1
|
Tien Anh D, Hai Nam N, Kircher B, Baecker D. The Impact of Fluorination on the Design of Histone Deacetylase Inhibitors. Molecules 2023; 28:molecules28041973. [PMID: 36838960 PMCID: PMC9965134 DOI: 10.3390/molecules28041973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In recent years, histone deacetylases (HDACs) have emerged as promising targets in the treatment of cancer. The approach is to inhibit HDACs with drugs known as HDAC inhibitors (HDACis). Such HDACis are broadly classified according to their chemical structure, e.g., hydroxamic acids, benzamides, thiols, short-chain fatty acids, and cyclic peptides. Fluorination plays an important role in the medicinal-chemical design of new active representatives. As a result of the introduction of fluorine into the chemical structure, parameters such as potency or selectivity towards isoforms of HDACs can be increased. However, the impact of fluorination cannot always be clearly deduced. Nevertheless, a change in lipophilicity and, hence, solubility, as well as permeability, can influence the potency. The selectivity towards certain HDACs isoforms can be explained by special interactions of fluorinated compounds with the structure of the slightly different enzymes. Another aspect is that for a more detailed investigation of newly synthesized fluorine-containing active compounds, fluorination is often used for the purpose of labeling. Aside from the isotope 19F, which can be detected by nuclear magnetic resonance spectroscopy, the positron emission tomography of 18F plays a major role. However, to our best knowledge, a survey of the general effects of fluorination on HDACis development is lacking in the literature to date. Therefore, the aim of this review is to highlight the introduction of fluorine in the course of chemical synthesis and the impact on biological activity, using selected examples of recently developed fluorinated HDACis.
Collapse
Affiliation(s)
- Duong Tien Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Nguyen Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
- Correspondence: (B.K.); (D.B.)
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
- Correspondence: (B.K.); (D.B.)
| |
Collapse
|
2
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug Discov Today 2019; 24:685-702. [DOI: 10.1016/j.drudis.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
|
3
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Zhang F, Zhou Q, Yang G, An L, Li F, Wang J. A genetically encoded 19F NMR probe for lysine acetylation. Chem Commun (Camb) 2018; 54:3879-3882. [PMID: 29595201 DOI: 10.1039/c7cc09825a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Advances in acetylated protein-protein/DNA interactions depend on the development of a novel NMR (nuclear magnetic resonance) probe to study the conformational changes of acetylated proteins. However, the method for detecting the acetylated protein conformation is underdeveloped. Herein, an acetyllysine mimic has been exploited for detecting the conformational changes of acetylated p53-protein/DNA interactions by genetic code expansion and 19F NMR. This 19F NMR probe shows high structural similarity to acetyllysine and could not be deacetylated by sirtuin deacetylase in vitro/vivo. Moreover, acetylation of p53 K164 is reported to be deacetylated by SIRT2 for the first time.
Collapse
Affiliation(s)
- Feng Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | | | | | | | | | | |
Collapse
|
5
|
Bonomi R, Mukhopadhyay U, Shavrin A, Yeh HH, Majhi A, Dewage SW, Najjar A, Lu X, Cisneros GA, Tong WP, Alauddin MM, Liu RS, Mangner TJ, Turkman N, Gelovani JG. Novel Histone Deacetylase Class IIa Selective Substrate Radiotracers for PET Imaging of Epigenetic Regulation in the Brain. PLoS One 2015; 10:e0133512. [PMID: 26244761 PMCID: PMC4526562 DOI: 10.1371/journal.pone.0133512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/29/2015] [Indexed: 01/14/2023] Open
Abstract
Histone deacetylases (HDAC's) became increasingly important targets for therapy of various diseases, resulting in a pressing need to develop HDAC class- and isoform-selective inhibitors. Class IIa deacetylases possess only minimal deacetylase activity against acetylated histones, but have several other client proteins as substrates through which they participate in epigenetic regulation. Herein, we report the radiosyntheses of the second generation of HDAC class IIa-specific radiotracers: 6-(di-fluoroacetamido)-1-hexanoicanilide (DFAHA) and 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]-TFAHA). The selectivity of these radiotracer substrates to HDAC class IIa enzymes was assessed in vitro, in a panel of recombinant HDACs, and in vivo using PET/CT imaging in rats. [18F]TFAHA showed significantly higher selectivity for HDAC class IIa enzymes, as compared to [18F]DFAHA and previously reported [18F]FAHA. PET imaging with [18F]TFAHA can be used to visualize and quantify spatial distribution and magnitude of HDAC class IIa expression-activity in different organs and tissues in vivo. Furthermore, PET imaging with [18F]TFAHA may advance the understanding of HDACs class IIa mediated epigenetic regulation of normal and pathophysiological processes, and facilitate the development of novel HDAC class IIa-specific inhibitors for therapy of different diseases.
Collapse
Affiliation(s)
- Robin Bonomi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Uday Mukhopadhyay
- Center for Advanced Biomedical Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Aleksandr Shavrin
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Hsien-Hsien Yeh
- National Cyclotron and Radiochemistry Center, National Yang Ming University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
| | - Anjoy Majhi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Sajeewa W. Dewage
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| | - Amer Najjar
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Xin Lu
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - G. Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| | - William P. Tong
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Mian M. Alauddin
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Ren-Shuan Liu
- National Cyclotron and Radiochemistry Center, National Yang Ming University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
| | - Thomas J. Mangner
- Positron Emission Tomography Center, Wayne State University, Detroit, MI 48202, United States of America
| | - Nashaat Turkman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Juri G. Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| |
Collapse
|
6
|
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary malignancy of the central nervous system. Modern treatments using surgery and/or chemotherapy and/or radiotherapy are improving survival of patients, but prognosis is still very poor, depending inter alia on the patients' individual genomic traits. Most GBMs are primary; however, secondary GBMs have a better prognosis. Aberrant gene expression and copy number alterations make it possible to identify four subtypes: classical, mesenchymal, proneural, and neural. More and more biomarkers continue to be identified in GBM patients. Such biomarkers are related with varying degrees of specificity to one or more of GBM's subtypes and, in many instances, may provide useful information about prognosis. Biomarkers fall into either the imaging or molecular category. Molecular biomarkers are identified by use of such platforms as genomics, proteomics, and metabolomics. In the future, biomarkers, either individually or in some combination, will more reliably identify the pathogenic type of GBM and determine choice of therapy.
Collapse
|
7
|
Schutkowski M, Fischer F, Roessler C, Steegborn C. New assays and approaches for discovery and design of Sirtuin modulators. Expert Opin Drug Discov 2014; 9:183-99. [DOI: 10.1517/17460441.2014.875526] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques. Neuroscience 2013; 264:186-97. [PMID: 24051365 DOI: 10.1016/j.neuroscience.2013.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/27/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022]
Abstract
Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin-modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in the human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone-modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction.
Collapse
|
9
|
Histone deacetylase inhibitors for the treatment of breast cancer: recent trial data. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/cli.13.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells. PLoS One 2013; 8:e62610. [PMID: 23626839 PMCID: PMC3633900 DOI: 10.1371/journal.pone.0062610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as effective antineoplastic agents in the clinic. Studies from our lab and others have reported that magnetic resonance spectroscopy (MRS)-detectable phosphocholine (PC) is elevated following SAHA treatment, providing a potential noninvasive biomarker of response. Typically, elevated PC is associated with cancer while a decrease in PC accompanies response to antineoplastic treatment. The goal of this study was therefore to elucidate the underlying biochemical mechanism by which HDAC inhibition leads to elevated PC. We investigated the effect of SAHA on MCF-7 breast cancer cells using 13C MRS to monitor [1,2-13C] choline uptake and phosphorylation to PC. We found that PC synthesis was significantly higher in treated cells, representing 154±19% of control. This was within standard deviation of the increase in total PC levels detected by 31P MRS (129±7% of control). Furthermore, cellular choline kinase activity was elevated (177±31%), while cytidylyltransferase activity was unchanged. Expression of the intermediate-affinity choline transporter SLC44A1 and choline kinase α increased (144% and 161%, respectively) relative to control, as determined by mRNA microarray analysis with protein-level confirmation by Western blotting. Taken together, our findings indicate that the increase in PC levels following SAHA treatment results from its elevated synthesis. Additionally, the concentration of glycerophosphocholine (GPC) increased significantly with treatment to 210±45%. This is likely due to the upregulated expression of several phospholipase A2 (PLA2) isoforms, resulting in increased PLA2 activity (162±18%) in SAHA-treated cells. Importantly, the levels of total choline (tCho)-containing metabolites, comprised of choline, PC and GPC, are readily detectable clinically using 1H MRS. Our findings thus provide an important step in validating clinically translatable non-invasive imaging methods for follow-up diagnostics of HDAC inhibitor treatment.
Collapse
Affiliation(s)
- Christopher S. Ward
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Jose L. Izquierdo-Garcia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Alissa H. Brandes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yu JX, Hallac RR, Chiguru S, Mason RP. New frontiers and developing applications in 19F NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 70:25-49. [PMID: 23540575 PMCID: PMC3613763 DOI: 10.1016/j.pnmrs.2012.10.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/23/2012] [Indexed: 05/06/2023]
Affiliation(s)
- Jian-Xin Yu
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Rami R. Hallac
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Srinivas Chiguru
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Ralph P. Mason
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Gene-expression profiling studies have taught us quite a bit about the biology of this fatal disease, but epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptome changes associated with the development of IPF. This review will begin with an introduction to the disease, followed by brief summaries of studies of gene expression in IPF and epigenetic marks associated with exposures relevant to IPF. The majority of the discussion will focus on epigenetic studies conducted so far in IPF, the limitations, challenges nd future directions in this field.
Collapse
Affiliation(s)
- Ivana V Yang
- Center for Genes, Environment & Health & the Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
13
|
Su JS, Woods SM, Ronen SM. Metabolic consequences of treatment with AKT inhibitor perifosine in breast cancer cells. NMR IN BIOMEDICINE 2012; 25:379-88. [PMID: 22253088 PMCID: PMC3920667 DOI: 10.1002/nbm.1764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 05/14/2023]
Abstract
Activation of the PI3K/Akt pathway is associated with the development of numerous human cancers. As a result, many emerging therapies target this pathway. Previous studies have shown that targeting the PI3K/Akt pathway at the level of PI3K is associated with a drop in phosphocholine (PCho) and a reduction in hyperpolarized lactate production. However, the consequences of targeting downstream of PI3K at the level of Akt have not been investigated. Perifosine is an anticancer alkylphospholipid used in clinical trials. It acts by inhibiting phosphorylation of Akt and has been shown to inhibit CTP-phosphocholine cytidyltransferase (CT). The goal of this study was to identify the MRS-detectable metabolic consequences of treatment with perifosine in MCF-7 breast cancer cells. We found that perifosine treatment led to a 51 ± 5% drop in PCho from 30 ± 5 to 15 ± 1 fmol/cell and a comparable drop in de novo synthesized PCho. This was associated with a drop in choline kinase (ChoK) activity and ChoKα expression. CT inhibition could not be ruled out but likely did not contribute to the change in PCho. We also found that intracellular lactate levels decreased from 2.7 ± 0.5 to 1.5 ± 0.3 fmol/cell and extracellular lactate levels dropped by a similar extent. These findings were consistent with a drop in lactate dehydrogenase expression and associated with a drop in activity of the hypoxia inducible factor (HIF)-1α. The drops in PCho and lactate production following perifosine treatment are therefore mediated downstream of Akt by the drop in HIF-1α, which serves as the transcription factor for both ChoK and lactate dehydrogenase. The metabolic changes were confirmed in a second breast cancer cell line, MDA-MB-231. Taken together, these findings indicate that PCho and lactate can serve as noninvasive metabolic biomarkers for monitoring the effects of inhibitors that target the PI3K/Akt pathway, independent of the step that leads to inhibition of HIF-1α.
Collapse
Affiliation(s)
- Judy S Su
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
14
|
Lodi A, Ronen SM. Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PLoS One 2011; 6:e26155. [PMID: 22022547 PMCID: PMC3192145 DOI: 10.1371/journal.pone.0026155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023] Open
Abstract
Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage. Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging are non-invasive imaging methods that can be employed to monitor metabolism, and previous studies indicate that these methods can be useful for monitoring the metabolic consequences of treatment that are associated with early drug target modulation. However, single-metabolite biomarkers are often not specific to a particular therapy. Here we used an unbiased 1H MRS-based metabolomics approach to investigate the overall metabolic consequences of treatment with the phosphoinositide 3-kinase inhibitor LY294002 and the heat shock protein 90 inhibitor 17AAG in prostate and breast cancer cell lines. LY294002 treatment resulted in decreased intracellular lactate, alanine fumarate, phosphocholine and glutathione. Following 17AAG treatment, decreased intracellular lactate, alanine, fumarate and glutamine were also observed but phosphocholine accumulated in every case. Furthermore, citrate, which is typically observed in normal prostate tissue but not in tumors, increased following 17AAG treatment in prostate cells. This approach is likely to provide further information about the complex interactions between signaling and metabolic pathways. It also highlights the potential of MRS-based metabolomics to identify metabolic signatures that can specifically inform on molecular drug action.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
15
|
Yang IV, Schwartz DA. Epigenetic control of gene expression in the lung. Am J Respir Crit Care Med 2011; 183:1295-301. [PMID: 21596832 DOI: 10.1164/rccm.201010-1579pp] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is traditionally defined as the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequence. There are three main classes of epigenetic marks--DNA methylation, modifications of histone tails, and noncoding RNAs--each of which may be influenced by the environment, diet, diseases, and ageing. Importantly, epigenetic marks have been shown to influence immune cell maturation and are associated with the risk of developing various forms of cancer, including lung cancer. Moreover, there is emerging evidence that these epigenetic marks affect gene expression in the lung and are associated with benign lung diseases, such as asthma, chronic obstructive pulmonary disease, and interstitial lung disease. Technological advances have made it feasible to study epigenetic marks in the lung, and it is anticipated that this knowledge will enhance our understanding of the dynamic biology in the lung and lead to the development of novel diagnostic and therapeutic approaches for our patients with lung disease.
Collapse
Affiliation(s)
- Ivana V Yang
- Center for Genes, Environment, and Health, National Jewish Health,Denver, CO 80206, USA.
| | | |
Collapse
|
16
|
Hendricks JA, Keliher EJ, Marinelli B, Reiner T, Weissleder R, Mazitschek R. In vivo PET imaging of histone deacetylases by 18F-suberoylanilide hydroxamic acid (18F-SAHA). J Med Chem 2011; 54:5576-82. [PMID: 21721525 DOI: 10.1021/jm200620f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Histone deacetylases (HDACs) are a group of enzymes that modulate gene expression and cell state by deacetylation of both histone and non-histone proteins. A variety of HDAC inhibitors (HDACi) have already undergone clinical testing in cancer. Real-time in vivo imaging of HDACs and their inhibition would be invaluable; however, the development of appropriate imaging agents has remained a major challenge. Here, we describe the development and evaluation of (18)F-suberoylanilide hydroxamic acid ((18)F-SAHA 1a), a close analogue of the most clinically relevant HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). We demonstrate that 1a has near identical biochemical activity profiles to that of SAHA and report findings from pharmacokinetic studies. Using a murine ovarian cancer model, we likewise show that HDAC inhibitor target binding efficacy can be quantitated within 24 h of administration. 1a thus represents the first (18)F-positron emission tomography (PET) HDAC imaging agent, which also exhibits low nanomolar potency and is pharmacologically analogous to a clinically relevant HDAC inhibitor.
Collapse
Affiliation(s)
- J Adam Hendricks
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Massachusetts 02114, United States
| | | | | | | | | | | |
Collapse
|
17
|
Glunde K, Jiang L, Moestue SA, Gribbestad IS. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR IN BIOMEDICINE 2011; 24:673-90. [PMID: 21793073 PMCID: PMC3146026 DOI: 10.1002/nbm.1751] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
MRS and MRSI are valuable tools for the detection of metabolic changes in tumors. The currently emerging era of molecular medicine, which is shaped by molecularly targeted anticancer therapies combined with molecular imaging of the effects of such therapies, requires powerful imaging technologies that are able to detect molecular information. MRS and MRSI are such technologies that are able to detect metabolites arising from glucose and choline metabolism in noninvasive in vivo settings and at higher resolution in tissue samples. The roles played by MRS and MRSI in the diagnosis of different types of cancer, as well as in the early monitoring of the tumor response to traditional chemotherapies, are reviewed. The emerging roles of MRS and MRSI in the development and detection of novel targeted anticancer therapies that target oncogenic signaling pathways or markers in choline or glucose metabolism are discussed.
Collapse
Affiliation(s)
- Kristine Glunde
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lu Jiang
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Siver A. Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Ingrid S. Gribbestad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
18
|
Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev 2010; 110:3043-59. [PMID: 20384323 DOI: 10.1021/cr9004007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kristine Glunde
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
19
|
Al-Saffar NMS, Jackson LE, Raynaud FI, Clarke PA, Ramírez de Molina A, Lacal JC, Workman P, Leach MO. The phosphoinositide 3-kinase inhibitor PI-103 downregulates choline kinase alpha leading to phosphocholine and total choline decrease detected by magnetic resonance spectroscopy. Cancer Res 2010; 70:5507-17. [PMID: 20551061 DOI: 10.1158/0008-5472.can-09-4476] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major target for cancer drug development. PI-103 is an isoform-selective class I PI3K and mammalian target of rapamycin inhibitor. The aims of this work were as follows: first, to use magnetic resonance spectroscopy (MRS) to identify and develop a robust pharmacodynamic (PD) biomarker for target inhibition and potentially tumor response following PI3K inhibition; second, to evaluate mechanisms underlying the MRS-detected changes. Treatment of human PTEN null PC3 prostate and PIK3CA mutant HCT116 colon carcinoma cells with PI-103 resulted in a concentration- and time-dependent decrease in phosphocholine (PC) and total choline (tCho) levels (P < 0.05) detected by phosphorus ((31)P)- and proton ((1)H)-MRS. In contrast, the cytotoxic microtubule inhibitor docetaxel increased glycerophosphocholine and tCho levels in PC3 cells. PI-103-induced MRS changes were associated with alterations in the protein expression levels of regulatory enzymes involved in lipid metabolism, including choline kinase alpha (ChoK(alpha)), fatty acid synthase (FAS), and phosphorylated ATP-citrate lyase (pACL). However, a strong correlation (r(2) = 0.9, P = 0.009) was found only between PC concentrations and ChoK(alpha) expression but not with FAS or pACL. This study identified inhibition of ChoK(alpha) as a major cause of the observed change in PC levels following PI-103 treatment. We also showed the capacity of (1)H-MRS, a clinically well-established technique with higher sensitivity and wider applicability compared with (31)P-MRS, to assess response to PI-103. Our results show that monitoring the effects of PI3K inhibitors by MRS may provide a noninvasive PD biomarker for PI3K inhibition and potentially of tumor response during early-stage clinical trials with PI3K inhibitors.
Collapse
Affiliation(s)
- Nada M S Al-Saffar
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|