1
|
dos Santos NCC, Cotrim KC, Achôa GL, Kalil EC, Kantarci A, Bueno DF. The Use of Mesenchymal Stromal/Stem Cells (MSC) for Periodontal and Peri-implant Regeneration: Scoping Review. Braz Dent J 2024; 35:e246134. [PMID: 39476117 PMCID: PMC11506238 DOI: 10.1590/0103-6440202406134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
The necessity for regenerating peri-implant and periodontal tissues is increasingly apparent. Periodontal diseases can result in a significant loss of clinical attachment level, and tissue regeneration stands as the ultimate goal of periodontal therapy. With the rise of osseointegration, the prosthetic rehabilitation of missing teeth using dental implants has surged, leading to a frequent need for alveolar bone regeneration around implants. This review assessed studies reporting various sources of mesenchymal stromal/stem cells (MSC) and their potential in regenerating periodontal and peri-implant bone tissue. A search was conducted across seven databases spanning the past decade. Three authors independently screened all identified titles and abstracts for eligibility, generating tables to summarize included studies in animals and humans separately. A total of 55 articles were chosen for final evaluation, showcasing five origins of MSC used in humans and animals for regenerating periodontal tissues and peri-implant bone, using different types of scaffolds. Overall, research from the past decades supports the effectiveness of MSC in promoting periodontal and peri-implant regeneration. However, the impact of MSC on regenerative therapies in humans is still in its initial stages. Future research should optimize MSC application protocols by combining techniques, such as the use of nanomedicine and 3D printing for tissue engineering. Clinical studies should also understand the long-term effects and compare MSC therapies with current treatment modalities. By addressing these areas, the scientific community can ensure that MSC therapies are both safe and effective, ultimately enhancing therapeutic strategies and treatment outcomes in Periodontology and Implantology.
Collapse
Affiliation(s)
- Nidia C Castro dos Santos
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- School of Dental Medicine, Albert Einstein Israelite Hospital, São Paulo, SP, Brazil
- The ADA Forsyth Institute, Cambridge, MA, United States
| | - Khalila C Cotrim
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Gustavo L Achôa
- Núcleo de Pesquisa e Reabilitação de Lesões Lábio Palatais Prefeito Luiz Gomes, Oral and Maxillofacial Surgery Department, Joinville, SC, Brazil
| | - Eduardo C Kalil
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Alpdogan Kantarci
- The ADA Forsyth Institute, Cambridge, MA, United States
- School of Dental Medicine, Harvard University, Boston, MA, United States
| | - Daniela F Bueno
- School of Dental Medicine, Albert Einstein Israelite Hospital, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Shah P, Aghazadeh M, Rajasingh S, Dixon D, Jain V, Rajasingh J. Stem cells in regenerative dentistry: Current understanding and future directions. J Oral Biosci 2024; 66:288-299. [PMID: 38403241 DOI: 10.1016/j.job.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Regenerative dentistry aims to enhance the structure and function of oral tissues and organs. Modern tissue engineering harnesses cell and gene-based therapies to advance traditional treatment approaches. Studies have demonstrated the potential of mesenchymal stem cells (MSCs) in regenerative dentistry, with some progressing to clinical trials. This review comprehensively examines animal studies that have utilized MSCs for various therapeutic applications. Additionally, it seeks to bridge the gap between related findings and the practical implementation of MSC therapies, offering insights into the challenges and translational aspects involved in transitioning from preclinical research to clinical applications. HIGHLIGHTS To achieve this objective, we have focused on the protocols and achievements related to pulp-dentin, alveolar bone, and periodontal regeneration using dental-derived MSCs in both animal and clinical studies. Various types of MSCs, including dental-derived cells, bone-marrow stem cells, and umbilical cord stem cells, have been employed in root canals, periodontal defects, socket preservation, and sinus lift procedures. Results of such include significant hard tissue reconstruction, functional pulp regeneration, root elongation, periodontal ligament formation, and cementum deposition. However, cell-based treatments for tooth and periodontium regeneration are still in early stages. The increasing demand for stem cell therapies in personalized medicine underscores the need for scientists and responsible organizations to develop standardized treatment protocols that adhere to good manufacturing practices, ensuring high reproducibility, safety, and cost-efficiency. CONCLUSION Cell therapy in regenerative dentistry represents a growing industry with substantial benefits and unique challenges as it strives to establish sustainable, long-term, and effective oral tissue regeneration solutions.
Collapse
Affiliation(s)
- Pooja Shah
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marziyeh Aghazadeh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Douglas Dixon
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Periodontology, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vinay Jain
- Department of Prosthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Cho Y, Jeong H, Kim B, Jang J, Song YS, Lee DY. Electrospun Poly(L-Lactic Acid)/Gelatin Hybrid Polymer as a Barrier to Periodontal Tissue Regeneration. Polymers (Basel) 2023; 15:3844. [PMID: 37765697 PMCID: PMC10537136 DOI: 10.3390/polym15183844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Poly(L-lactic acid) (PLLA) and PLLA/gelatin polymers were prepared via electrospinning to evaluate the effect of PLLA and gelatin content on the mechanical properties, water uptake capacity (WUC), water contact angle (WCA), degradation rate, cytotoxicity and cell proliferation of membranes. As the PLLA concentration increased from 1 wt% to 3 wt%, the tensile strength increased from 5.8 MPa to 9.1 MPa but decreased to 7.0 MPa with 4 wt% PLLA doping. The WUC decreased rapidly from 594% to 236% as the PLLA content increased from 1 to 4 wt% due to the increased hydrophobicity of PLLA. As the gelatin content was increased to 3 wt% PLLA, the strength, WUC and WCA of the PLLA/gelatin membrane changed from 9.1 ± 0.9 MPa to 13.3 ± 2.3 MPa, from 329% to 1248% and from 127 ± 1.2° to 0°, respectively, with increasing gelatin content from 0 to 40 wt%. However, the failure strain decreased from 3.0 to 0.5. The biodegradability of the PLLA/gelatin blend increased from 3 to 38% as the gelatin content increased to 40 wt%. The viability of L-929 and MG-63 cells in the PLLA/gelatin blend was over 95%, and the excellent cell proliferation and mechanical properties suggested that the tunable PLLA/gelatin barrier membrane was well suited for absorbable periodontal tissue regeneration.
Collapse
Affiliation(s)
- Youngchae Cho
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| | - Heeseok Jeong
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| | - Baeyeon Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Juwoong Jang
- Department of R&D Center, Renewmedical Co., Ltd., Bucheon 14532, Republic of Korea;
| | - Yo-Seung Song
- Department of Materials Science and Engineering, Korea Aviation University, Goyang 10540, Republic of Korea;
| | - Deuk Yong Lee
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| |
Collapse
|
4
|
Yamahara S, Montenegro Raudales JL, Akiyama Y, Ito M, Chimedtseren I, Arai Y, Wakita T, Hiratsuka T, Miyazawa K, Goto S, Honda M. Appropriate pore size for bone formation potential of porous collagen type I-based recombinant peptide. Regen Ther 2022; 21:294-306. [PMID: 36110974 PMCID: PMC9445290 DOI: 10.1016/j.reth.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Introduction In this study, we developed porous medium cross-linked recombinant collagen peptide (mRCP) with two different ranges of interconnected pore sizes, Small-mRCP (S-mRCP) with a range of 100–300 μm and Large-mRCP (L-mRCP) with a range of 200–500 μm, to compare the effect of pore size on bone regeneration in a calvarial bone defect. Methods Calvarial bone defects were created in Sprague–Dawley rats through a surgical procedure. The rats were divided into 2 groups: S-mRCP implanted group and L-mRCP implanted group. The newly formed bone volume and bone mineral density (BMD) was evaluated by micro-computed tomography (micro-CT) immediately after implantation and at 1, 2, 3, and 4 weeks after implantation. In addition, histological analyses were carried out with hematoxylin and eosin (H&E) staining at 4 weeks after implantation to measure the newly formed bone area between each group in the entire defect, as well as the central side, the two peripheral sides (right and left), the periosteal (top) side and the dura matter (bottom) side of the defect. Results Micro-CT analysis showed no significant differences in the amount of bone volume between the S-mRCP and L-mRCP implanted groups at 1, 2, 3 and 4 weeks after implantation. BMD was equivalent to that of the adjacent native calvaria bone at 4 weeks after implantation. H&E images showed that the newly formed bone area in the entire defect was significantly larger in the S-mRCP implanted group than in the L-mRCP implanted group. Furthermore, the amount of newly formed bone area in all sides of the defect was significantly more in the S-mRCP implanted group than in the L-mRCP implanted group. Conclusion These results indicate that the smaller pore size range of 100–300 μm is appropriate for mRCP in bone regeneration. This study confirmed the regenerative potential of mRCP as novel bone substitute. mRCP with 2 different interconnected pores sizes have been developed. The smaller pore size range of 100–300 μm was optimal for calvarial bone regeneration. The slower absorption rate of smaller pore size mRCP influenced its effectiveness.
Collapse
Affiliation(s)
- Shoji Yamahara
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Jorge Luis Montenegro Raudales
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yasunori Akiyama
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Ichinnorov Chimedtseren
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Taku Wakita
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Takahiro Hiratsuka
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
- Corresponding author. Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan. Tel.: +81-52-751-2561; Fax.: +81-52-752-5988
| |
Collapse
|
5
|
Mansour AM, Yahia S, Elsayed HRH, El-Attar SAE, Grawish ME, El-Hawary YM, El-Sherbiny IM. Efficacy of biocompatible trilayers nanofibrous scaffold with/without allogeneic adipose-derived stem cells on class II furcation defects of dogs' model. Clin Oral Investig 2022; 26:2537-2553. [PMID: 34661742 DOI: 10.1007/s00784-021-04222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aimed to evaluate the regenerative capacity of a newly-developed polycaprolactone (PCL)-based nanofibrous composite scaffold either alone or in combination with adipose-derived mesenchymal stem cells (ADSCs) as a treatment modality for class II furcation defects. MATERIALS AND METHODS After ADSCs isolation and scaffold characterization, the mandibular premolars of adult male mongrel dogs were selected and randomly assigned into three equal groups. In group I, class II furcation defects were surgically induced to the inter-radicular bone. While class II furcation defects of group II were induced as in group I. In addition, the defects were filled with the prefabricated scaffold. Moreover, class II furcation defects of group III were induced as in group II and instead the defects were filled with the prefabricated scaffold seeded with ADSCs. The dogs were sacrificed at 30 days or at 60 days. Periodontal wound healing/regeneration was evaluated by radiological examination using cone beam computed tomography and histologically using ordinary, histochemical, and immunohistochemical staining. RESULTS In the two examination periods, group II defects compared to group I, and group III compared to the other groups showed a decrease in defect dimensions radiographically. Histologically, histochemically, and immunohistochemically, they significantly demonstrated better periodontal wound healing/regeneration, predominant collagen type I of newly formed bone and periodontal ligament with a significant increase in the immunoreactivity of vascular endothelial growth factor and osteopontin. CONCLUSIONS The newly fabricated nanofibrous scaffold has enhanced periodontal wound healing/regeneration of class II furcation defects with further enhancement achieved when ADSCs seeded onto the scaffold before implantation. CLINICAL RELEVANCE The implementation of our newly-developed PCL-based nanofibrous composite scaffolds in class II furcation defect either alone or in conjunction with ADSCs can be considered as a suitable treatment modality to allow periodontal tissues regeneration.
Collapse
Affiliation(s)
- Alaa M Mansour
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Sarah Yahia
- Nanomedicine Labs, Center of Materials Sciences (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | | | - Saied A E El-Attar
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Youssry M El-Hawary
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Labs, Center of Materials Sciences (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt.
| |
Collapse
|
6
|
Transplantation of Mature Adipocyte-Derived Dedifferentiated Fat Cells Facilitates Periodontal Tissue Regeneration of Class II Furcation Defects in Miniature Pigs. MATERIALS 2022; 15:ma15041311. [PMID: 35207844 PMCID: PMC8875781 DOI: 10.3390/ma15041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/10/2022]
Abstract
Adipose tissue is composed mostly of adipocytes that are in contact with capillaries. By using a ceiling culture method based on buoyancy, lipid-free fibroblast-like cells, also known as dedifferentiated fat (DFAT) cells, can be separated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and transdifferentiate into various cell types under appropriate culture conditions. Herein, we sought to compare the regenerative potential of collagen matrix alone (control) with autologous DFAT cell-loaded collagen matrix transplantation in adult miniature pigs (microminipigs; MMPs). We established and transplanted DFAT cells into inflammation-inducing periodontal class II furcation defects. At 12 weeks after cell transplantation, a marked attachment gain was observed based on the clinical parameters of probing depth (PD) and clinical attachment level (CAL). Additionally, micro computed tomography (CT) revealed hard tissue formation in furcation defects of the second premolar. The cemento-enamel junction and alveolar bone crest distance was significantly shorter following transplantation. Moreover, newly formed cellular cementum, well-oriented periodontal ligament-like fibers, and alveolar bone formation were observed via histological analysis. No teratomas were found in the internal organs of recipient MMPs. Taken together, these findings suggest that DFAT cells can safely enhance periodontal tissue regeneration.
Collapse
|
7
|
Wang Y, Liu Y, Zhang X, Liu N, Yu X, Gao M, Wang W, Wu T. Engineering Electrospun Nanofibers for the Treatment of Oral Diseases. Front Chem 2022; 9:797523. [PMID: 34988063 PMCID: PMC8721107 DOI: 10.3389/fchem.2021.797523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
With the increase of consumption of high-sugar foods, beverages, tobacco, and alcohol, the incidence rate of oral diseases has been increasing year by year. Statistics showed that the prevalence of oral diseases such as dental caries, dental pulpal disease, and periodontal disease has reached as high as 97% in 2015 in China. It is thus urgent to develop functional materials or products for the treatment of oral diseases. Electrospinning has been a widely used technology that is capable of utilizing polymer solution to generate micro/nano fibers under an appropriate high voltage condition. Owing to their excellent structures and biological performances, materials prepared by electrospinning technology have been used for a wide range of oral-related applications, such as tissue restoration, controlled drug release, anti-cancer, etc. In this regard, this article reviews the application and progress of electrospun nanofibers to various oral diseases in recent years. Firstly, engineering strategies of a variety of nanofiber structures together with their resultant functions will be introduced. Then, biological functions of electrospun nanofibers as well as their applications in the treatment of oral diseases are summarized and demonstrated. Finally, the development viewpoint of functional nanofibers is prospected, which is expected to lay the foundation and propose the direction for further clinical application.
Collapse
Affiliation(s)
- Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yingnan Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiaopei Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China
| | - Na Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xixi Yu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wanchun Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Tong Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China.,Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Cheah CW, Al-Namnam NM, Lau MN, Lim GS, Raman R, Fairbairn P, Ngeow WC. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next? MATERIALS 2021; 14:ma14206123. [PMID: 34683712 PMCID: PMC8537464 DOI: 10.3390/ma14206123] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
Alloplasts are synthetic, inorganic, biocompatible bone substitutes that function as defect fillers to repair skeletal defects. The acceptance of these substitutes by host tissues is determined by the pore diameter and the porosity and inter-connectivity. This narrative review appraises recent developments, characterization, and biological performance of different synthetic materials for bone, periodontal, and dental tissue regeneration. They include calcium phosphate cements and their variants β-tricalcium phosphate (β-TCP) ceramics and biphasic calcium phosphates (hydroxyapatite (HA) and β-TCP ceramics), calcium sulfate, bioactive glasses and polymer-based bone substitutes which include variants of polycaprolactone. In summary, the search for synthetic bone substitutes remains elusive with calcium compounds providing the best synthetic substitute. The combination of calcium sulphate and β-TCP provides improved handling of the materials, dispensing with the need for a traditional membrane in guided bone regeneration. Evidence is supportive of improved angiogenesis at the recipient sites. One such product, (EthOss® Regeneration, Silesden, UK) has won numerous awards internationally as a commercial success. Bioglasses and polymers, which have been used as medical devices, are still in the experimental stage for dental application. Polycaprolactone-TCP, one of the products in this category is currently undergoing further randomized clinical trials as a 3D socket preservation filler. These aforementioned products may have vast potential for substituting human/animal-based bone grafts.
Collapse
Affiliation(s)
- Chia Wei Cheah
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Nisreen Mohammed Al-Namnam
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK;
| | - May Nak Lau
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Ghee Seong Lim
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Renukanth Raman
- Oral Health Division, Ministry of Health Malaysia, Putrajaya 62590, Malaysia;
| | - Peter Fairbairn
- Department of Periodontology and Implant Dentistry, School of Dentistry, University of Detroit Mercy, 2700 Martin Luther King, Jr. Boulevard, Detroit, MI 48208, USA;
| | - Wei Cheong Ngeow
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
- Correspondence: ; Tel.: +60-3-79674962; Fax: +60-3-79674534
| |
Collapse
|
9
|
Dziedzic DSM, Mogharbel BF, Irioda AC, Stricker PEF, Perussolo MC, Franco CRC, Chang HW, Abdelwahid E, de Carvalho KAT. Adipose-Derived Stromal Cells and Mineralized Extracellular Matrix Delivery by a Human Decellularized Amniotic Membrane in Periodontal Tissue Engineering. MEMBRANES 2021; 11:membranes11080606. [PMID: 34436369 PMCID: PMC8401540 DOI: 10.3390/membranes11080606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Periodontitis is a prevalent disease characterized by the loss of periodontal supporting tissues, bone, periodontal ligament, and cementum. The application of a bone tissue engineering strategy with Decellularized Human Amniotic Membrane (DAM) with adipose-derived stromal cells (ASCs) has shown to be convenient and valuable. This study aims to investigate the treatments of a rat periodontal furcation defect model with DAM, ASCs, and a mineralized extracellular matrix (ECM). Rat ASCs were expanded, cultivated on DAM, and with a bone differentiation medium for four weeks, deposited ECM on DAM. Periodontal healing for four weeks was evaluated by micro-computed tomography and histological analysis after treatments with DAM, ASCs, and ECM and compared to untreated defects on five consecutive horizontal levels, from gingival to apical. The results demonstrate that DAM preserves its structure during cultivation and healing periods, supporting cell attachment, permeation, bone deposition on DAM, and periodontal regeneration. DAM and DAM+ASCs enhance bone healing compared to the control on the gingival level. In conclusion, DAM with ASC or without cells and the ECM ensures bone tissue healing. The membrane supported neovascularization and promoted osteoconduction.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | | | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Eltyeb Abdelwahid
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
- Correspondence: ; Tel.: +55-41-3310-1719
| |
Collapse
|
10
|
Gaur S, Agnihotri R. Application of Adipose Tissue Stem Cells in Regenerative Dentistry: A Systematic Review. J Int Soc Prev Community Dent 2021; 11:266-271. [PMID: 34268188 PMCID: PMC8257006 DOI: 10.4103/jispcd.jispcd_43_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/28/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
AIM The aim of this study was to systematically review the applications of adipose tissue stem cells (ADSCs) in regenerative dentistry. MATERIALS AND METHODS An electronic search was conducted in Medline (PubMed) and Scopus databases. The original research associated with the role of ADSCs in regeneration of alveolar bone, periodontal ligament (PDL), cementum as well as the dental pulp was evaluated. Among the included studies, three animal studies and one human study had low risk of bias. RESULTS A total of 33 relevant studies were included in the review. The animal models, in vivo human, and in vitro studies revealed that ADSCs had a significant osteogenic differentiation potential. Besides, they had potential to differentiate into PDL, cementum, and dental pulp tissue. CONCLUSION The ADSCs may be specifically applied for bone tissue engineering in the management of alveolar bone defects, specifically in dental implants and periodontal disease. However, their role in regeneration of PDL, cementum, and dental pulp requires further investigations. Overall, their applications in regenerative dentistry needs further verification through human clinical trials.
Collapse
Affiliation(s)
- Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
11
|
A Novel Bone Substitute Based on Recombinant Type I Collagen for Reconstruction of Alveolar Cleft. MATERIALS 2021; 14:ma14092306. [PMID: 33946797 PMCID: PMC8125289 DOI: 10.3390/ma14092306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to examine the optimal cross-link density of recombinant peptide (RCP) particles, based on human collagen type I, for bone reconstruction in human alveolar cleft. Low- (group 1), medium- (group 2), and high- (group 3) cross-linked RCP particles were prepared by altering the duration of the heat-dependent dehydration reaction. Rat palatine fissures (n = 45), analogous to human congenital bone defects, were examined to evaluate the potential of bone formation by the three different RCP particles. Microcomputed tomography images were obtained to measure bone volume and bone mineral density at 4, 8, 12, and 16 weeks post grafting. Specimens were obtained for histological analysis at 16 weeks after grafting. Additionally, alkaline phosphatase and tartrate acid phosphatase staining were performed to visualize the presence of osteoblasts and osteoclasts. At 16 weeks, bone volume, bone mineral density, and new bone area measurements in group 2 were significantly higher than in any other group. In addition, the number of osteoblasts and osteoclasts on the new bone surface in group 2 was significantly higher than in any other group. Our results demonstrated that medium cross-linking was more suitable for bone formation—and could be useful in human alveolar cleft repairs as well.
Collapse
|
12
|
Akiyama Y, Ito M, Toriumi T, Hiratsuka T, Arai Y, Tanaka S, Futenma T, Akiyama Y, Yamaguchi K, Azuma A, Hata KI, Natsume N, Honda M. Bone formation potential of collagen type I-based recombinant peptide particles in rat calvaria defects. Regen Ther 2020; 16:12-22. [PMID: 33426238 PMCID: PMC7773759 DOI: 10.1016/j.reth.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction This study aimed to examine the bone-forming ability of medium-cross-linked recombinant collagen peptide (mRCP) particles developedbased on human collagen type I, contains an arginyl-glycyl-aspartic acid-rich motif, fabricated as bone filling material, compared to that of the autologous bone graft. Methods Calvarial bone defects were created in immunodeficient rats though a surgical procedure. The rats were divided into 2 groups: mRCP graft and tibia bone graft (bone graft). The bone formation potential of mRCP was evaluated by micro-computed tomography and hematoxylin-eosin staining at 1, 2, 3, and 4 weeks after surgery, and the data were analyzed and compared to those of the bone graft. Results The axial volume-rendered images demonstrated considerable bony bridging with the mRCP graft, but there was no significant difference in the bone volume and bone mineral density between the mRCP graft and bone graft at 4 weeks. The peripheral new bone density was significantly higher than the central new bone density and the bottom side score was significantly higher than the top side score at early stage in the regenerated bone within the bone defects. Conclusion These results indicate that mRCP has a high potential of recruiting osteogenic cells, comparable to that of autologous bone chips. Bone formation potential of mRCP were comparable to that of autogenous bone. mRCP particles exhibit high new bone formation potential in the calvaria defect. Bone bridging was observed over the entire defect in mRCP graft at 4 weeks. mRCP has a high potential of recruiting osteogenic cells comparable to bone graft.
Collapse
Key Words
- ALP, alkaline phosphatase
- Autologous bone
- BMD, bone mineral density
- BMSCs, bone marrow derived mesenchymal stem cells
- Bone reconstruction
- Bone substitute
- CSD, critical-size defect
- Calvaria
- Collagen scaffold
- DHT, dehydothermal treatment
- H&E, hematoxylin and eosin
- RCP, recombinant collagen peptide
- RGD, arginyl-glycyl-aspartic acid
- ROIs, regions of interest
- Recombinant human collagen peptide
- SD, standard deviation
- TRAP, tartrate-resistant acid phosphatase
- mRCP, medium-cross-linked RCP
- micro-CT, micro-computed tomography
Collapse
Affiliation(s)
- Yasunori Akiyama
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Taku Toriumi
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Takahiro Hiratsuka
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Sho Tanaka
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Taku Futenma
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Yuhki Akiyama
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Kazuhiro Yamaguchi
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Akihiko Azuma
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Ken-Ichiro Hata
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| |
Collapse
|
13
|
Li Q, Yang G, Li J, Ding M, Zhou N, Dong H, Mou Y. Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:427. [PMID: 33008471 PMCID: PMC7531120 DOI: 10.1186/s13287-020-01938-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Periodontal tissue regeneration (PTR) is the ultimate goal of periodontal therapy. Currently, stem cell therapy is considered a promising strategy for achieving PTR. However, there is still no conclusive comparison that distinguishes clear hierarchies among different kinds of stem cells. Methods A systematic review and network meta-analysis (NMA) was performed using MEDLINE (via PubMed), EMBASE, and Web of Science up to February 2020. Preclinical studies assessing five types of stem cells for PTR were included; the five types of stem cells included periodontal ligament-derived stem cells (PDLSCs), bone marrow-derived stem cells (BMSCs), adipose tissue-derived stem cells (ADSCs), dental pulp-derived stem cells (DPSCs), and gingival-derived stem cells (GMSCs). The primary outcomes were three histological indicators with continuous variables: newly formed alveolar bone (NB), newly formed cementum (NC), and newly formed periodontal ligament (NPDL). We performed pairwise meta-analyses using a random-effects model and then performed a random-effects NMA using a multivariate meta-analysis model. Results Sixty preclinical studies assessing five different stem cell-based therapies were identified. The NMA showed that in terms of NB, PDLSCs (standardized mean difference 1.87, 95% credible interval 1.24 to 2.51), BMSCs (1.88, 1.17 to 2.59), and DPSCs (1.69, 0.64 to 2.75) were statistically more efficacious than cell carriers (CCs). In addition, PDLSCs were superior to GMSCs (1.49, 0.04 to 2.94). For NC, PDLSCs (2.18, 1.48 to 2.87), BMSCs (2.11, 1.28 to 2.94), and ADSCs (1.55, 0.18 to 2.91) were superior to CCs. For NPDL, PDLSCs (1.69, 0.92 to 2.47) and BMSCs (1.41, 0.56 to 2.26) were more efficacious than CCs, and PDLSCs (1.26, 0.11 to 2.42) were superior to GMSCs. The results of treatment hierarchies also demonstrated that the two highest-ranked interventions were PDLSCs and BMSCs. Conclusion PDLSCs and BMSCs were the most effective and well-documented stem cells for PTR among the five kinds of stem cells evaluated in this study, and there was no statistical significance between them. To translate the stem cell therapies for PTR successfully in the clinic, future studies should utilize robust experimental designs and reports.
Collapse
Affiliation(s)
- Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jialing Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meng Ding
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Zhou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China. .,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Tateno A, Asano M, Akita D, Toriumi T, Tsurumachi-Iwasaki N, Kazama T, Arai Y, Matsumoto T, Kano K, Honda M. Transplantation of dedifferentiated fat cells combined with a biodegradable type I collagen-recombinant peptide scaffold for critical-size bone defects in rats. J Oral Sci 2019; 61:534-538. [PMID: 31631097 DOI: 10.2334/josnusd.18-0458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tissue engineering is a promising approach to supplement existing treatment strategies for craniofacial bone regeneration. In this study, a type I collagen scaffold made from a recombinant peptide (RCP) with an Arg-Gly-Asp motif was developed, and its effect on regeneration in critical-size mandibular bone defects was evaluated. Additionally, the combined effect of the scaffold and lipid-free dedifferentiated fat (DFAT) cells was assessed. Briefly, DFAT cells were separated from mature adipocytes by using a ceiling culture technique based on buoyancy. A 3 cm × 4 cm critical-size bone defect was created in the rat mandible, and regeneration was evaluated by using RCP with DFAT cells. Then, cultured DFAT cells and adipose-derived stem cells (ASCs) were seeded onto RCP scaffolds (DFAT/RCP and ASC/RCP) and implanted into the bone defects. Micro-computed tomography imaging at 8 weeks after implantation showed significantly greater bone regeneration in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. Similarly, histological analysis showed significantly greater bone width in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. These findings suggest that DFAT/RCP is effective for bone formation in critical-size bone defects and that DFAT cells are a promising source for bone regeneration.
Collapse
Affiliation(s)
- Atsushi Tateno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Taku Toriumi
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| | | | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
15
|
Ito M, Toriumi T, Imura H, Akiyama Y, Arai Y, Natsume N, Honda M. Rat Palatine Fissure: A Suitable Experimental Model for Evaluating Bone Regeneration. Tissue Eng Part C Methods 2019; 25:513-522. [PMID: 31418330 DOI: 10.1089/ten.tec.2019.0143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT The rat palatine fissure is anatomically similar to human alveolar cleft. In this study, we examined potential bone repair by an autologous bone implant and beta-tricalcium phosphate (β-TCP) using rat palatine fissure as a model. Autologous bone chips or β-TCP granules were implanted into the rat palatine fissure. Our model demonstrated that higher bone volume and bone mineral density were achieved with autologous bone graft than with β-TCP. We have provided the first demonstration of the suitability of the rat palatine fissure as the implant site to simulate the transplantation of bone graft materials into human alveolar cleft.
Collapse
Affiliation(s)
- Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Taku Toriumi
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry, Nagoya, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yasunori Akiyama
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
16
|
Ghanaati S, Al-Maawi S, Herrera-Vizcaino C, Alves GG, Calasans-Maia MD, Sader R, Kirkpatrick CJ, Choukroun J, Bonig H, Mourão CFDAB. A Proof of the Low Speed Centrifugation Concept in Rodents: New Perspectives for In Vivo Research. Tissue Eng Part C Methods 2019; 24:659-670. [PMID: 30358494 DOI: 10.1089/ten.tec.2018.0236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT This study evaluated for the first time the composition and bioactivity of platelet-rich fibrin (PRF) produced from small animal blood by reducing the initial blood volume needed for the preparation of PRF from 10 to 3 mL. The results showed that different preparation protocols of PRF produced using 3 mL of animal blood exhibit the same composition, properties, and bioactivity as PRF prepared using 10 mL human blood.
Collapse
Affiliation(s)
- Shahram Ghanaati
- 1 FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University , Frankfurt Am Main, Germany
| | - Sarah Al-Maawi
- 1 FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University , Frankfurt Am Main, Germany
| | - Carlos Herrera-Vizcaino
- 1 FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University , Frankfurt Am Main, Germany
| | - Gutemberg Gomes Alves
- 2 Department of Molecular and Cell Biology, Institute of Biology, Fluminense Federal University , Niterói, Brazil
| | | | - Robert Sader
- 1 FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University , Frankfurt Am Main, Germany
| | - C James Kirkpatrick
- 1 FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University , Frankfurt Am Main, Germany
| | | | - Halvard Bonig
- 5 Institute for Transfusion Medicine and Immunohematology, Goethe University , and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Germany
| | | |
Collapse
|
17
|
Dziedzic DSM, Mogharbel BF, Ferreira PE, Irioda AC, de Carvalho KAT. Transplantation of Adipose-derived Cells for Periodontal Regeneration: A Systematic Review. Curr Stem Cell Res Ther 2019; 14:504-518. [PMID: 30394216 DOI: 10.2174/1574888x13666181105144430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords "ADIPOSE", "CELLS", and "PERIODONTAL", with the Boolean operator "AND". A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
- Dentistry Faculty, Universidade Positivo, Curitiba, Brazil
| | - Bassam Felipe Mogharbel
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Priscila Elias Ferreira
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | | |
Collapse
|
18
|
Vaquette C, Pilipchuk SP, Bartold PM, Hutmacher DW, Giannobile WV, Ivanovski S. Tissue Engineered Constructs for Periodontal Regeneration: Current Status and Future Perspectives. Adv Healthc Mater 2018; 7:e1800457. [PMID: 30146758 DOI: 10.1002/adhm.201800457] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/03/2018] [Indexed: 12/23/2022]
Abstract
The periodontium, consisting of gingiva, periodontal ligament, cementum, and alveolar bone, is a hierarchically organized tissue whose primary role is to provide physical and mechanical support to the teeth. Severe cases of periodontitis, an inflammatory condition initiated by an oral bacterial biofilm, can lead to significant destruction of soft and hard tissues of the periodontium and result in compromised dental function and aesthetics. Although current treatment approaches can limit the progression of the disease by controlling the inflammatory aspect, complete periodontal regeneration cannot be predictably achieved. Various tissue engineering approaches are investigated for their ability to control the critical temporo-spatial wound healing events that are essential for achieving periodontal regeneration. This paper reviews recent progress in the field of periodontal tissue engineering with an emphasis on advanced 3D multiphasic tissue engineering constructs (TECs) and provides a critical analysis of their regenerative potential and limitations. The review also elaborates on the future of periodontal tissue engineering, including scaffold customization for individual periodontal defects, TEC's functionalization strategies for imparting enhanced bioactivity, periodontal ligament fiber guidance, and the utilization of chair-side regenerative solutions that can facilitate clinical translation.
Collapse
Affiliation(s)
- Cedryck Vaquette
- Queensland University of Technology (QUT) Brisbane 4059 Australia
- Australian Centre in Additive Biomanufacturing Institute of Health of Biomedical Innovation Kelvin Grove 4059 Australia
- School of Dentistry The University of Queensland 88 Herston Road, Corner Bramston Terrace and Herston Road Herston QLD 4006 Australia
| | - Sophia P. Pilipchuk
- Department of Periodontics and Oral Medicine School of Dentistry University of Michigan Ann Arbor, 1011 N. University Avenue Ann Arbor MI 48109 USA
- Department of Biomedical Engineering College of Engineering University of Michigan Ann Arbor, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - P. Mark Bartold
- Dental School University of Adelaide Level 10, Adelaide Health and Medical Sciences Building Corner of North Terrace and George Street Adelaide SA 5000 Australia
| | - Dietmar W. Hutmacher
- Queensland University of Technology (QUT) Brisbane 4059 Australia
- Australian Centre in Additive Biomanufacturing Institute of Health of Biomedical Innovation Kelvin Grove 4059 Australia
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine School of Dentistry University of Michigan Ann Arbor, 1011 N. University Avenue Ann Arbor MI 48109 USA
- Department of Biomedical Engineering College of Engineering University of Michigan Ann Arbor, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Saso Ivanovski
- School of Dentistry The University of Queensland 88 Herston Road, Corner Bramston Terrace and Herston Road Herston QLD 4006 Australia
| |
Collapse
|
19
|
Li G, Han N, Zhang X, Yang H, Cao Y, Wang S, Fan Z. Local Injection of Allogeneic Stem Cells from Apical Papilla Enhanced Periodontal Tissue Regeneration in Minipig Model of Periodontitis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3960798. [PMID: 30112386 PMCID: PMC6077668 DOI: 10.1155/2018/3960798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/03/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Discovering suitable seeding cells and simple application technique will be beneficial for MSC-mediated treatment of periodontitis. Stem cells from apical papilla (SCAPs) might be the candidate seeding cell for the periodontal tissues regeneration based on their origin and characters. In this research, we investigated the effect of SCAPs on periodontal tissue regeneration in swine by local injection. METHODS We established experimental periodontitis model in miniature pigs and then treated them with SCAPs by local injection. Clinical assessments, computed tomography (CT) scanning, histologic examination, and quantitative measurements were used to evaluate the effect of periodontal tissues regeneration. RESULTS At 12 weeks after injection, clinical assessments showed that probing depth, gingival recession, and attachment loss values were 5.44±0.77 mm versus 7.33±1.0 mm (p<0.01), 2.33±0.33 mm versus 2.11±0.69 mm (p>0.05), and 7.78±0.84 mm versus 9.44±1.07 mm (p<0.01) in SCAPs group and 0.9% NaCl group, respectively. CT scan results showed a significant increase of 12.86 mm3 alveolar bone regeneration in SCAPs group compared with 0.9% NaCl group. In addition, histopathology results demonstrated remarkable regeneration in SCAPs group, whereas regeneration of periodontal tissue was hardly found in 0.9% NaCl group. CONCLUSION Local injection of SCAPs could effectively restore tissue defects brought about by periodontitis in the swine model. Thus, SCAPs, as an easily accessible dental-deriving stem cell, may serve as an alternative application for periodontitis treatment.
Collapse
Affiliation(s)
- Guoqing Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Nannan Han
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Xiuli Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, No.10 Xitoutiao Youanmen, Fengtai District, Beijing 100069, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| |
Collapse
|
20
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Saito-Tamura Y, Tonogi M, Shimizu N, Honda M. Effect of collagenase concentration on the isolation of small adipocytes from human buccal fat pad. J Oral Sci 2018; 60:14-23. [PMID: 29479028 DOI: 10.2334/josnusd.16-0786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Dedifferentiated fat (DFAT) cells were isolated from mature adipocytes using the ceiling culture method. Recently, we successfully isolated DFAT cells from adipocytes with a relatively small size (<40 μm). DFAT cells have a higher osteogenic potential than that of medium adipocytes. Therefore, the objective of this study was to determine the optimal concentration of collagenase solution for isolating small adipocytes from human buccal fat pads (BFPs). Four concentrations of collagenase solution (0.01%, 0.02%, 0.1%, and 0.5%) were used, and their effectiveness was assessed by the number of small adipocytes and DFAT cells isolated. The total number of floating adipocytes that dissociated with 0.02% collagenase was 2.5 times of that dissociated with 0.1% collagenase. The number of floating adipocytes with a diameter of ≤29 μm that dissociated with 0.02% collagenase was thrice of those dissociated with 0.1% and 0.5% collagenase. The number of DFAT cells that dissociated with 0.02% collagenase was 1.5 times of that dissociated with 0.1% collagenase. In addition, DFAT cells that dissociated with 0.02% collagenase had a higher osteogenic differentiation potential than those that dissociated with 0.1% collagenase. These results suggest that 0.02% is the optimal collagenase concentration for isolating small adipocytes from BFPs.
Collapse
Affiliation(s)
- Niina Tsurumachi
- Department of Orthodontics, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Taro Matsumoto
- Department of Functional Morphology Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry
| | - Tomohiko Kazama
- Department of Functional Morphology Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | | | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | | | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
21
|
Kim JH, Park MH, Jang SJ, Son SJ, Lee JY, Son JS, Kim SE, Kang SS, Choi SH. Effect of Hydrogen Dioxide Treatment on the Osteogenic Potential of Duck-beak Bone-derived Natural Bioceramic Microparticles. ACTA ACUST UNITED AC 2018; 31:373-379. [PMID: 28438865 DOI: 10.21873/invivo.11069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIM As an alternative material to the autogenous bone, duck-beak bone particle for bone substitute have been attracting great attention due to their biological properties. To deliver the most favorable outcome of medical treatment, it is essential to study the effect of various processing methods of the duck-beak bone. In this study, we compared the two deproteinizing agents for manufacturing duck-beak bone. Group 1 was treated by a conventional chemical agent (ethylenediamine) and Group 2 by hydrogen dioxide (H2O2). In vitro and in vivo experiments were conducted in parallel to compare the cytocompatibility and osteogenic capability between two processing methods. For in vitro tests, human adipose-derived mesenchymal stem cells (hAD-MSCs) were planted onto each sample and their attachment and growing were evaluated. For in vivo biocompatibility and osteogenic properties, the samples were applied on the critical-sized calvarial bone defect of rats. Group 2 showed significantly higher cell attachment but Group1 showed slightly higher cell proliferation. In in vivo tests, all groups have shown biocompatibility and increased level of osteogenic potential. However, Group 2 had significantly higher bone regeneration (p<0.05). This experiment confirmed that H2O2 can be an optimal processing method for duck-beak bone particle.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Department of Periodontology, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Min-Ho Park
- Department of Veterinary Surgery, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Seok Jin Jang
- Department of Veterinary Surgery, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Soo Jin Son
- Department of Veterinary Surgery, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae Yeon Lee
- Department of Veterinary Surgery, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jun Sik Son
- High-Tech Fiber R&D Headquarters, Korea Textile Development Institute, Daegu, Republic of Korea
| | - Se Eun Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Seong Soo Kang
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Seok Hwa Choi
- Department of Veterinary Surgery, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
22
|
Sun X, Xu C, Wu G, Ye Q, Wang C. Poly(Lactic-co-Glycolic Acid): Applications and Future Prospects for Periodontal Tissue Regeneration. Polymers (Basel) 2017; 9:E189. [PMID: 30970881 PMCID: PMC6432161 DOI: 10.3390/polym9060189] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Periodontal tissue regeneration is the ultimate goal of the treatment for periodontitis-affected teeth. The success of regenerative modalities relies heavily on the utilization of appropriate biomaterials with specific properties. Poly (lactic-co-glycolic acid) (PLGA), a synthetic aliphatic polyester, has been actively investigated for periodontal therapy due to its favorable mechanical properties, tunable degradation rates, and high biocompatibility. Despite the attractive characteristics, certain constraints associated with PLGA, in terms of its hydrophobicity and limited bioactivity, have led to the introduction of modification strategies that aimed to improve the biological performance of the polymer. Here, we summarize the features of the polymer and update views on progress of its applications as barrier membranes, bone grafts, and drug delivery carriers, which indicate that PLGA can be a good candidate material in the field of periodontal regenerative medicine.
Collapse
Affiliation(s)
- Xiaoyu Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HV, The Netherlands.
| | - Chun Xu
- Laboratory of Regenerative Dentistry, School of Dentistry, The University of Queensland, Brisbane 4006, Australia.
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HV, The Netherlands.
| | - Qingsong Ye
- Laboratory of Regenerative Dentistry, School of Dentistry, The University of Queensland, Brisbane 4006, Australia.
| | - Changning Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
23
|
Iguchi S, Suzuki D, Kawano E, Mashimo T, Kajiya M, Toriumi T, Kawai T, Kurihara H, Isokawa K, Sato S, Honda M. Effect of local bone marrow stromal cell administration on ligature-induced periodontitis in mice. J Oral Sci 2017; 59:629-637. [DOI: 10.2334/josnusd.16-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Shinya Iguchi
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Daigo Suzuki
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Eisuke Kawano
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Takayuki Mashimo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Juntendo University
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied life Sciences, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Toshihisa Kawai
- Department of Periodontology, Nova Southeastern University College of Dental Medicine
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied life Sciences, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
24
|
Suzuki D, Akita D, Tsurumachi N, Kano K, Yamanaka K, Kaneko T, Kawano E, Iguchi S, Toriumi T, Arai Y, Matsumoto T, Sato S, Honda M. Transplantation of mature adipocyte-derived dedifferentiated fat cells into three-wall defects in the rat periodontium induces tissue regeneration. J Oral Sci 2017; 59:611-620. [DOI: 10.2334/josnusd.16-0878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Daigo Suzuki
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Niina Tsurumachi
- Department of Orthodontics, Nihon University School of Dentistry
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | | | | | - Eisuke Kawano
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Shinya Iguchi
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | | | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
25
|
Nicolescu MI. Regenerative Perspective in Modern Dentistry. Dent J (Basel) 2016; 4:dj4020010. [PMID: 29563452 PMCID: PMC5851266 DOI: 10.3390/dj4020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting the progress achieved during the last years by scientific research and, in some cases, which has already been translated into clinical results. The distinct characteristics of stem cells and their microenvironment, together with their diversity in the oral cavity, are put into the context of research and clinical use. Examples of regenerative studies regarding endodontic and periodontal compartments, as well as hard (alveolar bone) and soft (salivary glands) related tissues, are presented to make the reader further acquainted with the topic. Instead of providing a conclusion, we will emphasize the importance for all dental community members, from young students to experienced dentists, of an early awareness rising regarding biomedical research progress in general and regenerative dentistry in particular.
Collapse
Affiliation(s)
- Mihnea Ioan Nicolescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Histology and Cytology Division, Bucharest, 8 Eroilor Sanitari Blvd., RO-050474, Romania.
- Victor Babeș National Institute of Pathology, Radiobiology Laboratory, Bucharest, Romania.
| |
Collapse
|
26
|
Liu Z, Yin X, Ye Q, He W, Ge M, Zhou X, Hu J, Zou S. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold. J Biomater Appl 2016; 31:121-31. [PMID: 27009932 DOI: 10.1177/0885328216637978] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in beagle dogs with experimental periodontal defects resulted in significantly enhanced periodontal regeneration characterized by formation of new bone, periodontal ligament and cementum, compared with the untreated defects, as evidenced by histological and micro-computed tomography examinations. The prepared collagen-hydroxyapatite scaffolds possess favorable bio-compatibility. The bone marrow stem cells - collagen-hydroxyapatite and collagen-hydroxyapatite scaffold - induced periodontal regeneration, with no aberrant events complicating the regenerative process. Further research is necessary to improve the bone marrow stem cells behavior in collagen-hydroxyapatite scaffolds after implantation.
Collapse
Affiliation(s)
- Zeping Liu
- State Key Laboratory of Oral Diseases and Department of Orthodontics, Sichuan University West China College of Stomatology, Chengdu, China Chengdu Women and Chidren Central Hospital, 1617 Riyue Avenue, Qingyang District, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases and Department of Orthodontics, Sichuan University West China College of Stomatology, Chengdu, China
| | - Qingsong Ye
- State Key Laboratory of Oral Diseases and Department of Orthodontics, Sichuan University West China College of Stomatology, Chengdu, China School of Dentistry, University of Queensland, Brisbane, Australia
| | - Wulin He
- State Key Laboratory of Oral Diseases and Department of Orthodontics, Sichuan University West China College of Stomatology, Chengdu, China
| | - Mengke Ge
- State Key Laboratory of Oral Diseases and Department of Orthodontics, Sichuan University West China College of Stomatology, Chengdu, China
| | - Xiaofu Zhou
- The Number Seventeen Middle School of Chengdu, China
| | - Jing Hu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, Sichuan University West China College of Stomatology, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and Department of Orthodontics, Sichuan University West China College of Stomatology, Chengdu, China
| |
Collapse
|
27
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Tamura Y, Tonogi M, Isokawa K, Shimizu N, Honda M. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential. Tissue Eng Part C Methods 2016; 22:250-9. [DOI: 10.1089/ten.tec.2015.0420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Niina Tsurumachi
- Nihon University Graduate School of Dentistry, Chiyoda-ku, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Tamura
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Morio Tonogi
- Department of Oral Surgery, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
28
|
Akita D, Kano K, Saito-Tamura Y, Mashimo T, Sato-Shionome M, Tsurumachi N, Yamanaka K, Kaneko T, Toriumi T, Arai Y, Tsukimura N, Matsumoto T, Ishigami T, Isokawa K, Honda M. Use of Rat Mature Adipocyte-Derived Dedifferentiated Fat Cells as a Cell Source for Periodontal Tissue Regeneration. Front Physiol 2016; 7:50. [PMID: 26941649 PMCID: PMC4763019 DOI: 10.3389/fphys.2016.00050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT) cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs) on mesenchymal stem cells. We obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid) on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA) and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3, and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.
Collapse
Affiliation(s)
- Daisuke Akita
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University Fujisawa, Japan
| | - Yoko Saito-Tamura
- Department of Orthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Takayuki Mashimo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Juntendo University Tokyo, Japan
| | - Momoko Sato-Shionome
- Department of Pediatric Dentistry, School of Dentistry, Nihon University Tokyo, Japan
| | - Niina Tsurumachi
- Department of Orthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | | | | | - Taku Toriumi
- Department of Anatomy, School of Dentistry, Nihon University Tokyo, Japan
| | | | - Naoki Tsukimura
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, School of Medicine, Nihon University Tokyo, Japan
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, School of Dentistry, Nihon University Tokyo, Japan
| | - Keitaro Isokawa
- Department of Anatomy, School of Dentistry, Nihon University Tokyo, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi-Gakuin University Nagoya, Japan
| |
Collapse
|
29
|
Bassir SH, Wisitrasameewong W, Raanan J, Ghaffarigarakani S, Chung J, Freire M, Andrada LC, Intini G. Potential for Stem Cell-Based Periodontal Therapy. J Cell Physiol 2016; 231:50-61. [PMID: 26058394 PMCID: PMC4627700 DOI: 10.1002/jcp.25067] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023]
Abstract
Periodontal diseases are highly prevalent and are linked to several systemic diseases. The goal of periodontal treatment is to halt the progression of the disease and regenerate the damaged tissue. However, achieving complete and functional periodontal regeneration is challenging because the periodontium is a complex apparatus composed of different tissues, including bone, cementum, and periodontal ligament. Stem cells may represent an effective therapeutic tool for periodontal regeneration due to their plasticity and their ability to regenerate different tissues. This review presents and critically analyzes the available information on stem cell-based therapy for the regeneration of periodontal tissues and suggests new avenues for the development of more effective therapeutic protocols.
Collapse
Affiliation(s)
- Seyed Hossein Bassir
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Wichaya Wisitrasameewong
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA
| | - Justin Raanan
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Sasan Ghaffarigarakani
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Jamie Chung
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Marcelo Freire
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - Luciano C. Andrada
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Giuseppe Intini
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
| |
Collapse
|
30
|
Kaku M, Akiba Y, Akiyama K, Akita D, Nishimura M. Cell-based bone regeneration for alveolar ridge augmentation--cell source, endogenous cell recruitment and immunomodulatory function. J Prosthodont Res 2015; 59:96-112. [PMID: 25749435 DOI: 10.1016/j.jpor.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
Alveolar ridge plays a pivotal role in supporting dental prosthesis particularly in edentulous and semi-dentulous patients. However the alveolar ridge undergoes atrophic change after tooth loss. The vertical and horizontal volume of the alveolar ridge restricts the design of dental prosthesis; thus, maintaining sufficient alveolar ridge volume is vital for successful oral rehabilitation. Recent progress in regenerative approaches has conferred marked benefits in prosthetic dentistry, enabling regeneration of the atrophic alveolar ridge. In order to achieve successful alveolar ridge augmentation, sufficient numbers of osteogenic cells are necessary; therefore, autologous osteoprogenitor cells are isolated, expanded in vitro, and transplanted to the specific anatomical site where the bone is required. Recent studies have gradually elucidated that transplanted osteoprogenitor cells are not only a source of bone forming osteoblasts, they appear to play multiple roles, such as recruitment of endogenous osteoprogenitor cells and immunomodulatory function, at the forefront of bone regeneration. This review focuses on the current consensus of cell-based bone augmentation therapies with emphasis on cell sources, transplanted cell survival, endogenous stem cell recruitment and immunomodulatory function of transplanted osteoprogenitor cells. Furthermore, if we were able to control the mobilization of endogenous osteoprogenitor cells, large-scale surgery may no longer be necessary. Such treatment strategy may open a new era of safer and more effective alveolar ridge augmentation treatment options.
Collapse
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yosuke Akiba
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiro Nishimura
- Department of Oral Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
31
|
Proffen BL, Vavken P, Haslauer CM, Fleming BC, Harris CE, Machan JT, Murray MM. Addition of autologous mesenchymal stem cells to whole blood for bioenhanced ACL repair has no benefit in the porcine model. Am J Sports Med 2015; 43:320-30. [PMID: 25549633 PMCID: PMC4511104 DOI: 10.1177/0363546514559826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Coculture of mesenchymal stem cells (MSCs) from the retropatellar fat pad and peripheral blood has been shown to stimulate anterior cruciate ligament (ACL) fibroblast proliferation and collagen production in vitro. Current techniques of bioenhanced ACL repair in animal studies involve adding a biologic scaffold, in this case an extracellular matrix-based scaffold saturated with autologous whole blood, to a simple suture repair of the ligament. Whether the enrichment of whole blood with MSCs would further improve the in vivo results of bioenhanced ACL repair was investigated. HYPOTHESIS The addition of MSCs derived from adipose tissue or peripheral blood to the blood-extracellular matrix composite, which is used in bioenhanced ACL repair to stimulate healing, would improve the biomechanical properties of a bioenhanced ACL repair after 15 weeks of healing. STUDY DESIGN Controlled laboratory study. METHODS Twenty-four adolescent Yucatan mini-pigs underwent ACL transection followed by (1) bioenhanced ACL repair, (2) bioenhanced ACL repair with the addition of autologous adipose-derived MSCs, and (3) bioenhanced ACL repair with the addition of autologous peripheral blood derived MSCs. After 15 weeks of healing, the structural properties of the ACL (yield load, failure load, and linear stiffness) were measured. Cell and vascular density were measured in the repaired ACL via histology, and its tissue structure was qualitatively evaluated using the advanced Ligament Maturity Index. RESULTS After 15 weeks of healing, there were no significant improvements in the biomechanical or histological properties with the addition of adipose-derived MSCs. The only significant change with the addition of peripheral blood MSCs was an increase in knee anteroposterior laxity when measured at 30° of flexion. CONCLUSION These findings suggest that the addition of adipose or peripheral blood MSCs to whole blood before saturation of an extracellular matrix carrier with the blood did not improve the functional results of bioenhanced ACL repair after 15 weeks of healing in the pig model. CLINICAL RELEVANCE Whole blood represents a practical biologic additive to ligament repair, and any other additive (including stem cells) should be demonstrated to be superior to this baseline before clinical use is considered.
Collapse
Affiliation(s)
- Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Patrick Vavken
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, University Hospital Basel, Switzerland
| | - Carla M. Haslauer
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Chad E. Harris
- Department of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jason T. Machan
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
- Biostatistics, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Current Uses of Poly(lactic-co-glycolic acid) in the Dental Field: A Comprehensive Review. J CHEM-NY 2015. [DOI: 10.1155/2015/525832] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(lactic-co-glycolic acid) or PLGA is a biodegradable polymer used in a wide range of medical applications. Specifically PLGA materials are also developed for the dental field in the form of scaffolds, films, membranes, microparticles, or nanoparticles. PLGA membranes have been studied with promising results, either alone or combined with other materials in bone healing procedures. PLGA scaffolds have been used to regenerate damaged tissues together with stem cell-based therapy. There is solid evidence that the development of PLGA microparticles and nanoparticles may be beneficial to a wide range of dental fields such as endodontic therapy, dental caries, dental surgery, dental implants, or periodontology. The aim of the current paper was to review the recent advances in PLGA materials and their potential uses in the dental field.
Collapse
|