1
|
Hutchinson E, Matthews TR, Renchen GF. Relationships between postlarval settlement and commercial landings of Caribbean spiny lobster (Panulirus argus) in Florida (USA). FISHERIES RESEARCH 2024; 279:107137. [DOI: 10.1016/j.fishres.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Lowman RL, Yampolsky LY. Lipofuscin, amyloids, and lipid peroxidation as potential markers of aging in Daphnia. Biogerontology 2023:10.1007/s10522-023-10036-z. [PMID: 37195481 DOI: 10.1007/s10522-023-10036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Accumulation of autofluorescent waste products, amyloids, and products of lipid peroxidation (LPO) are important hallmarks of aging. Until now, these processes have not been documented in Daphnia, a convenient model organism for longevity and senescence studies. We conducted a longitudinal cohort study of autofluorescence and Congo Red (CR) fluorescent staining for amyloids in four clones of D. magna. Additionally, we used a single time point cross-sectional common garden experiment within a single clone in which autofluorescence and BODIPY C11 fluorescence were measured. We observed a robust increase in autofluorescent spots that show diagnostic co-staining by Sudan Black indicating lipofuscin aggregates, particularly in the upper body region. There was also a significant clone-by-age interaction indicating that some genotypes accumulated lipofuscins faster than others. Contrary to predictions, CR fluorescence and lipid peroxidation did not consistently increase with age. CR fluorescence demonstrated a slight non-monotonous relationship with age, achieving the highest values at intermediate ages, possibly due to elimination of physiological heterogeneity in our genetically uniform cohorts. LPO demonstrated a significant ovary status-by-age interaction, decreasing with age when measured in Daphnia with full ovaries (late phase ovarian cycle) and showing no significant trend or slight increase with age when measured during the early phase in the ovarian cycle.
Collapse
Affiliation(s)
- R L Lowman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - L Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
3
|
Ghani Hilmi M, Ikhwanuddin M. Lipofuscin Level in Eyestalk Blue Swimming Crab, Portunus pelagicus at Different Sexes. Pak J Biol Sci 2020; 23:708-714. [PMID: 32363828 DOI: 10.3923/pjbs.2020.708.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The accumulation of lipofuscin (LF) is an alternative technique to identify age of crustacean species. However, the exact sites and the level of the LF concentration were unknown especially for different sexes of blue swimming crab, Portunus pelagicus. Thus, the present study was aimed to identify which part of the eyestalk of P. pelagicus contains more LF levels in order to establish a specific target part of samples. MATERIALS AND METHODS Thus, crab samples for this study were sampled from the wild habitat at Setiu wetlands, Terengganu, Malaysia. A total of 100 samples of with the same size (80±5 mm carapace width) were sampled and the eyestalk dissected for LF extraction. The determination of LF sites and levels in the eyestalks organ was taken from the area between the distal tangential layer (DTL) and proximal tangential layer (PTL). The lower part of the eyestalk was taken from the PTL until the end of the eyestalk. RESULTS The upper part of the crab's eyestalk was higher in the males crabs compared to the females crabs. LF index also shown that the upper part of crab's eyestalk have higher concentration compared to the lower part. CONCLUSION The left crab's eyestalk had the higher LF index especially in males compared to females but the total concentration was higher in female crabs. Knowing which part has highly dense accumulation of LF helps in LF detection of the tissue and further helps for age determination for this species.
Collapse
|
4
|
Aceves-Bueno E, Miller SJ, Cornejo-Donoso J, Gaines SD. Cooperation as a solution to shared resources in territorial use rights in fisheries. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02022. [PMID: 31628874 DOI: 10.1002/eap.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/03/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Territorial use rights in fisheries (TURFs) are coastal territories assigned to fishermen for the exclusive extraction of marine resources. Recent evidence shows that the incentives that arise from these systems can improve fisheries sustainability. Although research on TURFs has increased in recent years, important questions regarding the social and ecological dynamics underlying their success remain largely unanswered. In particular, in order to create new successful TURFs, it is critical to comprehend how fish movement over different distances affects the development of sustainable fishing practices within a TURF. In theory, excessive spillover outside a TURF will generate incentives to overharvest. However, many TURFs have proven successful even when targeted species move over distances far greater than the TURF's size. A common attribute among some of these successful systems is the presence of inter-TURF cooperation arrangements. This raises the question of how different levels and types of cooperation affect the motivations for overharvesting driven by the movement of fish outside the TURF. In this paper, we examine equilibrium yields under different levels of inter-TURF cooperation (from partial to full) and varying degrees of asymmetry across TURFs of both biological capacity and benefit-sharing. We find that partial cooperation can improve yields even with an unequal distribution of shared benefits and asymmetric carrying capacity. However, cooperation arrangements are unstable if the sharing agreement and biological asymmetries are misaligned. Remarkably, we find that asymmetry in the system can lead to the creation of voluntary no-take zones.
Collapse
Affiliation(s)
- Eréndira Aceves-Bueno
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, North Carolina, 28516, USA
| | - Steve J Miller
- Environmental Studies Program, University of Colorado, Boulder, 4001 Discovery Drive Boulder, Colorado, 80303, USA
| | - Jorge Cornejo-Donoso
- Instituto de Fomento Pesquero (IFOP), Colón 3656, Talcahuano, Región del Biobio, Chile
| | - Steven D Gaines
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, 93106-51312, USA
| |
Collapse
|
5
|
Becker C, Dick JTA, Cunningham EM, Schmitt C, Sigwart JD. The crustacean cuticle does not record chronological age: New evidence from the gastric mill ossicles. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:498-512. [PMID: 30086392 DOI: 10.1016/j.asd.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
A proposed method to determine chronological age of crustaceans uses putative annual bands in the gastric mill ossicles of the foregut. The interpretation of cuticle bands as growth rings is based on the idea that ossicles are retained through the moult and could accumulate a continuous record of age. However, recent studies presented conflicting findings on the dynamics of gastric mill ossicles during ecdysis. We herein study cuticle bands in ossicles in four species of commercially important decapod crustaceans (Homarus gammarus, Nephrops norvegicus, Cancer pagurus and Necora puber) in different phases of the moult cycle using dissections, light microscopy, micro-computed tomography and cryo-scanning electron microscopy. Our results demonstrate that the gastric mill is moulted and ossicles are not retained but replaced during ecdysis. It is therefore not plausible to conclude that ossicles register a lifetime growth record as annual bands and thereby provide age information. Other mechanisms for the formation of cuticle bands and their correlation to size-based age estimates need to be considered and the effect of moulting on other cuticle structures where 'annual growth bands' have been reported should be investigated urgently. Based on our results, there is no evidence for a causative link between cuticle bands and chronological age, meaning it is unreliable for determining crustacean age.
Collapse
Affiliation(s)
- Carola Becker
- Queen's University Marine Laboratory, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK; Humboldt-Universität zu Berlin, Department of Biology, Comparative Zoology, Philippstr. 13, Haus 2, 10115 Berlin, Germany.
| | - Jaimie T A Dick
- Queen's University Marine Laboratory, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Eoghan Mánus Cunningham
- Queen's University Marine Laboratory, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK.
| | - Clemens Schmitt
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm Science Park, Am Mühlenberg 1 OT Golm, 14476 Potsdam, Germany.
| | - Julia D Sigwart
- Queen's University Marine Laboratory, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK.
| |
Collapse
|
6
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
7
|
Du C, Anderson A, Lortie M, Parsons R, Bodnar A. Oxidative damage and cellular defense mechanisms in sea urchin models of aging. Free Radic Biol Med 2013; 63:254-63. [PMID: 23707327 PMCID: PMC3782381 DOI: 10.1016/j.freeradbiomed.2013.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/06/2013] [Accepted: 05/16/2013] [Indexed: 12/25/2022]
Abstract
The free radical, or oxidative stress, theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging because of the existence of species with tremendously different natural life spans, including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity, and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus, and Strongylocentrotus purpuratus, which has an intermediate life span. Levels of protein carbonyls and 4-hydroxynonenal measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2'-deoxyguanosine measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age pigment lipofuscin, measured in muscle, nerve, and esophagus, increased with age; however, it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species; however, further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age, and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage.
Collapse
Affiliation(s)
- Colin Du
- Bermuda Institute of Ocean Sciences, St. George's GE 01, Bermuda
| | | | | | | | | |
Collapse
|
8
|
Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evol Biol 2013; 13:77. [PMID: 23551990 PMCID: PMC3623659 DOI: 10.1186/1471-2148-13-77] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early evolutionary theories of aging predict that populations which experience low extrinsic mortality evolve a retarded onset of senescence. Experimental support for this theory in vertebrates is scarce, in part for the difficulty of quantifying extrinsic mortality and its condition- and density-dependent components that -when considered- can lead to predictions markedly different to those of the "classical" theories. Here, we study annual fish of the genus Nothobranchius whose maximum lifespan is dictated by the duration of the water bodies they inhabit. Different populations of annual fish do not experience different strengths of extrinsic mortality throughout their life span, but are subject to differential timing (and predictability) of a sudden habitat cessation. In this respect, our study allows testing how aging evolves in natural environments when populations vary in the prospect of survival, but condition-dependent survival has a limited effect. We use 10 Nothobranchius populations from seasonal pools that differ in their duration to test how this parameter affects longevity and aging in two independent clades of these annual fishes. RESULTS We found that replicated populations from a dry region showed markedly shorter captive lifespan than populations from a humid region. Shorter lifespan correlated with accelerated accumulation of lipofuscin (an established age marker) in both clades. Analysis of wild individuals confirmed that fish from drier habitats accumulate lipofuscin faster also under natural conditions. This indicates faster physiological deterioration in shorter-lived populations. CONCLUSIONS Our data provide a strong quantitative example of how extrinsic mortality can shape evolution of senescence in a vertebrate clade. Nothobranchius is emerging as a genomic model species. The characterization of pairs of closely related species with different longevities should provide a powerful paradigm for the identification of genetic variations responsible for evolution of senescence in natural populations.
Collapse
|
9
|
Watson SN, Risling TE, Hermann PM, Wildering WC. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment. BMC Neurosci 2012; 13:103. [PMID: 22898271 PMCID: PMC3470963 DOI: 10.1186/1471-2202-13-103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/13/2012] [Indexed: 02/07/2023] Open
Abstract
Background Cognitive impairment associated with subtle changes in neuron and neuronal network function rather than widespread neuron death is a feature of the normal aging process in humans and animals. Despite its broad evolutionary conservation, the etiology of this aging process is not well understood. However, recent evidence suggests the existence of a link between oxidative stress in the form of progressive membrane lipid peroxidation, declining neuronal electrical excitability and functional decline of the normal aging brain. The current study applies a combination of behavioural and electrophysiological techniques and pharmacological interventions to explore this hypothesis in a gastropod model (Lymnaea stagnalis feeding system) that allows pinpointing the molecular and neurobiological foundations of age-associated long-term memory (LTM) failure at the level of individual identified neurons and synapses. Results Classical appetitive reward-conditioning induced robust LTM in mature animals in the first quartile of their lifespan but failed to do so in animals in the last quartile of their lifespan. LTM failure correlated with reduced electrical excitability of two identified serotonergic modulatory interneurons (CGCs) critical in chemosensory integration by the neural network controlling feeding behaviour. Moreover, while behavioural conditioning induced delayed-onset persistent depolarization of the CGCs known to underlie appetitive LTM formation in this model in the younger animals, it failed to do so in LTM-deficient senescent animals. Dietary supplementation of the lipophilic anti-oxidant α-tocopherol reversed the effect of age on CGCs electrophysiological characteristics but failed to restore appetitive LTM function. Treatment with the SSRI fluoxetine reversed both the neurophysiological and behavioural effects of age in senior animals. Conclusions The results identify the CGCs as cellular loci of age-associated appetitive learning and memory impairment in Lymnaea and buttress the hypothesis that lipid peroxidation-dependent depression of intrinsic excitability is a hallmark of normal neuronal aging. The data implicate both lipid peroxidation-dependent non-synaptic as well as apparently lipid peroxidation-independent synaptic mechanisms in the age-dependent decline in behavioural plasticity in this model system.
Collapse
Affiliation(s)
- Shawn N Watson
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | | | | | | |
Collapse
|
10
|
|
11
|
Schmidt M, Derby CD. Cytoarchitecture and ultrastructure of neural stem cell niches and neurogenic complexes maintaining adult neurogenesis in the olfactory midbrain of spiny lobsters, Panulirus argus. J Comp Neurol 2011; 519:2283-319. [PMID: 21523781 DOI: 10.1002/cne.22657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a "neurogenic complex." Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast's microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements.
Collapse
Affiliation(s)
- Manfred Schmidt
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, Georgia 30302-5030, USA.
| | | |
Collapse
|