisation and Effector Function. J Immunol Res 2017; 2017:8701042. [PMID: 28393080 PMCID: PMC5368384 DOI: 10.1155/2017/8701042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/14/2017] [Indexed: 11/30/2022] Open
Abstract
Phosphotyrosine phosphatases (PTPs) constitute a complex family of enzymes that control the balance of intracellular phosphorylation levels to allow cell responses while avoiding the development of diseases. Despite the relevance of CD4 T cell polarisation and effector function in human autoimmune diseases, the expression profile of PTPs during T helper polarisation and restimulation at inflammatory sites has not been assessed. Here, a systematic analysis of the expression profile of PTPs has been carried out during Th1-polarising conditions and upon PKC activation and intracellular raise of Ca2+ in effector cells. Changes in gene expression levels suggest a previously nonnoted regulatory role of several PTPs in Th1 polarisation and effector function. A substantial change in the spatial compartmentalisation of ERK during T cell responses is proposed based on changes in the dose of cytoplasmic and nuclear MAPK phosphatases. Our study also suggests a regulatory role of autoimmune-related PTPs in controlling T helper polarisation in humans. We expect that those PTPs that regulate T helper polarisation will constitute potential targets for intervening CD4 T cell immune responses in order to generate new therapies for the treatment of autoimmune diseases.
Collapse
|
8
|
Increased THEMIS First Exon Usage in CD4+ T-Cells Is Associated with a Genotype that Is Protective against Multiple Sclerosis. PLoS One 2016; 11:e0158327. [PMID: 27438997 PMCID: PMC4954697 DOI: 10.1371/journal.pone.0158327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/14/2016] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis is an autoimmune disease of the central nervous system. Genome wide association studies have identified over 100 common variants associated with multiple sclerosis, the majority of which implicate immunologically relevant genes, particularly those involved in T-cell development. SNP rs13204742 at the THEMIS/PTPRK locus is one such variant. Here, we have demonstrated mutually exclusive use of exon 1 and 2 amongst 16 novel THEMIS isoforms. We also show inverse correlation between THEMIS expression in human CD4+ T-cells and dosage of the multiple sclerosis risk allele at rs13204742, driven by reduced expression of exon 1- containing isoforms. In silico analysis suggests that this may be due to cell-specific, allele-dependent binding of the transcription factors FoxP3 and/or E47. Research exploring the functional implications of GWAS variants is important for gaining an understanding of disease pathogenesis, with the ultimate aim of identifying new therapeutic targets.
Collapse
|
9
|
Plugis NM, Khosla C. Therapeutic approaches for celiac disease. Best Pract Res Clin Gastroenterol 2015; 29:503-21. [PMID: 26060114 PMCID: PMC4465084 DOI: 10.1016/j.bpg.2015.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023]
Abstract
Celiac disease is a common, lifelong autoimmune disorder for which dietary control is the only accepted form of therapy. A strict gluten-free diet is burdensome to patients and can be limited in efficacy, indicating there is an unmet need for novel therapeutic approaches to supplement or supplant dietary therapy. Many molecular events required for disease pathogenesis have been recently characterized and inspire most current and emerging drug-discovery efforts. Genome-wide association studies (GWAS) confirm the importance of human leukocyte antigen genes in our pathogenic model and identify a number of new risk loci in this complex disease. Here, we review the status of both emerging and potential therapeutic strategies in the context of disease pathophysiology. We conclude with a discussion of how genes identified during GWAS and follow-up studies that enhance susceptibility may offer insight into developing novel therapies.
Collapse
|
10
|
Craig SEL, Brady-Kalnay SM. Regulation of development and cancer by the R2B subfamily of RPTPs and the implications of proteolysis. Semin Cell Dev Biol 2014; 37:108-18. [PMID: 25223585 DOI: 10.1016/j.semcdb.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/04/2023]
Abstract
The initial cloning of receptor protein tyrosine phosphatases (RPTPs) was met with excitement because of their hypothesized function in counterbalancing receptor tyrosine kinase signaling. In recent years, members of a subfamily of RPTPs with homophilic cell-cell adhesion capabilities, known as the R2B subfamily, have been shown to have functions beyond that of counteracting tyrosine kinase activity, by independently influencing cell signaling in their own right and by regulating cell adhesion. The R2B subfamily is composed of four members: PTPmu (PTPRM), PTPrho (PTPRT), PTPkappa (PTPRK), and PCP-2 (PTPRU). The effects of this small subfamily of RPTPs is far reaching, influencing several developmental processes and cancer. In fact, R2B RPTPs are predicted to be tumor suppressors and are among the most frequently mutated protein tyrosine phosphatases (PTPs) in cancer. Confounding these conclusions are more recent studies suggesting that proteolysis of the full-length R2B RPTPs result in oncogenic extracellular and intracellular protein fragments. This review discusses the current knowledge of the role of R2B RPTPs in development and cancer, with special detail given to the mechanisms and implications that proteolysis has on R2B RPTP function. We also touch upon the concept of exploiting R2B proteolysis to develop cancer imaging tools, and consider the effects of R2B proteolysis on axon guidance, perineural invasion and collective cell migration.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Susann M Brady-Kalnay
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Bondar C, Plaza-Izurieta L, Fernandez-Jimenez N, Irastorza I, Withoff S, Wijmenga C, Chirdo F, Bilbao JR. THEMIS and PTPRK in celiac intestinal mucosa: coexpression in disease and after in vitro gliadin challenge. Eur J Hum Genet 2013; 22:358-62. [PMID: 23820479 DOI: 10.1038/ejhg.2013.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/29/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022] Open
Abstract
Celiac disease (CD) is an immune mediated, polygenic disorder, where HLA-DQ2/DQ8 alleles contribute around 35% to genetic risk, but several other genes are also involved. Genome-wide association studies (GWASs) and the more recent immunochip genotyping projects have fine-mapped 39 regions of genetic susceptibility to the disease, most of which harbor candidate genes that could participate in this disease process. We focused our attention to the GWAS peak on chr6: 127.99-128.38 Mb, a region including two genes, thymocyte-expressed molecule involved in selection (THEMIS) and protein tyrosine phosphatase, receptor type, kappa (PTPRK), both of which have immune-related functions. The aim of this work was to evaluate the expression levels of these two genes in duodenal mucosa of active and treated CD patients and in controls, and to determine whether SNPs (rs802734, rs55743914, rs72975916, rs10484718 and rs9491896) associated with CD have any influence on gene expression. THEMIS showed higher expression in active CD compared with treated patients and controls, whereas PTPRK showed lower expression. Our study confirmed the association of this region with CD in our population, but only the genotype of rs802734 showed some influence in the expression of THEMIS. On the other hand, we found a significant positive correlation between THEMIS and PTPRK mRNA levels in CD patients but not in controls. Our results suggest a possible role for both candidate genes in CD pathogenesis and the existence of complex, regulatory relationships that reside in the vast non-coding, functional intergenic regions of the genome. Further investigation is needed to clarify the impact of the disease-associated SNPs on gene function.
Collapse
|
12
|
Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 2012; 137:1-19. [PMID: 22862552 DOI: 10.1111/j.1365-2567.2012.03591.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than half of the known protein tyrosine phosphatases (PTPs) in the human genome are expressed in T cells, and significant progress has been made in elucidating the biology of these enzymes in T-cell development and function. Here we provide a systematic review of the current understanding of the roles of PTPs in T-cell activation, providing insight into their mechanisms of action and regulation in T-cell receptor signalling, the phenotypes of their genetically modified mice, and their possible involvement in T-cell-mediated autoimmune disease. Our projection is that the interest in PTPs as mediators of T-cell homeostasis will continue to rise with further functional analysis of these proteins, and PTPs will be increasingly considered as targets of immunomodulatory therapies.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
13
|
Chabod M, Pedros C, Lamouroux L, Colacios C, Bernard I, Lagrange D, Balz-Hara D, Mosnier JF, Laboisse C, Vergnolle N, Andreoletti O, Roth MP, Liblau R, Fournié GJ, Saoudi A, Dejean AS. A spontaneous mutation of the rat Themis gene leads to impaired function of regulatory T cells linked to inflammatory bowel disease. PLoS Genet 2012; 8:e1002461. [PMID: 22275874 PMCID: PMC3261907 DOI: 10.1371/journal.pgen.1002461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/22/2011] [Indexed: 12/13/2022] Open
Abstract
Spontaneous or chemically induced germline mutations, which lead to Mendelian phenotypes, are powerful tools to discover new genes and their functions. Here, we report an autosomal recessive mutation that occurred spontaneously in a Brown-Norway (BN) rat colony and was identified as causing marked T cell lymphopenia. This mutation was stabilized in a new rat strain, named BNm for “BN mutated.” In BNm rats, we found that the T cell lymphopenia originated in the thymus, was intrinsic to CD4 T lymphocytes, and was associated with the development of an inflammatory bowel disease. Furthermore, we demonstrate that the suppressive activity of both peripheral and thymic CD4+ CD25bright regulatory T cells (Treg) is defective in BNm rats. Complementation of mutant animals with BN Treg decreases disease incidence and severity, thus suggesting that the impaired Treg function is involved in the development of inflammatory bowel disease in BNm rats. Moreover, the cytokine profile of effector CD4 T cells is skewed toward Th2 and Th17 phenotypes in BNm rats. Linkage analysis and genetic dissection of the CD4 T cell lymphopenia in rats issued from BNm×DA crosses allowed the localization of the mutation on chromosome 1, within a 1.5 megabase interval. Gene expression and sequencing studies identified a frameshift mutation caused by a four-nucleotide insertion in the Themis gene, leading to its disruption. This result is the first to link Themis to the suppressive function of Treg and to suggest that, in Themis-deficient animals, defect of this function is involved in intestinal inflammation. Thus, this study highlights the importance of Themis as a new target gene that could participate in the pathogenesis of immune diseases characterized by chronic inflammation resulting from a defect in the Treg compartment. Deciphering the genetic basis of human diseases and understanding the function of mammalian genes are among the main challenges for today's geneticists. In this regard, rodent models represent invaluable tools to identify new genes and to study the mechanisms of action of genes implicated in human diseases. Here, we identified a spontaneous mutation responsible for a reduction of blood CD4 T lymphocyte counts in a rat strain. The mutant rats showed a high incidence of inflammatory bowel disease, which was associated with skewed cytokine secretion by effector CD4 T cells towards Th2 and Th17 and with impairment of the suppressive activity of the regulatory CD4 T cells (Treg). The contribution of Treg was further evidenced by experiments showing that transfer of Treg from normal BN rats to mutant animals prevented the occurrence of bowel lesions. By genetic mapping the lymphopenia, we identified a disruption of the Themis gene. This result is the first to link Themis to the suppressive function of Treg and to suggest that, in Themis-deficient animals, a defect of this function predisposes to intestinal inflammation. Thus, this new rat model highlights key roles of Themis both in regulating the immune system and in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Marianne Chabod
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Christophe Pedros
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Lucille Lamouroux
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Céline Colacios
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Isabelle Bernard
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Dominique Lagrange
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Daniela Balz-Hara
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | | | - Christian Laboisse
- Université de Nantes, Faculté de Médecine, EA Biométadys, Nantes, France
| | - Nathalie Vergnolle
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Marie-Paule Roth
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Roland Liblau
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Gilbert J. Fournié
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Abdelhadi Saoudi
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- * E-mail:
| | - Anne S. Dejean
- UMR Inserm, U1043, Toulouse, France
- UMR CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| |
Collapse
|