1
|
Akhbar Anugrah F, Nyoman Pugeg Aryantha I, Masita R, Zubaidah S, Izzati Mohd Noh N. Isolation of Bacterial Endophytes Associated with Cinchona ledgeriana Moens. and Their Potential in Plant-growth Promotion, Antifungal and Quinoline Alkaloids Production. J GEN APPL MICROBIOL 2025; 70:n/a. [PMID: 39462602 DOI: 10.2323/jgam.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
For centuries, quinoline alkaloids from the tree bark of Cinchona ledgeriana (C. ledgeriana) have been used in the treatment of malaria. However, unsustainable harvesting and poor growth conditions greatly limit its use as raw materials. Since plant endophytes are known to contribute to the physiology of the host and its metabolism for survival, this study showed the potential of endophytes isolated from C. ledgeriana roots in promoting the germination of Catharathus roseus (C. roseus) seedlings and the biosynthesis of quinoline alkaloid. In this present study, we found that the Enterobacteriaceae family comprised the majority of the bacterial community, with Klebsiella pneumoniae being the most abundant species at the C. ledgeriana roots. Characterization of culturable bacterial endophytes from the C. ledgeriana roots showed that all the isolates displayed plant growth-promoting factors and antifungal activities. Interestingly, chromatographic analyses led to the identification of the quinoline alkaloids producing Achromobacter xylosoxidans (A. xylosoxidans) A1. Moreover, the co-cultures of A. xylosoxidans A1, Cytobacillus solani (C. solani) A3, and Klebsiella aerogenes A6 increased the fresh and dry weight of the C. roseus seedlings. These results suggest that these bacterial endophytes may enhance quinine and quinidine production as well as the growth of the plant host.
Collapse
Affiliation(s)
- Fauzi Akhbar Anugrah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia
| | | | - Rahmi Masita
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
| | - Siti Zubaidah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia
| |
Collapse
|
2
|
Li N, Mao Y, Huang Y, Zhang L, Hou L, Liu X, Du Y, Chen D, Sun K. Seasonal succession of endophyte and the association with active ingredients in Rheum palmatum. Microbiol Spectr 2024; 12:e0118424. [PMID: 39315856 PMCID: PMC11537013 DOI: 10.1128/spectrum.01184-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
The endophyte is closely related to medicinal plant growth and development, stress resistance, and active ingredients' accumulation. However, a seasonal succession of endophytes and the association with active ingredients is still unclear. In this study, we used high-throughput sequencing methods to compare the endophyte diversity of Rheum palmatum under different seasons and analyze the association between endophytes and five active ingredients. The results show that the diversity of endophytic fungi increased and then decreased, while bacterial diversity increased with the change of season. Community composition showed that the dominant genera of endophytic fungi were different under the different seasons, while the dominant genera of endophytic bacteria were Delftia. Analysis of co-occurrence network maps showed that the connectivity and complexity of endophytic fungi and bacterial networks decreased with the change of season. Spearman analysis indicated that the active ingredients of R. palmatum were significantly positive correlation with genera of endophytic fungi (Chalara). FUNGuild and PICRUSt predictive analysis indicated that the function of endophytic fungi and bacteria, respectively, were symbiotroph and metabolism, and relative abundances were different under the different seasons. Our results help elucidate the mechanism of medicinal plant-endophyte interaction. IMPORTANCE Through the investigation of the seasonal succession of endophytes and the association with active ingredients in Rheum palmatum, we found that the diversity and composition of endophytes in R. palmatum exhibited seasonal dynamics, and the active ingredients of R. palmatum showed a significantly positive correlation with the genus of endophytic fungi (Chalara). Our results may lay a foundation for understanding the interaction mechanism of endophyte and medicinal plant, and can also provide a theoretical basis for sustainable production of medicinal plants.
Collapse
Affiliation(s)
- Ni Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, Gansu, China
| | - YiFan Mao
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, Gansu, China
| | - YaLi Huang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, Gansu, China
| | - LingXuan Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, Gansu, China
| | - Lu Hou
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, Gansu, China
| | - XiaoJun Liu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, Gansu, China
| | - YaRong Du
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - DaWei Chen
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, Gansu, China
| | - Kun Sun
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiol Res 2022; 266:127256. [DOI: 10.1016/j.micres.2022.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
4
|
Chen D, Jia L, Hou Q, Zhao X, Sun K. Analysis of Endophyte Diversity of Rheum palmatum from Different Production Areas in Gansu Province of China and the Association with Secondary Metabolite. Microorganisms 2021; 9:978. [PMID: 33946518 PMCID: PMC8147242 DOI: 10.3390/microorganisms9050978] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Investigations of the differences in the metabolites of medicinal plants have typically focused on the effects of external environmental factors. However, little is known about the relationship between endophytes diversity and host metabolites. We used high-throughput sequencing methods to compare the endophyte diversity of Rheum palmatum from eight different production areas in Gansu Province of China and to analyze the association between those areas and five secondary metabolites (aloe-emodin, rhein, emodin, chrysophanol, and physcion). The results show that the diversity and OTUs (Operational taxonomic units) abundance of endophytic fungi and bacteria of R. palmatum differed according to production area. Spearman analysis showed that the five secondary metabolites of R. palmatum were positively correlated with the diversity and abundance of endophytic fungi. Comparing both space and environmental differences to determine influences on community structure, VPA analysis revealed that geographic factors explained more difference in community composition of fungal and bacterial endophytes than climate factors. PICRUSt and FUNGuild predictive analysis indicated that metabolites were the primary components of endophytic bacteria in all samples, while the function of endophytic fungi was composed of dominant trophic modes (saprotroph and pathotroph), and relative abundances were different. Our results help elucidate the correlation of plant-microbe interactions and offer pivotal information to reveal the role of endophytes in the production of R. palmatum and its important secondary metabolite.
Collapse
Affiliation(s)
| | | | | | | | - Kun Sun
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (D.C.); (L.J.); (Q.H.); (X.Z.)
| |
Collapse
|