1
|
Gaikwad S, Kim MJ. Fish By-Product Collagen Extraction Using Different Methods and Their Application. Mar Drugs 2024; 22:60. [PMID: 38393031 PMCID: PMC10890078 DOI: 10.3390/md22020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The processing of fishery resources results in the production of a growing quantity of byproducts, including heads, skins, viscera, intestines, frames, and fillet cutoffs. These byproducts are either wasted or utilized for the production of low-value items and fish oil. Typically, fish processing industries use only 25%, while the remaining 75% is considered as waste by-products. This review presents a comprehensive review on the extraction of collagen from fish byproducts, highlighting numerous techniques including acid-soluble collagen (ASC), enzyme-soluble collagen (ESC), ultrasound extraction, deep eutectic solvent (DES) extraction, and supercritical fluid extraction (SFE). A detailed explanation of various extraction parameters such as time, temperature, solid to liquid (S/L) ratio, and solvent/pepsin concentration is provided, which needs to be considered to optimize the collagen yield. Moreover, this review extends its focus to a detailed investigation of fish collagen applications in the biomedical sector, food sector, and in cosmetics. The comprehensive review explaining the extraction methods, extraction parameters, and the diverse applications of fish collagen provides a basis for the complete understanding of the potential of fish-derived collagen. The review concludes with a discussion of the current research and a perspective on the future development in this research field.
Collapse
Affiliation(s)
- Sunita Gaikwad
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea;
| | - Mi Jeong Kim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea;
- Department of Food and Nutrition, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
2
|
Chen Z, Cheng Q, Wang L, Mo Y, Li K, Mo J. Optical coherence tomography for in vivo longitudinal monitoring of artificial dermal scaffold. Lasers Surg Med 2023; 55:316-326. [PMID: 36806261 DOI: 10.1002/lsm.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES Artificial dermal scaffold (ADS) has undergone rapid development and been increasingly used for treating skin wound in clinics due to its good biocompatibility, controllable degradation, and low risk of disease infection. To obtain good treatment efficacy, ADS needs to be monitored longitudinally during the treatment process. For example, scaffold-tissue fit, cell in-growth, vascular regeneration, and scaffold degradation are the key properties to be inspected. However, to date, there are no effective, real-time, and noninvasive techniques to meet the requirement of the scaffold monitoring above. MATERIALS AND METHODS In this study, we propose to use optical coherence tomography (OCT) to monitor ADS in vivo through three-dimensional imaging. A swept source OCT system with a handheld probe was developed for in vivo skin imaging. Moreover, a cell in-growth, vascular regeneration, and scaffold degradation rate (IRDR) was defined with the volume reduction rate of the scaffold's collagen sponge layer. To measure the IRDR, a semiautomatic image segmentation algorithm was designed based on U-Net to segment the collagen sponge layer of the scaffold from OCT images. RESULTS The results show that the scaffold-tissue fit can be clearly visualized under OCT imaging. The IRDR can be computed based on the volume of the segmented collagen sponge layer. It is observed that the IRDR appeared to a linear function of the time and in addition, the IRDR varied among different skin parts. CONCLUSION Overall, it can be concluded that OCT has a good potential to monitor ADS in vivo. This can help guide the clinicians to control the treatment with ADS to improve the therapy.
Collapse
Affiliation(s)
- Ziye Chen
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Qiong Cheng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingyun Wang
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Yunfeng Mo
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhua Mo
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Melotti L, Martinello T, Perazzi A, Iacopetti I, Ferrario C, Sugni M, Sacchetto R, Patruno M. A Prototype Skin Substitute, Made of Recycled Marine Collagen, Improves the Skin Regeneration of Sheep. Animals (Basel) 2021; 11:ani11051219. [PMID: 33922557 PMCID: PMC8145883 DOI: 10.3390/ani11051219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Marine ecosystems are a huge source of unexplored “blue” materials for different applications. The edible part of sea urchin is limited, and the vast majority of the product ends up as waste. Our studies intend to fully recycle wastes from the food industry and reconvert them in high added-value products, as innovative biocompatible skin substitutes for tissue regeneration. The aim of the present work is to apply the pioneering skin substitute in in vivo experimental wounds to test its regenerative potential and compare it, in a future study, to the available commercial membranes produced with collagen of bovine, porcine, and equine origin. Results are encouraging since the skin substitute made with marine collagen reduced inflammation, promoted the deposition of granulation tissue, and enhanced a proper re-epithelialization with the adequate development of skin appendages. In summary, our findings might be of great interest for processing industries and biotech companies which transform waste materials in high-valuable and innovative products for Veterinary advanced applications. Abstract Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.
Collapse
Affiliation(s)
- Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
| | - Tiziana Martinello
- Department of Veterinary Medicine, University of Bari, SP. Casamassima Km.3, Valenzano, 70010 Bari, Italy;
| | - Anna Perazzi
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
- Correspondence: (I.I.); (M.S.); (M.P.)
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133 Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133 Milan, Italy
- Correspondence: (I.I.); (M.S.); (M.P.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
- Correspondence: (I.I.); (M.S.); (M.P.)
| |
Collapse
|
4
|
Cruz MA, Araujo TA, Avanzi IR, Parisi JR, de Andrade ALM, Rennó ACM. Collagen from Marine Sources and Skin Wound Healing in Animal Experimental Studies: a Systematic Review. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:1-11. [PMID: 33404918 DOI: 10.1007/s10126-020-10011-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Collagen (Col) from marine organisms has been emerging as an important alternative for commercial Col and it has been considered highly attractive by the industry. Despite the positive effects of Col from marine origin, there is still limited understanding of the effects of this natural biomaterial in the process of wound healing in animal studies. In this context, the purpose of this study was to perform a systematic review of the literature to examine the effects of Col from different marine species in the process of skin tissue healing using experimental models of skin wound. The search was carried out according to the orientations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), and the descriptors of the Medical Subject Headings (MeSH) were defined: "marine collagen," "spongin," "spongin," "skin," and "wound." A total of 42 articles were retrieved from the databases PubMed and Scopus. After the eligibility analyses, this review covers the different marine sources of Col reported in 10 different papers from the beginning of 2011 through the middle of 2019. The results were based mainly on histological analysis and it demonstrated that Col-based treatment resulted in a higher deposition of granulation tissue, stimulation of re-epitalization and neoangiogenesis and increased amount of Col of the wound, culminating in a more mature morphological aspect. In conclusion, this review demonstrates that marine Col from different species presented positive effects on the process of wound skin healing in experimental models used, demonstrating the huge potential of this biomaterial for tissue engineering proposals.
Collapse
Affiliation(s)
- Matheus Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Tiago Akira Araujo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
- São Paulo State Faculty of Technology (FATEC), 350 Senador Feijó Avenue, Santos, SP, 11015502, Brazil
| | - Julia Risso Parisi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), km 235 Washington Luís Road, São Carlos, SP, 13565905, Brazil
| | - Ana Laura Martins de Andrade
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), km 235 Washington Luís Road, São Carlos, SP, 13565905, Brazil
| | - Ana Claudia Muniz Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil.
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), km 235 Washington Luís Road, São Carlos, SP, 13565905, Brazil.
| |
Collapse
|
5
|
Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F. A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr 2020; 61:1027-1037. [PMID: 32345036 DOI: 10.1080/10408398.2020.1751585] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
During the processing of the fishery resources, the significant portion is either discarded or used to produce low-value fish meal and oil. However, the discarded portion is the rich source of valuable proteins such as collagen, vitamins, minerals, and other bioactive compounds. Collagen is a vital protein in the living body as a component of a fibrous structural protein in the extracellular matrix, connective tissue and building block of bones, tendons, skin, hair, nails, cartilage and joints. In recent years, the use of fish collagen as an increasingly valuable biomaterial has drawn considerable attention from biomedical researchers, owing to its enhanced physicochemical properties, stability and mechanical strength, biocompatibility and biodegradability. This review focuses on summarizing the growing role of fish collagen for biomedical applications. Similarly, the recent advances in various biomedical applications of fish collagen, including wound healing, tissue engineering and regeneration, drug delivery, cell culture and other therapeutic applications, are discussed in detail. These applications signify the commercial importance of fish collagen for the fishing industry, food processors and biomedical sector.
Collapse
Affiliation(s)
- Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Zohaib Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan.,School of Materials Science and Engineering, Gwangju Institute of Science and Technology, (GIST), Gwangju, Republic of Korea
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra, KPK, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering, School of Mechanical & Manufacturing Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Fazli Wahid
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Haripur, Pakistan
| |
Collapse
|
6
|
Naka Y, Kitano S, Irie S, Matsusaki M. Wholly vascularized millimeter-sized engineered tissues by cell-sized microscaffolds. Mater Today Bio 2020; 6:100054. [PMID: 32478317 PMCID: PMC7248423 DOI: 10.1016/j.mtbio.2020.100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022] Open
Abstract
The in vitro fabrication of wholly vascularized millimeter-sized engineered tissues is still a key challenge in the tissue engineering field. Recently we reported a unique approach 'sedimentary culture' using a collagen microfiber (CMF) to fabricate large-scale engineered tissues. The millimeter-sized tissues with high extracellular matrix (ECM) density were easily obtained by centrifugation of cells and CMFs and subsequent cultivation because the CMFs acted as a micrometer-sized scaffold. However, cell distribution in the obtained tissues was not homogeneous because of the different sedimentation velocity of the cells and CMFs because of their size difference. Here we report the fabrication of wholly vascularized millimeter-sized engineered tissues using cell-sized CMFs. To avoid dissolving, vacuum drying was performed at 200 °C for 24 h for thermal crosslinking of primary amine groups of type I collagen. The 200- and 20-μm-sized CMFs (CMF-200 and CMF-20) were obtained by homogenization and subsequent sonication of the crosslinked collagen. Interestingly, the CMF-20 indicated a similar sedimentation velocity with cells because of their same size range, thus uniform millimeter-sized tissue with homogeneous cell distribution was fabricated by the sedimentary culture method. To form a whole blood capillary structure in the tissues, fibronectin (FN) was adsorbed on the surface of CMF-20 to stimulate endothelial cell migration. The distribution of the blood capillary network in 1.6-mm-sized tissues was markedly improved by FN-adsorbed CMF-20 (FN-CMF-20). Sedimentary culture using FN-CMF-20 will create new opportunities in tissue engineering for the in vitro fabrication of wholly vascularized millimeter-sized engineered tissues.
Collapse
Affiliation(s)
- Y. Naka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - S. Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - S. Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - M. Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Tsukamoto J, Naruse K, Nagai Y, Kan S, Nakamura N, Hata M, Omi M, Hayashi T, Kawai T, Matsubara T. Efficacy of a Self-Assembling Peptide Hydrogel, SPG-178-Gel, for Bone Regeneration and Three-Dimensional Osteogenic Induction of Dental Pulp Stem Cells. Tissue Eng Part A 2017; 23:1394-1402. [DOI: 10.1089/ten.tea.2017.0025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jun Tsukamoto
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Keiko Naruse
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yusuke Nagai
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Shuhei Kan
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Nobuhisa Nakamura
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Masaki Hata
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Maiko Omi
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuhide Hayashi
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsushi Kawai
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuaki Matsubara
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
8
|
Limongi T, Tirinato L, Pagliari F, Giugni A, Allione M, Perozziello G, Candeloro P, Di Fabrizio E. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering. NANO-MICRO LETTERS 2017; 9:1. [PMID: 30460298 PMCID: PMC6223775 DOI: 10.1007/s40820-016-0103-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/28/2016] [Indexed: 05/17/2023]
Abstract
Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.
Collapse
Affiliation(s)
- Tania Limongi
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Luca Tirinato
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Francesca Pagliari
- Department of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Andrea Giugni
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Marco Allione
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Gerardo Perozziello
- Laboratory of Nanotechnology BioNEM, Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Viale Europa - Loc. Germaneto, 88100 Catanzaro, Italy
| | - Patrizio Candeloro
- Laboratory of Nanotechnology BioNEM, Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Viale Europa - Loc. Germaneto, 88100 Catanzaro, Italy
| | - Enzo Di Fabrizio
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, Sun J. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces 2016; 143:415-422. [PMID: 27037778 DOI: 10.1016/j.colsurfb.2016.03.052] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.
Collapse
Affiliation(s)
- Tian Zhou
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
| | - Nanping Wang
- Shanghai Fisheries Research Institute, Shanghai 200433, China
| | - Yang Xue
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
| | - Tingting Ding
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
| | - Xin Liu
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
| | - Xiumei Mo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China.
| |
Collapse
|
10
|
Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biol Macromol 2015; 77:24-35. [DOI: 10.1016/j.ijbiomac.2015.02.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/15/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
|
11
|
Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, Sun J. Development of biomimetic tilapia collagen nanofibers for skin regeneration through inducing keratinocytes differentiation and collagen synthesis of dermal fibroblasts. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3253-3262. [PMID: 25598076 DOI: 10.1021/am507990m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides, and its denaturation temperature was 44.99 °C. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rat. The contact angle, tensile strength, and weight loss temperature of collagen nanofibers were 21.2°, 6.72±0.44 MPa, and 300 °C, respectively. The nanofibers could promote the viabilities of human keratinocytes (HaCaTs) and human dermal fibroblasts (HDFs), inducing epidermal differentiation through the gene expression of involucrin, filaggrin, and type I transglutaminase of HaCaTs, and they could also accelerate migration of HaCaTs with the expression of matrix metalloproteinase-9 and transforming growth factor-β1 (TGF-β1). Besides, the nanofibers could upregulate the protien level of Col-I in HDFs both via a direct effect and TGF-β1 secreted from HaCaTs, thus facilitating the formation of collagen fibers. Furthermore, the collagen nanofibers stimulated the skin regeneration rapidly and effectively in vivo. These biological effects could be explained as the contributions from the biomimic extracellular cell matrix structure, hydrophilicity, and the multiple amino acids of the collagen nanofibers.
Collapse
Affiliation(s)
- Tian Zhou
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai 200023, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Sundaramurthi D, Krishnan UM, Sethuraman S. Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering. POLYM REV 2014. [DOI: 10.1080/15583724.2014.881374] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Tissue engineering and ureter regeneration: is it possible? Int J Artif Organs 2013; 36:392-405. [PMID: 23645581 DOI: 10.5301/ijao.5000130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2012] [Indexed: 12/11/2022]
Abstract
Large ureter damages are difficult to reconstruct. Current techniques are complicated, difficult to perform, and often associated with failures. The ureter has never been regenerated thus far. Therefore the use of tissue engineering techniques for ureter reconstruction and regeneration seems to be a promising way to resolve these problems. For proper ureter regeneration the following problems must be considered: the physiological aspects of the tissue, the type and shape of the scaffold, the type of cells, and the specific environment (urine).
This review presents tissue engineering achievements in the field of ureter regeneration focusing on the scaffold, the cells, and ureter healing.
Collapse
|
14
|
Hoyer B, Bernhardt A, Heinemann S, Stachel I, Meyer M, Gelinsky M. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 2012; 13:1059-66. [PMID: 22364350 DOI: 10.1021/bm201776r] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biomimetic mineralization of collagen is an advantageous method to obtain resorbable collagen/hydroxy-apatite composites for application in bone regeneration. In this report, established procedures for mineralization of bovine collagen were adapted to a new promising source of collagen from salmon skin challenged by the low denaturation temperature. Therefore, in the first instance, variation of temperature, collagen concentration, and ionic strength was performed to reveal optimized parameters for fibrillation and simultaneous mineralization of salmon collagen. Porous scaffolds from mineralized salmon collagen were prepared by controlled freeze-drying and chemical cross-linking. FT-IR analysis demonstrated the mineral phase formed during the preparation process to be hydroxyapatite. The scaffolds exhibited interconnecting porosity, were sufficiently stable under cyclic compression, and showed elastic mechanical properties. Human mesenchymal stem cells were able to adhere to the scaffolds, cell number increased during cultivation, and osteogenic differentiation was demonstrated in terms of alkaline phosphatase activity.
Collapse
Affiliation(s)
- Birgit Hoyer
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|